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Abstract

Classifying patients based on stated reasons for missing outcome from different intercurrent events

induces patients’ subsets in data from clinical trials. Often, data imputation disregards these pa-

tients’ subsets. We discuss a non-parametric data imputation method that reflects reasons stated for

missing data and hence patients’ subsets. This subset imputation method is based on a similarity

measure between baseline covariates of patients’ subset with missing data and a random closest

subset without missing data. An illustration is provided.
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1. Introduction

In clinical trials conducted to evaluate the efficacy of therapeutic agents, patients discon-

tinue treatment for different reasons. For example, in the DEFINE study [1], a study con-

ducted to evaluate the efficacy of dimethyl fumarate (BG12) for the treatment of relapse

remitting multiple sclerosis, the number of patients who discontinued study drug due to

relapse and disease progression (lack of efficacy) in the placebo, BG12 twice daily, and

BG12 thrice daily were 23/180, 7/176, and 7/184, respectively.

Classifying patients based on reasons for missing outcome from different intercurrent

events induces patient subsets in clinical trial data. For instance, patients whose missing

outcome stem from withdrawal due to adverse/serious adverse event or switch to rescue

therapy may represent different patient subsets. Differential dropout rates in time may

reflect differences in patients baseline disease severity, and hence different subsets among

the dropouts. Often, data imputation disregards these patients’ subsets.

We discuss a non-parametric data imputation method that reflects reasons stated for

missing data and hence patients’ subsets. This subset imputation method is based on a

similarity measure between baseline covariates of patients’ subset with missing data and a

random closest subset without missing data. An illustration is provided.

2. Method

2.1 Data Structure

We assume that there are non-missing response data on NM patients and missing response

data on M patients. The data of the ith patient from NM is (Xi, Yi), where Xi is a vector

of covariates, and Yi is the vector of responses. The data of the jth patient from M is

(Xj , .), where Xj is a vector of covariates, and ”.” is the vector of missing responses. The

task is to leverage information on Xi and Xj or the association between covariates and

Yi in implementing data imputation. An example is the imputation of missing gadolinium

enhancing (Gd) lesions in multiple sclerosis where number of Gd lesions are subject to

excess zeroes following effective treatment. Other settings include, but not limited to, a)

the imputation of patients’ infection status in anti-microbial trials [[5] Ch 12] where if the
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drug is effective excess zeroes result from higher proportion healed; and b) the imputation

of dental caries data among children and the imputation of number of epileptic seizures. In

the case of Gd lesions, dental caries, and epileptic seizures, Yi is count data, whereas in the

case of healing status, Yi is binary. Beside been discrete, data arising from these settings

may be subject to excess zeroes or over dispersion, which present additional challenges for

imputation.

2.2 Closest Similar Subset Imputation

Under imputation using a subset with minimum distance, the task is to use the Xi and

Xj to identify the subset S from NM such that the distance between between S and M
is minimum. Once S is found, one would randomly select the Yi of S and use those to

impute the missing response values of M . This would require one to form the distance

between the covariates of M and the covariates of each of the combination NM taken

M at a time. When the number of all combination of NM taken M at a time is not

computationally difficult, one could enumerate all such possible combinations. When this

might be computationally difficult, one could randomly choose a subset of the possible

combinations that the computer can handle and use (at the heart of population inference

based on random sample from the population) that. Alternatively, one could randomly

choose a number of combination much smaller than the computer could handle, compute

the distance, and repeat many times generating a sampling distribution of the minimum

distance. One could then select any of the subset in the lower percentile (10th say).

In particular, suppose the non-missing dataset NM has 10 patients and the missing

dataset M has 2 observations. Further, suppose that X1 and X2 are covariates upon which

one wants to match a subset of NM patients to those of M . Theoretically, one could form

S subsets from NM which equals the combination of 10 things taken 2 at a time [
(

10

2

)

= 45].

Then one would compute the distance between the 2 patients in M and each of the 45 sub-

sets of NM in terms of X1 and X2. Then choose the subset SMIN from the subsets in NM
that has the smallest distance to M . One would then randomly assign missing patients in

M to the categories of outcome (numbers of lesions in the running example) proportionate

to the percentages of outcome (numbers of Gd lesions in the running example) in SMIN .

Suppose the baseline covariate vectors on the ith and jth patients in the M group are

(xi, yi) and (xj , yj); and that the covariate vectors on the rth and sth patients in the NM
groups are (xr, yr) and (xs, ys) (where there are 45 such pairs in the above example).

These two groups can be visualized in the XY plane. For the M group there are two

pairs of points. For the NM group there are 45 pairs of points (but one is forming the

distance between the pair of points in the M group to each of the 45 pairs of points in the

NM group). So the question is what is a measure of distance between the two sets each

consisting of two pairs of points? There are several formulations (any point on the circle

passing through the two pairs of points with center the midpoint between the pair and

diameter equalling the distance between the pair of points in each subset). In the present

case, we used a midpoint that is unique.

Denote p dimensional vector sampled from two preferable, but not necessarily, normal

population T1 and T2 by Xi(i = 1, 2, . . . m) and Yi(i = 1, 2, . . . n), respectively. Let

x̄, ȳ, S̄x, S̄y represent, respectively, the mean vectors and covariance matrices. Denote

Sp = (Sx + Sy)/(n +m− 2). Mahalanobis distance between the two population is:

MDsub(x̄, ȳ) =
√

(x̄− ȳ)T S−1
p (x̄− ȳ). (1)
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3. Illustration

The confidential nature of the data in the present application precluded actual clinical data

presentation; therefore, simulated data are used for illustration. To allow comparability,

we demonstrate closest similar subset imputation using a simulated data set that mirrors

that used in the COUNTIMP R package [2]. In particular, we generated a data set that

contains over dispersed dependent count variable following negative binomial and three

continuous predictors, x1 − x3, that follow N(0, 1) with β0 − β3 being the corresponding

regression coefficients, and β0 being the intercept coefficient. The values of the parameters

are β0 = 1, β1 = 0.75, β2 = −0.25, and β3 = 0.50. The sample size was 1,000 to

be consistent with the sample size generally used in clinical trial. Missing at random was

introduced by sampling and declaring missing 20% of the data points where the value of

the predictors are less than the mean. See [2]. The combination of 1,000 things taken 200

at a time is enormous for the computer to handle; therefore, we generated 50,000 random

subsets of such combinations. We then computed the MD between the covariates of the 200

patients having missing outcome with each of the 50,000 subsets; we selected the subset

with minimum distance and used the outcome for this subset with minimum distance for

imputation as described above.

Table 1 displays the maximum likelihood parameter estimates from full data set, closest

similar subset imputation, full conditional specification imputation, and complete case. The

parameter estimates from the closest similar subset imputation are generally similar to those

from FCS imputation, exception being that the standard error from the FCS is considerably

smaller. This might be due larger sample size (5,000 versus 1,000) used to demonstrate FCS

imputation in the COUNTIMP R package. We were unable to apply FCS implemented in

the COUNTIMP R package possibly due the incompatibility between the recent version of

MICE package and COUNTIMP package.

Table 1: Maximum Likelihood Parameter Estimates from Full Data, Closest Similar

Subset Imputation, and FCS

Full Data Set Subset Imputation FCS Imputation1 Complete Case

N 1,000 1,000 5,000 800

Parameter β̂ ŝe β̂ ŝe β̂ ŝe β̂ ŝe

β0 1.0121 0.0307 1.0240 0.0301 1.0142 0.0151 1.0106 0.0338
β1 0.7613 0.0301 0.7648 0.0293 0.7617 0.0154 0.7820 0.0327
β2 -0.2517 0.0284 -0.2743 0.0269 -0.2208 0.0166 -0.2677 0.0307
β3 0.4892 0.0299 0.5068 0.0295 0.4723 0.0148 0.5026 0.0333

Note: 1 Results from Kleinke and Reinecke [3].

Note: FCS is full conditional specification; Subset Imputation is closest similar subset imputation.

4. Concluding Remarks

The choice of imputation method warrants careful thought because it impacts the implied

research question. Irrespective of the sophistication of any imputation approach taken to

address missing data problem, no single imputation approach can overcome the limitation

of not having complete data. Accordingly, efforts should be invested to avoid missing data

using study design and data collection procedures [4]. Sensitivity analyses should be a

critical part of missing data imputation. Contextual assumption of and interpretation of

results from statistical analysis of imputed data should be clearly stated.
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