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1 Introduction 

1.1 Background  

The 2000 CDC growth charts (Kuczmarski, et al., 2002) (henceforth referred to as Growth 
Charts) provide charts and models that are used extensively in clinical practice to assess 
growth or patterns of child growth, and in the US are also used to define obesity (Ogden 
CL, Flegal KM. 2010). The models and charts presented in the Growth Charts are based 
on national data collected between 1963 and 1994 and provide references useful for 
tracking US child growth. The Growth Charts include sex-and age specific body mass 
index (BMI) percentiles, for children and adolescents aged 2-19 years, between the 3rd and 
97th values along with three normal transformation parameters (lambda, mu and sigma, 
LMS), which in turn can be used to interpolate other percentiles and associated z-scores 
(Flegal and Cole, 2013; Kuczmarski et al., 2002). Extrapolating beyond the 97th percentile 
by using the provided Growth Charts LMS parameters is not recommended because there 
was insufficient data beyond the 97th percentile to model additional percentiles. Z-scores 
obtained using extrapolated LMS parameters are compressed so that large changes in 
extreme BMI values reflect small changes in z-scores (Woo, 2009).   

1.2 Objectives  

For simplicity of terminology, the individual BMI growth charts contained in the Growth 
Charts will be referred to as the “GCharts”. The important measure “obesity” is defined as 
a BMI at or above the sex-and age specific 95th percentile (BMIp95).  However, since the 
publication of the Growth Charts, the prevalence of obesity among youth has increased 
from 5% in 1976-1980 to 18.5% in 2015-2016 (Hales et al., 2017). Given this order-of-
magnitude of change, and the GChart limitations for tracking extreme BMI values, a need 
has arisen to create a complementary sex- and age specific metric suitable for tracking 
extreme BMI. This paper presents details of an exploratory study of a proposed 
methodology based on the half-normal distribution to model extreme BMI values.  

 

2 Statistical model 

2.1 Population and Data  
 
The GCharts are based on modeled aggregate populations built on NHANES data collected 
 Disclaimer: The findings and conclusions in this study are those of the authors and do not necessarily represent 
the views of the Centers for Disease Control and Prevention. 
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from 1963-1994.  In that time frame, the tail distributions had sparse data. Now, with 18 
additional years of NHANES data available (1999-2016), a total of 8777 observations for  
children age 2 to 19 years greater than a GChart value BMIp95 are available for modeling.   
 
These data are grouped by each sex into 36 six-month-age groups for model fitting.  While 
the original GCharts are based on somewhat involved models, for fitting a complementary 
tail-distribution model, the authors decided to fit and assess a one-parameter half-normal 
distribution model applied to each of the 72 groups.  This model was selected as it provides 
straight-forward formulas for BMI percentiles or z-scores, and would be easy to 
incorporate into a web page and adapted BMI charts targeted for users who need to track 
extreme BMI values.   
 
Figure 1 shows the BMI distribution for boys in age group around 8.75 years for the 
original growth charts data along with the additional data from 1999-2016. The full range 
of BMI values is skewed toward the right. The red straight line represents the obesity 
threshold or GChart BMIp95.  It will be those points to the right of the red line that will be 
fitted by a one-parameter half-normal model.   
 

Figure 1. BMI distribution 1963 to 2016 with BMIp95 threshold. 

 

 
 
2.2 The model  
 
The current task is to only focus on BMI values greater than sex- and age-specific BMIp95 
and to create a reasonable data-driven model for the tail portion. 
 
This can be done by first recalling the following conditional probability structure of a 
random variable B : 
  
  pth pth 95th 95th( ) ( | ) ( )P B t P B t B t P B t≥ = ≥ ≥ ⋅ ≥ , (1)  
 
where ptht   is the thp  percentile that satisfies the order 95pth tht t>  , and B  = BMI for this 
study.   
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The conditional probability term, pth 95th( | )P B t B t≥ ≥ , represents the tail distribution; its 
form is unknown and will be based on a conjectured and then validated model.   The last 
multiplicative term in (1) properly links the tail distribution with the pre-tail part of the 
original distribution.  
 
2.3 The half-normal distribution and properties 
        
For age group a  it will be assumed that the tail distribution can be modeled by a half-
normal distribution. This distribution has density: 

 

   
2 2/(2 )12 , 0

2
ax

a

e xσ

πσ
− >     (2) 

where aσ  is a distribution scale-parameter that is proportional to both this distribution’s 
mean and standard deviation. 
 
As a theoretical model, a scaled expectation for distribution (2) is 

 ( )
2 aE Xπ σ=     (3),  

 
and the second moment is 2 2( ) aE X σ=     
 

 
The half-normal probability distribution can be expressed in terms of the standard normal 
distribution, ( )xΦ . The half-normal distribution satisfies: 

( ) 2(1 ( ))
a

xP X x
σ

> = −Φ , for 0 x< < ∞ . (4) 

Returning discussion to the study with B = BMI, the tail region 95{ }thB t> is assumed to 
have the  
conditional probability distribution, 95th( | )pthP B t B t≤ > , specified by a half- normal 
distribution.  
Re-expressing equation (1) in cumulative distribution function (CDF) form, along with 
expression (4) in  
CDF form, the CDF of B can be expressed: 

( ) 1 [1 2(1 ( )] (0.05)pth
a

xP B t
σ

≤ = − − −Φ ⋅   (5), 

whenever ptht   is the thp  percentile of B , 95pth tht t> , and x  is defined as 95pth tht t x= + ,  
0x > . 

For 95pth tht t<  the CDF values are those specified by the known pre-tail CDF.    

As an example of usage, given a p  (or percent) value 0.95p ≥ , the corresponding 
percentile value, 95pth tht t x= + , can be solved as 

*
95pth tht t x= + , where * 1 1 0.951

2 1 0.95
( ( ))a

px σ − −
= ⋅Φ +

−
 , (6)    

 
2643



   
 

 where 1−Φ  is the inverse function ofΦ . 

If a “ z -score-scale” unit rather than a “p-level scale” unit in the tail region is provided, 
i.e., 1.64z >   (assuming cases where the percentile associated with z is greater than the 
95th), the corresponding p  in formula (6) will be ( )zp z= Φ .  This zp  value can be 
substituted (6) to obtain the BMI value corresponding   to z , i.e.,  

*
95pth tht t x= + , where * 1 1 ( ) 0.951

2 1 0.95
( ( ))a

zx σ − Φ −
= ⋅Φ +

−
 , (7)    

 
 
2.4 Applications of half-normal tail distributions for GCharts   

Once an estimate of aσ  is established, the rules of (5), (6) and (7) can be used to define 
tail metrics for the GCharts.      

a. Given a BMI value consistent with obesity and defining x  = (BMI - BMIp95), 
equation (5) determines the percentile.   
A new measurement determined to be in a sex-age specific obese range can have 
its percentile quantified relative to its GChart standard.   

b. Given a value of p  or z , equations (6) and (7) determine the corresponding BMI 
value, i.e., the value of ptht .  

If the BMI value that exceeds the thp  percentile (e.g., 99%) is needed that value 
can be determined.   A set of tracking curves defined by obesity percentiles can be 
created.  

                    

3.    Estimation of  aσ  
   
3.1 Finite population sampling approach 
 
The selected half-normal model is fully specified by one-parameter, aσ .   As the 
NHANES data are based on a complex-survey design, finite-population-based 
sampling methods will be used. An assumption will be made that the sampling 
population’s tail shape for group a  is closely approximated by a shape consistent with 
equation (2).  (This assumption is in the spirit of imposing population regression 
parameters on a finite population).  The estimators of the finite population forms of 

(3), ( )
2

E Xπ
 or 2( ( ))E X , are candidates for defining an estimator of aσ .    

 
The usual finite population estimator of a population mean is the sample-weighted 
mean.  Sample-weighted means on observed data y  or 2y  on the specified tail of the 
population are the two candidate forms.  An empirical study led to choosing the y -
form.  More precisely, for the NHANES data for each group a  and individual i , we 
let iw  be the survey weight and ( 95)i iy bmi BMIp= −  be the BMI component 
exceeding its GChart’s 95th percentile;   all those units that do not exceed are dropped.  
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Letting an  be the sample size in the tail, the finite population estimator of the parameter 

aσ  of expression (3) is defined as   

  ˆaσ   =   1

1

2

a

a

n

i i
i

n

i
i

w y

w

π =

=

∑

∑
    , (8) 

 
 
3.2 Small samples and reducing impact of outliers    
     
      The estimator in expression (8) is subject to outlier influence, especially for smaller 
sample sizes.  As the data are based on several cycles of NHANES, the nominal sample 
sizes an  are greatly reduced by variation of sampling weights and clustering within each 
group.  Incorporating the design structures of 50 years of data collection is beyond the 
scope of the current research.  A commonly used technique, (Kish 1992, Henry and Valliant 
2015), is to use survey weight variation to reduce the nominal sample size to an effective 
sample size.   More precisely, if an age group a  has a nominal sample size an ,   its effective 

sample size will be a reduction by a factor 2(1 (weights))deff cv= + ,   and  .
a

a eff
nn

deff
=  

.   For this study, most computed deff ’s were in the range of 2.0 in magnitude.  This value 
was used for all groups and for all calculations discussed in this document.    
 

3.3 Extreme outliers  

Robust variations of the estimator ˆaσ  can be defined to give less weight to any extreme y  
values in equation (8).   Our attempt is to find one functional form that works well with all 
72  sample sex-age groups.   An iterative trimming of the extreme y ’s is implemented to 
keep the ˆtrimmed( ) ay kσ≤  for a selected value k .    

              Algorithm:  

   Fix a k   

     Compute  ˆaσ  as in (8), then compute 
ˆa

yz
σ

=   ,   next define 

   new old new if , and  otherwisey y z k y k= < = .    
    Iteratively, recompute ˆaσ  using (8) with the value newy until convergence. 
   Call the new estimate .ˆa kσ  
 

Three ˆaσ  forms  were considered to assess the impact of restricting the outliers to a 
mutiplicative factor of the computed ˆaσ :    original  ˆaσ  ,  trimmed at  2k = : .2ˆaσ , and 
trimmed at 3k = :  .3ˆaσ .  The y ’s were only trimmed in the computation of ˆaσ , not for 
other computed statistics 
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4 Smoothing model ˆaσ ’s across sex-age groups 
  
 
The procedures of section 3 provide 72 values of ˆaσ  for each original or trimmed variation.  
A goal of this project was to provide simple sex-specific computational expressions 
available for users of  GCharts who want to interpolate simple data input for a given ages 
on the continuum of 2 to 19 years.  Smoothing ˆaσ  across age groups with a parametric 
regression to obtain a simple expression of ˆaσ  as a function of age will provide a means 
to do that.  
  
4.1  Polynomial regressions  
        Linear and quadratic smoothers of the ˆaσ ’s    of the forms  
Linear:    0 1ˆa c c a eσ = + +   

Quadratic:  2
0 1 2ˆa c c a c a eσ = + + +     were sought.  

 
The single sex and age group estimates of aσ  were smoothed using fitting both linear and 
quadratic polynomials over the 36 age groups on for each sex.  Weighted least squares 
(WLS) procedures were used. 
   
   Three options for WLS weights were considered: 
 
  1.  .a a effLSwt n=   as discussed in 3.2  

  2.  .
2ˆ

a eff
a

a

n
LSwt

σ
=     

  3.  .
2ˆiterative fitted 

a eff
a

a

n
LSwt

σ
=   

    
Here, the assumption is made that large sample sizes and/or small 2ˆaσ  is related to increased 

precision.   The  LSwt  option of 3. above replaces the value 2ˆaσ  with the fitted polynomial 
at point a  and then repeats the WLS until convergence.   In the situation at hand, for a 
selected ˆaσ , .2ˆaσ  or .3ˆaσ  and for selected linear or quadratic fitting there was no practical 
difference in the fits using any of the three methods.    The choice between a linear and 
quadratic fitting can be made by examining the 2R  statistic and examining scatterplots.  
Figure 2 shows a scatterplot of the observed ˆaσ  and fitted linear and quadratic values 

.ˆa smoothedσ for both the boys and girls.  The quadratic form fitted both boys and girls 
reasonably well and was selected. The notation .ˆa smoothedσ  will be used to denote this 
estimator. 
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Figure 2.  .ˆa smoothedσ   linear and quadratic curves vs. original model estimated ˆaσ  

           Boys                                                                                    Girls 

 

 
 

5   Assessments of the half-normal fits 
 
5.1 CDF plots as a diagnostic 
 
Several estimation methods for fitting a one-parameter half-normal model have been 
explored.   As the data are based on complex survey samples covering a 50-year span, 
traditional model assessment based on independent sampling models do not strictly apply.  
For this study, assessments are made by visual inspection and aided by some commonly 
practiced techniques that treat survey units like independent sample units.   
 
One straight-forward model assessment is to compare the CDF of the half-normal model 
fitted with an estimate  ˆaσ  to the empirical survey-weighted CDF.  
 
For each of the 72 sex-age groups, a weighted empirical distribution function, ˆ ( )aF x , was 
computed using the R Package “Hmisc” and function “wtd.Ecdf” on BMI values that 
exceeded BMIp95.   For each ˆ ( )aF x   an empirical 95% confidence interval (point-wise) 
was computed by using a standard error estimate: 
  

  
.

ˆ ˆ( )(1 ( ))
a

a a
F

a eff

F x F xsd
n
−

=     , .a effn  = effective sample size for group a (see sect 3.2), 

and  
  then treating  ˆ ( ) 2

aa FF x sd±  as an approximate 95% confidence interval.  
  
 
If a sex-age group distribution is indeed a half-normal with parameter aσ  , then equation 
(4) can also be used to model the CDF.        
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A goodness of fit (GOF) is established visually by examining the degree to which the model 
(4) CDF is contained in the empirical cdf.   Figure 3 shows overlayed half-normal fits for 
ˆaσ  equal to the raw fitted parameter, the trimmed parameter at 2k =  .2ˆaσ  (see section 

3.3), and the quadratic smoothed .ˆa smoothσ  parameter.  
 
 
Figure 3. Examples of diagnostic from 72 sex-age specific CDF plots after half-normal 
modeling - empirical CDF with 95%CI vs.  CDFs by ˆaσ  ,   .2ˆaσ and .ˆa smoothσ  
 
              Boys                                                                                   Girls 

  

 
 
5.2 Kolmogorov-Smirnov goodness of fit test 
 
The Kolmogorov-Smirnov goodness-of-fit (KS-GOF) test is intended for testing an 
independent identically distributed - based sample against a completely specified CDF.   
The half-normal with an estimated ˆaσ  does not satisfy the NULL distributional 
assumptions of the KS-GOF, but the computation of KS-GOF with an estimated parameter 
does give an indication of fit, especially when comparing among the different methods for 
estimating aσ . 
For each sex-age group and estimation method, the R package “ks.test” was used to 
produce a p-value, and to adjust for the multiple comparisons of 72 age-groups, the R 
package “p.adjust” was used.   The R package had options for 5 different multiple 
comparison methodologies, all of which produced a p-value 0.05≥  for the original non-
modified estimate of ˆaσ .   
 
Figure 4 provides a plot of the stand-alone p-values for the fitted half-normal based on 
parameters ˆaσ  , .3ˆaσ and .2ˆaσ . As can be seen, the p-values for the truncated σ ’s tend to 
be larger than the original raw version. For ˆaσ  , .3ˆaσ and .2ˆaσ ,10, 6, and 1 groups, 
respectively, out of 72 total groups were significant at 0.05p < stand-alone level.  These 
results indicate that better fits may occur whenever some trimming of the larger observed 
BMI values is implemented when estimating ˆaσ             
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Figure 4. Stand-alone p-values of 72 Kolmogorov-Smirnov goodness of fit tests 

     
 Kolmorgorv-Smirnov test for each fit*  
*Indication of fit as the fitted model is based on an estimated parameter  
  
5.3 Comparisons with BMI tail data. 

 
In the examples that follow, the proposed .ˆa smoothσ  is considered as generating the half-
normal distribution and examined with respect to the 1963-2016 NHANES BMI tail data 
(values that exceed BMIp95).   

 
In Figure 5 the empirical CDF tail percentiles at values 95, 97, 99, and 99.99 are plotted 
at 36 age points and overlaid with the .ˆa smoothσ  generated half-normal percentiles at the 
corresponding ages.  The 95-99 percentiles appear to fit the empirical data well (at least 
visually).  The 95 value is a perfect fit by definition (see formula (5)).    The 99.99 value is 
include to examine an extreme case of possible fit deviation.  Here, in this case, the sparsity 
of data in the fitting process may lead to less than optimal fitting.  
 
Figure 5.   Plot comparisons with data, empirical, model/smoothed percentiles 
Projected percentile curves using smoothed curves based on .ˆa smoothσ compared to 
empirical percentiles by sex-age groups  
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6 Discussion 
 
The Growth Charts are a resource for providing references for tracking child growth. 
However, the Growth Charts are based upon 1963-1994 data, and there was sparse data 
available beyond the 97th percentile. As child obesity in the US has increased, extreme 
percentiles beyond the 97th percentile are increasingly relevant for tracking extreme 
BMI values. In the years since the publication of the Growth Charts, the NHANES has 
collected additional data on BMI among children and adolescents 2-19 years. These 
data, along with the original growth charts data, can be used to create complementary 
metrics for extreme BM values that to compensate for the sparse data beyond the 97th 
percentiles in the Growth Charts. This study suggests using a one-parameter half-
normal model for fitting BMI tail probabilities/percentiles.      
 
Summary of research: 

1. For each sex-age group a , a single parameter, aσ , can be used to completely 
specify the BMI distribution for obese children. This parameter, in its basic form, 
can be estimated using a survey-weighted mean.   The suggested estimate can be 
trimmed in small sample situations to reduce influence of outliers. 

2. The basic estimate of aσ   is smoothed and expressed as a simple quadratic 
function of age to be amenable to lay users of the GCharts. 

3. NHANES design features of survey weights and effective sample sizes are used 
in the estimation procedures.   

4. The fit of the model is assessed by 
a.  Examination of empirical and modeled CDFs and percentiles.  
b.  Multiple-comparisons of heuristic Kolmogorov-Smirnov goodness-of-fit 

statistics. 
 
This proposed half-normal method appears to fit the current data reasonably well and 
can be used to track extreme BMI values.  Additional material is contained in Wei et 
al.  (2019). 
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