
Revisiting the Linear Models with Exchangeably Distributed Errors

Timothy Opheim∗ Anuradha Roy †

Abstract
The popularity of the classical general linear model (CGLM) is mostly due to the ease of model

building and authentication. However, the CGLM is not appropriate and thus not applicable for
correlated two dimensional observations. In this article we revisit Arnold’s (1979) exchangeable
general linear model (EGLM) for one observation, derive profiled maximum likelihood estimates
(P-MLEs) of the model’s parameters, and obtain its joint complete sufficient statistics. We also
obtain the joint complete sufficient statistics of the “extended” model of Arnold (1979) for the case
of multiple observations.

Key Words: Block exchangeable covariance structure, linear models, profiled maximum likeli-
hood estimates

1. Introduction

Theoretical inference in statistics is mostly based on the assumption of independent random
samples drawn from an infinite population. Indeed, when the random variables exhibit de-
pendency, models that assume independency yield misleading and misguided results. Con-
sider a digital image where contiguous pixels are assumed to be correlated. The correlation
exists because sensors take a significant amount of energy from these contiguous pixels
and cover a land region much larger than the size of a pixel. Likewise, correlations also
exist within each pixel since by definition, a pixel is (typically) an ordered triplet of corre-
lated red, green, and blue coordinates. From the correlation structure, a digital image can
be assumed as one sample of multivariate repeated measurements: p = 3 intensities are
repeatedly measured over n contiguous pixels. A model based on samples of these con-
tiguous pixels must take into account these two types of correlations, such as a linear model
with errors following a matrix-variate normal distribution with some structured covariance
matrix.

Matrix-variate data, where p variables are measured at n locations (sites) or time points
are known as multivariate repeated measures data or doubly multivariate data, where the
observations in an (n × p)−dimensional matrix-variate sample are not independent, but
doubly correlated. Uncorrelated error is often a violated assumption of statistical proce-
dures in these kinds of data. Violations occur when error terms are not independent, but
instead clustered by one or more grouping variables. Arnold (1979) developed a linear
model for an n × p matrix-variate realization of one sample of multivariate repeated mea-
surements with a block exchangeable (BE) covariance structure (defined later) for the error
term, and he labelled it the exchangeable general linear model (EGLM). The BE covari-
ance structure for matrix-variate data is a generalization of the exchangeable covariance
structure for vector-variate data and has been studied most extensively by Arnold (1976)
and Szatrowski (1976).

The classical linear model for multivariate (vector-variate) data can be extended to the
case of doubly multivariate (matrix-variate) data, Y

n×p
. For example, the classical general
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linear model (CGLM) is

Y
n×p

= X
n×r

B
r×p

+ E
n×p

,

where X is an n × r design matrix whose first column is a vector of ones, B is an r × p
matrix of unknown constants and E is an n× p error matrix.

When the n rows of Y are exchangeable (see e.g., Arnold 1973, 1979 and Kozioł et al.
2018), the covariance structure of vec(E′) is said to be BE and is written as

Σ
np×np

=


Σ1 Σ2 . . . Σ2

Σ2 Σ1 . . . Σ2
...

...
. . .

...
Σ2 Σ2 . . . Σ1


= In ⊗ (Σ1 −Σ2) + Jn ⊗Σ2, (1)

where each column of E′ has the variance-covariance matrix Σ1, and any two different
columns have the covariance matrix Σ2. Here In is the n × n identity matrix, Jn =
1n1

′
n, where 1n is the n−dimensional vector of ones, and ‘vec’ of a matrix is a linear

transformation which converts a matrix into a column vector. We assume that the p × p
matrix Σ1 is positive definite (PD, denoted by Σ1 > 0), and the p × p symmetric matrix
Σ2 satisfies Σ1 + (n − 1)Σ2 > 0 and Σ1 − Σ2 > 0 in order to assure the positive
definiteness of Σ

(
see Lemma 2.1 in Roy and Leiva (2011)

)
.

The aim of this paper is to find the joint complete sufficient statistics of an “extended"
EGLM of Arnold (1979) for N multiple observations. Thereby, we first find the joint com-
plete sufficient statistics of the transformed EGLM of Arnold (1979) for one observation.

2. Preliminaries

2.1 Exponential class, Completeness, Sufficiency, and UMVUE

Suppose x is a p−dimensional random vector with probability density function (pdf) f(x;θ),
where θ ∈ Ω ⊂ Rk and x ∈ S ⊂ Rp. Let η′(θ) = (η1(θ), ..., ηm(θ))′ and T ′(x) =
(T1(x), ..., Tm(x))′. Suppose f(x;θ) is of the form

f(x;θ) =

{
exp
(
η′(θ)T (x) + h(x) + c(θ)

)
∀ x ∈ S,

0 elsewhere.
(2)

When m = k, we say f(x;θ) is a member of the full k−dimensional exponential class if
it can be expressed in the form defined by (2). If in addition S does not depend on θ, the
components of T (x) are linearly independent, and there exists a one-to-one transformation
from the usual parametrization to the natural parametrization, then f(x;θ) is a member of
the regular k−dimensional exponential class and one can invoke the useful result that T (x)
is a joint complete sufficient statistic for θ. When m > k, we say f(x;θ) is a member of the
curved exponential class. In this case, the minimal sufficient statistics needn’t be complete.

However, in multivariate cases where the number of scalar, vector and matrix param-
eters exceeds the number of multivariate observations, n, or in the univariate case when
n < m, the result from the full exponential class defines redundant sufficient statistics.
For example if x ∼ N(µ, σ2), then f(x;µ,σ2) is a member of the regular 2-dimensional
exponential class. If we have a sample of size n, then the joint complete sufficient statis-
tics are

(∑n
i=1 xi,

∑n
i=1 x

2
i

)
, but when n = 1 the previous result implies that the joint

complete sufficient statistics are (x, x2), thus defining an obvious redundancy. Therefore,
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when this occurs one should use the Fisher-Neyman factorization theorem (Keener 2010)
to find joint sufficient statistics and prove (or disprove) by definition that the joint sufficient
statistics are complete. The Fisher-Neyman factorization theorem states that if f(x;θ) is a
pdf, then T (x) is sufficient for θ if and only if nonnegative functions g and h can be found
such that f(x;θ) = h(x)g(T (x);θ). The statistic T (x) is said to be complete if for every
measurable function g, E[g(T (x))] = 0 ∀θ ∈ Ω implies that g is the zero function almost
everywhere.

Suppose δ = g(θ) is a parameter of interest for some function g. If T ⋆ = h(T ) for
some function h and E[T ⋆] = δ, then T ⋆ is the unique minimum variance unbiased esti-
mator (UMVUE) of δ given T is a complete sufficient statistic (Lehmann-Scheffé theorem,
Casella and Berger 1990).

2.2 Matrix-variate Normal Distribution

Let M be an (r×p) matrix and let R and C be (r×r) and (p×p) positive definite matrices,
respectively. We write Z ∼ Nr,p(M ,R,C) to mean that Z is an (r × p) random matrix
with E[Z] = M , row covariance matrix R, and column covariance matrix C. Moreover,
a useful identity between the matrix-variate normal distribution and multivariate normal
distribution is:

Z ∼ Nr,p(M ,R,C) ⇔ vec(Z) ∼ Nrp

(
vec(M),C ⊗R

)
.

3. The Model

Doubly multivariate data, are data where the observations in each (n × p)−dimensional
matrix-variate sample are doubly correlated. As mentioned in the Introduction, the analy-
sis of doubly multivariate data needs to take into account the correlations among the mea-
surements of p different variables as well as the correlations among measurements taken
at n different locations or time points. We briefly review the CGLM in Section 3.1 and
summarize some of Arnold’s results for the EGLM in Section 3.2.

3.1 Classical General Linear Model

Suppose we obtain a sample of size n such that each datum has p response variables and
r − 1 predictor variables associated with it. Using the notation in Arnold (1979) with
modern modifications, let Y be an (n × p) random matrix of responses, α be a (p × 1)
vector of parameters, T be an (n×(r−1)) matrix of known constants, γ be an

(
(r−1)×p

)
matrix of parameters, and E be an (n × p) random matrix which represents the matrix of
errors. Also, let y′

i be the i−th row vector of Y , t′i be the i−th row vector of T , and e′i be
the i−th row vector of E. The CGLM for one doubly multivariate observation Y can be
presented as 

y′
1

1×p
...
y′
n

1×p

 =


α′
1×p

+ t′1γ

...
α′
1×p

+ t′nγ

+


e′1
1×p

...
e′n
1×p

,
Y
n×p

= 1nα
′ + T

n×(r−1)
γ +E (3)

= X
n×r

B
r×p

+ E
n×p

,
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where the design matrix X and the matrix parameter B are

X =
[
1n : T

]
and B

r×p
=

 α′
1×p

γ
r−1×p

,
with full column rank of X . The CGLM makes the following assumptions about the rows
of the random error matrix E: E(ei) = 0

p×1
, E(eie

′
i) = Σ1

p×p
, and E(eie

′
i∗) = 0

p×p
, for

some unknown p × p symmetric PD matrix Σ1 where i, i∗ ∈ {1, 2, . . . , n} and i ̸= i∗.
Therefore,

E
[
vec(E′)

]
= E

 e1
...
en

 =

 0p
...
0p

 = vec
(

O
p×n

)
and (4)

Cov
[
vec(E′)

]
= E




e1
e2
...
en

 (e′1, e
′
2, . . . , e

′
n)

=

Σ1 O

p×p
. . . O

p×p

O
p×p

Σ1 . . . O
p×p

...
...

. . .
...

O
p×p

O
p×p

. . . Σ1

=In ⊗Σ1.

Since the collection of all e′i are independent and jointly normally distributed, we have

vec(E′) ∼ Nnp(vec( O
p×n

), In ⊗Σ1).

Therefore, the columns of E′ are independent and identically distributed

ei ∼ Np(0p,Σ1),∀ i = 1, 2, . . . , n.

Hence the columns of Y ′, yi, are independent and p−variate normally distributed as fol-
lows

yi ∼ Np(α+ γ ′ti,Σ1),∀ i = 1, 2, . . . , n.

3.2 Exchangeable General Linear Model

The EGLM is still defined by model (3), but it makes the following assumptions about
the rows of E: E(ei) = 0

p×1
, E(eie

′
i) = Σ1

p×p
, and E(eie

′
i∗) = Σ2

p×p
for some unknown

p × p symmetric PD matrix Σ1 and some unknown p × p symmetric matrix Σ2, such
that Cov

[
vec(E′)

]
is PD where i and i∗ are defined as in the previous section. Collectively,

these assumptions imply the expectation matrix of vec(E′) remains the same as in Equation
(4), but the variance-covariance matrix of vec(E′) changes to

Cov
[
vec(E′)

]
= E




e1
e2
...
en

 (e′1, e
′
2, . . . , e

′
n)

 =


Σ1 Σ2 . . . Σ2

Σ2 Σ1 . . . Σ2
...

...
. . .

...
Σ2 Σ2 . . . Σ1


= In ⊗ (Σ1 −Σ2) + Jn ⊗Σ2,

which is a BE covariance structure. Since the collection of all e′i are exchangeable and
jointly normally distributed, using the properties of the matrix-variate normal distribution
we have

vec(E′) ∼ Nnp(vec( O
p×n

), In ⊗ (Σ1 −Σ2) + Jn ⊗Σ2).
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It is apparent from the above formula that the rows of the response matrix are dependent
random variables.

3.2.1 Eigendecomposition of Block Exchangeable Covariance Structure

Let C∗ = C ′⊗Ip, where C = ( 1√
n
1n B′

n
n×(n−1)

) is the n×n orthogonal Helmert matrix,

with B′
nBn = Qn = In − 1

nJn and BnB
′
n = In−1. Thus, C∗ is also an orthogonal

matrix. Recall that vec(E′C) = C∗vec(E′). Therefore,

Cov
[
vec(E′C)

]
= C∗

[In ⊗ (Σ1 −Σ2) +Jn ⊗Σ2]C
∗′

=

[
Σz1 0
0 In−1 ⊗ΣZ2

]
,

where the positive definite matrices Σz1 = Σ1 + (n− 1)Σ2 and ΣZ2 = Σ1 −Σ2 are two
distinct eigenblocks (see Hao et al. 2015; Arnold 1973) of the BE covariance structure (1)
with (n− 1) repetitions of the second eigenblock ΣZ2 .

3.2.2 The Transformed Model

Arnold (1979) used the eigendecomposition of the BE covariance structure in his favor and
diagonalized the EGLM by pre-multiplying it by the orthogonal matrix C ′. In this way
he transformed the EGLM into n independent CGLMs (principally the principal vectors),
where the variance-covariance matrices of the error terms of these n CGLMs are the n
eigenblocks of the BE covariance structure (1). Let

C ′Y =

(
1√
n
1′nY

BnY

)
=

 z′
1

1×p

Z2
(n−1)×p

 and C ′T =

(
1√
n
1′nT

BnT

)
=

 u′
1

1×(r−1)

U2
(n−1)×(r−1)

,

where Z2 =


z′
2,1

1×p
...

z′
2,n−1
1×p

 and U2 =


u′
2,1

1×(r−1)

...
u′
2,n−1

1×(r−1)

.
From (3) the transformed model for one doubly multivariate observation is given by

C ′Y = C ′1nα
′ +C ′Tγ +C ′E.

Hence, (
z′
1

Z2

)
=

( √
nα′

0

)
+

(
u′
1

U2

)
γ +C ′E.

Using the eigendecomposition results in Section 3.2.1 and properties of the multivariate
normal distribution, we see z1 and vec(Z ′

2) are independent with the following distribu-
tions

z1 ∼ Np

(√
nα+ γ ′u1,Σz1

)
and vec(Z ′

2) ∼ N(n−1)p

(
vec(γ ′U ′

2), In−1 ⊗ΣZ2

)
.

In the model involving z1, there is no replication; hence, the maximum likelihood es-
timator of Σz1 does not exist since the maximum is attained as Σz1 approaches a singular,
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symmetric, positive semi-definite matrix (e.g., the matrix of zeroes, O
p×p

). The model in-

volving Z2 has (n − 1) replications with no intercept term; hence for n > 2, sensible
maximum likelihood estimators may be obtained for γ and ΣZ2 using results from the
CGLM. However, for N multiple observations, i.e., when one has N > 1 doubly multi-
variate observations and n ≥ 2, all parameters may be estimated.

Arnold (1979) obtained the least square estimates of the model parameters α, γ and
ΣZ2 , and he mentioned that there were no MLEs for the EGLM since the likelihood can
be made arbitrarily large as Σz1 approaches the zero matrix. Therefore, no sensible esti-
mators exist for Σ1 and Σ2, and hence for Σ. We derive the profiled MLEs of the EGLM
parameters α, γ and ΣZ2 for fixed Σz1 for one observation in the following section.

4. Profiled Maximum Likelihood Estimation of the Transformed EGLM for One
Observation

Theorem 1 The P-MLEs of α, γ, and ΣZ2 in the EGLM (3) for fixed Σz1 are given by

α̂′ =
z′
1 − γ̂ ′u′

1√
n

,

γ̂ = (U ′
2U2)

−1U ′
2Z2,

and Σ̂Z2 =
V 2|γ=γ̂

n− 1
,

where V 2 = (Z2 −U2γ)
′(Z2 −U2γ). Moreover, the MLE of Σz1 does not exist; hence,

MLEs do not exist for the parameters of the EGLM.

Proof 1 Suppose Σz1 is known. Let V 1 = (z1 −
√
nα− γ ′u1)(z1 −

√
nα− γ ′u1)

′ and
V 2 = (Z2 −U2γ)

′(Z2 −U2γ). The differentials of these are

dV 1 = −
√
ndα(z1 −

√
nα− γ ′u1)

′ −
√
n(z1 −

√
nα− γ ′u1)dα

′

− dγ ′u1(z1 −
√
nα− γ ′u1)

′ − (z1 −
√
nα− γ ′u1)u

′
1dγ

and dV 2 = −dγ ′U ′
2(Z2 −U2γ)− (Z2 −U2γ)

′U2dγ.

Since z1 is independent of Z2, the logarithm of the reduced likelihood of the EGLM, up to
an additive constant, is

lΣz1
(α,γ,ΣZ2 |z1,Z2,Σz1)=−1

2
ln|Σz1 | −

1

2
tr(Σ−1

z1
V 1)−

n− 1

2
ln|ΣZ2 | −

1

2
tr(Σ−1

Z2
V 2).

The differential of the above is

dlΣz1
(α,γ,ΣZ2 |z1,Z2,Σz1) = −1

2
tr(Σ−1

z1
dV 1)−

n− 1

2
tr(Σ−1

Z2
dΣZ2)

− 1

2
tr(Σ−1

Z2
dV 2 −Σ−1

Z2
dΣZ2Σ

−1
Z2

V 2)

=
√
n(z1 −

√
nα− γ ′u1)

′Σ−1
z1

dα

+ vec′(u1(z1 −
√
nα− γ ′u1)

′Σ−1
z1

+ U2(Z2 −U2γ)Σ
−1
Z2

)dvec(γ)

+
1

2
vec′(V 2 − (n− 1)ΣZ2)

(
Σ−1

Z2
⊗Σ−1

Z2

)
Dpdvech(ΣZ2),

 
2682



which implies the three following partial derivatives:

∂lΣz1
(α,γ,ΣZ2 |z1,Z2,Σz1)

∂α′ =
√
n(z1 −

√
nα− γ ′u1)

′Σ−1
z1

∂lΣz1
(α,γ,ΣZ2 |z1,Z2,Σz1)

∂vec′(γ)
= vec′(u1(z1 −

√
nα− γ ′u1)

′Σ−1
z1

+U 2(Z2 −U 2γ)Σ−1
Z2

)

∂lΣz1
(α,γ,ΣZ2 |z1,Z2,Σz1)

∂vech′
(ΣZ2)

=
1

2
vec′(V 2 − (n− 1)ΣZ2)

(
Σ−1

Z2
⊗Σ−1

Z2

)
Dp,

where Dp is the duplication matrix (see Magnus and Neudecker 1986). The P-MLEs of α,
γ, and ΣZ2 follow upon setting the partial derivatives equal to 0 and solving the system of
equations. In order to find the MLE of Σz1 , we plug the P-MLEs into the reduced likelihood
and maximize the resulting likelihood, dubbed the profiled likelihood. Specifically, the
profiled likelihood, up to an additive constant, is

l(Σz1 |z1,Z2) = −1

2
ln|Σz1 |.

Since Σz1 → Op×p ⇒ |Σz1 | → 0, the profiled likelihood can be made arbitrarily large as
Σz1 → Op×p; hence, the MLE of Σz1 does not exist.

We will now formally discuss the statistical properties of the P-MLEs of the model param-
eters in the following sections. We will discuss the properties of the P-MLEs of the model
parameters of the transformed EGLM for one observation in Section 4.1, and the properties
of the P-MLEs of the model parameters of the “extended” transformed EGLM for multiple
observations in Section 4.2.

4.1 Completeness and Sufficiency of the Transformed EGLM for One Observation

Now we wish to find the joint complete sufficient statistics for the model parameters of
the EGLM. From the form of the transformed model’s likelihood, we can obtain the joint
complete sufficient statistics of z1 and Z2 individually and conjoin them to obtain the
desired statistics. We begin with finding the joint complete sufficient statistics of Z2.

In effect, Z2 has two parameters, θZ2 = (γ,ΣZ2). Therefore, assume n > 2 to avoid
redundant sufficient statistics. The collection of the components of these parameters in a
vector lies in the parameter space ΩZ2 , an open p(p+2r−1)

2 −dimensional hyperrectangle.
Moreover, the support of Z2, SZ2 , is Rn−1 × Rp. The density of Z2 is

fZ2(Z2|γ,ΣZ2) = (2π)
(n−1)p

2 |ΣZ2 |−
n−1
2 exp

(
−1

2
tr
[
Σ−1

Z2
(Z2 −U2γ)

′(Z2 −U2γ)
])
.

Using the relation between the trace operator and the vectorize and half-vectorize operators,
minor simplifications show that the above density can be rewritten in exponential class form
as

fZ2(Z2|γ,ΣZ2) = exp
[
− 1

2
vech′(Σ−1

Z2
)D′

pDpvech(Z ′
2Z2) + vec′(Σ−1

Z2
γ ′)vec(Z ′

2U2)

+ hZ2(Z2) + cZ2(θZ2)

]
,

where hZ2(Z2) =
n−1
2 ln(2π) and cZ2(θZ2) = − 1

2
tr
(
Σ−1

Z2
γ ′U ′

2U 2γ
)
− n−1

2
ln|ΣZ2 |. Using

the notation in Equation (2), ηZ2
′(θ) = (η′

1,η
′
2) =

(
−1

2vech′(Σ−1
Z2

)D′
pDp, vec′(Σ−1

Z2
γ ′)
)
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and T ′
Z2
(Z2) =

(
vech′(Z ′

2Z2), vec
′(Z ′

2U2)
)
. Since ηZ2

(θ) is a p(p+2r−1)
2 −dimensional

vector, fZ2
(Z2|γ,ΣZ2) is a member of the full p(p+2r−1)

2 −dimensional exponential class.
Moreover, the components of T Z2(Z2) can be shown to be linearly independent by

contradiction. Specifically, if the components of T Z2(Z2) are linearly dependent, then
there exists constants, c11, ..., c1p, c22, ..., cp−1,p, cpp and d11, ..., d1,r−1, d21, ..., dp,r−1, not
all equal to zero, such that

p∑
i=1

p∑
j=i

cij

(
n−1∑
k=1

z2k,iz2k,j

)
+

p∑
i=1

r−1∑
j=1

dij

(
n−1∑
k=1

z2k,iu2k,j

)
= 0

for all Z2 ∈ SZ2 . However, the above equation defines a quadric hypersurface which is
identically equal to zero for all Z2 if and only if

c11, ..., c1p, c22, ..., cp−1,p, cpp and d11, ..., d1,r−1, d21, ..., dp,r−1

are all equal to zero. But this is a contradiction. Hence, the components of T Z2(Z2) are
linearly independent.

In addition, there exists a one-to-one transformation from the usual parametrization
(θZ2) to the natural parametrization (ηZ2

). Note, knowledge of vech
(
ΣZ2

)
is equivalent to

knowledge of ΣZ2 and the like relation holds between γ and vec(γ). Therefore, θZ2 can
be obtained from ηZ2

by noting that

vech (ΣZ2) = −2
(
D′

pDp

)−1
η1 and vec(γ ′) = (Ir−1 ⊗ΣZ2)η2.

By definition, fZ2(Z2|γ,ΣZ2) is a member of the regular p(p+2r−1)
2 −dimensional ex-

ponential class with joint complete sufficient statistics
(
vech′(Z ′

2Z2), vec′(Z ′
2U2)

)
. Now

we find the complete sufficient statistic(s) of the density of z1.
The support of z1, Sz1 , is Rp. Moreover, let θz1 = (α,γ,Σz1). The collection of

the components of these parameters in a vector lies in the parameter space Ωz1 , an open
p(p+2r+1)

2 −dimensional hyperrectangle. Moreover, its density can be written in the form

fz1(z1|α,γ,Σz1) = (2π)−
p
2 |Σz1 |−

1
2 exp

[
− 1

2
vech′

(
Σ−1

z1

)
D′

pDpvech
(
z1z

′
1

)
+
√
nvec′

(
α′Σ−1

z1

)
z1 +vec′

(
γΣ−1

z1

)
vec(u1z

′
1)−

1

2
tr
(
Σ−1

z1
γ ′u1u

′
1γ
)]
.

Since z1z
′
1 and u1z

′
1 are functions of z1, by the factorization theorem, z1 is a sufficient

statistic. Alternatively, since sufficiency is a data reductive tool and we have but one obser-
vation, z1 is a sufficient statistic.

We now show that z1 is complete by contradiction. Suppose there exists a measurable
function g not identically zero such that E[g(z1)] = 0 for all vec(θz1) ∈ Ωz1 . Hence,∫ ∞

−∞
. . .

∫ ∞

−∞
g(z1)exp

(
−1

2
z′
1Σ

−1
z1

z1

)
exp

((√
nα+ γ ′u1

)′
Σ−1

z1
z1

)
dz1 = 0.

However, as a function of (
√
nα+ γ ′u1)

′Σ−1
z1

the above is the multidimensional bilateral
laplace transform of g(z1)exp

(
−1

2z
′
1Σ

−1
z1

z1

)
, which cannot be identically zero unless

g(z1)exp
(
−1

2z
′
1Σ

−1
z1

z1

)
is zero almost everywhere. Since the latter term is never equal to

zero, g(z1) must be zero almost everywhere. Therefore, z1 is a complete sufficient statistic
by contradiction.

Combining the joint complete sufficient statistics of z1 and Z2 together, we conclude
that the joint complete sufficient statistics for the EGLM are

(
z1,vech

′(Z ′
2Z2),vec

′(Z ′
2U2)

)
.

Remark 1 The above technique is a longer proof than that presented in Arnold (1979).
Therein, he made use of the fact that the CGLM is a subfamily of the EGLM and invoked a
property of completeness involving mutually absolutely continuous distributions.
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4.2 Completeness and Sufficiency of the Transformed “Extended” EGLM for Mul-
tiple Observations

We now find the joint sufficient statistics for the transformed EGLM with N (> 1) indepen-
dent doubly multivariate observations. We will first explicate the site-dependent covariates
case and then adumbrate the site-independent covariates case.

Using the notation in Section 3 with the addition of a subscript, let

Z1N = (z11, . . . , z1N ) , U1N = (u11, . . . ,u1N ), and Z = (Z1N ,Z21, . . . ,Z2N ).

Therefore, Z1N ∼Np,N

(√
nαj′N + γ ′U1N ,Σz1 , IN

)
and Z2i∼Nn−1,p

(
U 2iγ,In−1,ΣZ2

)
for i = 1, . . . , N . In effect, the model has four parameters, θ = (α,γ,Σz1 ,ΣZ2). The col-
lection of the components of these parameters in a vector lies in the parameter space Ω, an
open p(p+r+1)−dimensional hyperrectangle. After performing the usual manipulations,
the pdf of the “extended” transformed EGLM is

f(Z|θ) = exp
(
− 1

2
vech′

(
Σ−1

z1

)
D′

pDpvech
(
Z1NZ ′

1N

)
+ vec

(
Σ−1

z1
α
)
Z1N1N

+ vec
(
Σ−1

z1
γ ′)vec (Z1NU ′

1N

)
− 1

2
vech′(Σ−1

Z2
)D′

pDpvech
( N∑

i=1

Z ′
2iZ2i

)

+ vec′(Σ−1
Z2

γ ′)vec

( N∑
i=1

Z ′
2iU2i

)
+ h(Z) + c(θ)

)
,

where h(Z) = −Nnp

2
ln(2π)

and c(θ) = −N

2
ln |Σz1 | −

N(n− 1)

2
ln |ΣZ2 | −

1

2
tr

(
γΣ−1

Z2
γ ′

N∑
i=1

U ′
2iU2i

)
− 1

2
tr
(
(
√
nα+ γ ′U1N )′Σ′

z1
(
√
nα+ γ ′U1N )

)
.

By the factorization theorem, the joint sufficient statistics of the above density are

T (Z) =

(
vech

(
Z1NZ ′

1N

)
,Z1N1N , vec

(
Z1NU ′

1N

)
,

vech

( N∑
i=1

Z ′
2iZ2i

)
, vec

( N∑
i=1

Z ′
2iU2i

))
.

Clearly, T (Z) has dimensions p(p+2r). Since this is larger than p(p+ r+1) when r > 1
(1+ covariate included in the model), the pdf of the “extended” transformed EGLM is a
member of the curved exponential family. Therefore, it should not come as a surprise that
T (Z) is not complete. To see this note,

E

( N∑
i=1

Z ′
2iU2i

)(
N∑
i=1

U ′
2iU2i

)−1

U1NQNU ′
1N −Z1NQNU ′

1N

 = Op×(r−1).

By definition, T (Z) is not complete since the function within the expectation is not identi-
cally zero (almost everywhere) for all values in the parameter space.

Finally, we derive the joint complete sufficient statistics of the “extended” transformed
EGLM with site-independent covariates. By definition, this implies the i−th doubly mul-
tivariate observation has an associated (r − 1)× 1 vector of covariates, xi, wherefrom the
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i−th matrix of covariates is obtained by the relation T i = 1nx
′
i. Using the notation from

Section 3.2.2, u1i =
√
nxi and U2i = O(n−1)×(r−1). Plugging in these values to the pdf

of the “extended” transformed EGLM shown above, we obtain the pdf of the “extended”
transformed EGLM with site-independent covariates:

f(Z|θ) = exp

(
− 1

2
vech′

(
Σ−1

z1

)
D′

pDpvech
(
Z1NZ ′

1N

)
+ vec

(
Σ−1

z1
α
)
Z1N1N

+ vec
(
Σ−1

z1
γ ′) vec

(
Z1NU ′

1N

)
− 1

2
vech′(Σ−1

Z2
)D′

pDpvech
( N∑
i=1

Z ′
2iZ2i

)

+ h(Z) + c(θ)

)
, (5)

where h(Z) = −Nnp

2
ln(2π)

and c(θ) = −N

2
ln

∣∣Σz1

∣∣− N(n− 1)

2
ln

∣∣ΣZ2

∣∣
− 1

2
tr
(
(
√
nα+ γ ′U1N )′Σ′

z1
(
√
nα+ γ ′U1N )

)
.

Using a similar proof as that developed for showing that the density of Z2 is a member
of the regular exponential family, one can show that the density (5) is a member of the
regular exponential family. Hence, the joint complete sufficient statistics of the “extended”
transformed EGLM with site-independent covariates are

T (Z) =

(
vech

(
Z1NZ ′

1N

)
,Z1N1N , vec

(
Z1NU ′

1N

)
, vech

( N∑
i=1

Z ′
2iZ2i

))
.
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