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Abstract
In a world of big data, non-probability samples are fast and easy to collect than the traditional

probability samples. The main issue of big data sources is the unknown probability of inclusion,
and often the case that probability is related to the response variable. To deal with the nonignorable
nonresponses, we propose a double logistic regression model which linked by the response variable,
and fit by MCMC methods. We compare the nonignorable model we proposed in a simulation study
with a ignorable model – single logistic regression , Horvitz-Thompson and Hajek estimators. We
show that our model is favorable in terms of prediction precision.
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1. Introduction

Compared to probability sampling, getting data with non-probability sampling is usually
faster and cheaper. Non-probability sampling design includes methods such as quota sam-
pling, whose sampling units are controlled to be distributed close to the population would
be; convenience sampling, such as mall intercepts or volunteer samples, where only sub-
jects who are readily available are recruited; and network sampling, where new subjects
are recruited from existing study subjects’ acquaintances. The biggest challenge come
from those non-probability samples is to draw unbiased conclusions that the same kind of
probability sampling provides.

Rubin (1976) introduced a formal framework for the field of incomplete data by clas-
sifying the missing data mechanisms into three categories: missing completely at random
(MCAR), missing at random (MAR), and missing not at random (MNAR). Under MCAR,
the missingness variable I is independent of outcome Y ; under MAR, I is independent
of outcome Y , given the observed yobs; and under MNAR, missingness I depends on the
unobserved outcomes. An example of MNAR is the study that estimating the average in-
come. The lower-earning families can be more difficult to locate and contact, which makes
the response indicator variable correlated SSwith the outcome variable - income. Thus, this
coverage error will lead to overestimate the population income if not addressed properly.

There are two major categories of estimation procedure to deal with incomplete data:
design-based and model-based approach. design-based, or often refered as quasi- random-
ization, is by estimating the pseudo-inclusion probabilities using the covariates available for
both the samples and nonsample units, then incorporate those probabilites in unbiased esti-
mators such as Horvitz-Thompson or Hajek estimators. The other approach, model-based
inference, relies on the distribution of the quantity of interest. These methods treat the out-
come variable, rather than the inclusion process as being the random variables (Baker et al.
2003). Models for MCAR and MAR are called ignorable, and for MNAR are nonignorable.
Heckman selection model (1976) is a model-based approach that factorises the joint distri-
bution of outcome variable and missing data indicator into two sub-models: one specifies
the relationship of outcome variable with covariates P (Y | γ,X), the other represents
the missing data mechanism P (I | β,X,Y ). The later model depends on Y implies the
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missing data mechanism is MNAR. In this paper, we propose a full Bayesian modelling
approach designed for MNAR which based on selection model formulation.

Using Bayesian methodology for missing data has gained popularity over recent years.
The Bayesian paradigm is appealing because missing data can be treated as unknown pa-
rameters and are estimated within each MCMC iteration. Nandram and Choi (2002a,
2002b) use a hierarchical Bayesian selection model to model binary nonresponse data.
They express uncertainty about ignorability through the odds ratio and apply small area
estimation to address the issue of weak identifiability of the parameters. One big problem
for nonignorable models is the weakly identifiable parameters. Nandram and Choi (2010)
propose a nonignorable nonresponse model to analyse BMI data, which estimates the finite
population means of small domains formed by crossing age, race and sex within counties.
Woo, Nandram and Kim (2018) perform the Bayesian uncertainty analysis by placing pri-
ors on the nonidentifiable parameters, which allows a “borrowing of strength” from larger
areas to improve estimation in smaller areas. Wang, Bartlett and Ryan (2017) proposed
a Bayesian selection model for correcting for nonignorable nonresponse bias in a logistic
modelling. They use sensitivity analysis by treating a parameter as fixed constant and ex-
amine results by varying this parameter. In our paper, we use a similar formulation, but
approach the issue by full Bayesian modelling strategy.

In section 2, we provide the Bayesian model formulation. In section 3, we compare our
model with an ignorable model which models responses and covariates by logistic regres-
sion, Horvitz-Thompson and Hajek estimators in a simulation study. Lastly, we conclude
with a discussion and possible research extensions in section 4,.

2. Hierarchical Bayesian Model

2.1 Model Formulation

Adapting the formulation from Smith (Sugden and Smith, 1984), we consider the joint den-
sity of the population vector of an analysis variable, Y = (Y1, Y2, ..., YN ) and the binary
inclusion indicator variable I = (I1, I2, ..., IN ). Suppose we have p− 1 covariates, that is
known for the population, which will be used for both constructing estimator and modeling
selection mechanism. We use X to denote the N × p matrix that contains a column of 1s
and the p− 1 columns of X variables. Without loss of generality, let yi, i = 1, ..., n, be the
sample responses, and yi, i = n+ 1, ..., N be the nonsample units, accordingly, Ii = 1 for
i = 1, ...n and Ii = 0, i = n+ 1, ..., N . The prediction of the population proportion is the
quantity of interest.

The model assumes both the sample and nonsample units follow the same population
model, which we called the full data model. In our example, the full data model for Y
satisfy the logistic regression model, with γ be regression coefficients vector with the length
of p.

yi | γ
ind∼ Bernoulli

{
exp(x′iγ)

1 + exp(x′iγ)

}
, i = 1, ..., N (1)

The selection mechanism is modeled by another logistic regression model, but included
Y as an additional predictors to reflect the NMAR selection scheme. Denote the vector of
parameters associated with X by β(p) and the parameter for Y by βp+1. When it is not
neccessary to split into β(p) and βp+1, we use β to represent the combined vector.

Ii | y,β
ind∼ Bernoulli

{
exp(x′iβ(p) + βp+1yi)

1 + exp(x′iβ(p) + βp+1yi)

}
, i = 1, ..., N (2)
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By putting these two models together, the joint likelihood of the ith subject is

f(yi, Ii|β,γ) ∝
(

exp(x′iγ)

1 + exp(x′iγ)

)yi (
1− exp(x′iγ)

1 + exp(x′iγ)

)1−yi

×

(
exp(x′iβ(p) + βp+1yi)

1 + exp(x′iβ(p) + βp+1yi)

)Ii (
1−

exp(x′iβ(p) + βp+1yi)

1 + exp(x′iβ(p) + βp+1yi)

)1−Ii

.

(3)

To improve the mixing performance in MCMC, we choose multivariate normalN(β̂, 102Σ̂)
to be the priori for β, where β̂ is the mode of the likelihood for β, and Σ̂ is the inverse
of the Hessian of its negative log-likelihood. Notice we multiply the estimated covariance
matrix by 102 to avoid the issue of double use of data, and make the priori less informative.
Using the flat priori for γ with Π(γ) = 1, we derive the posterior joint density of the model
parameters and the nonsampled units, as presented in formula (4).

Denote the non-sampled units by yns, and the sampled ones by ys. Taking Ii = 1 for
i = 1, ..., n, and Ii = 0 for i = n+ 1, ..., N , the posterior joint density is

f(yns,β,γ | I,ys) ∝
n∏

i=1

exp(x′iγyi)

1 + exp(x′iγ)

exp(x′iβ(p) + βp+1yi)

1 + exp(x′iβ(p) + βp+1yi)

×
N∏

i=n+1

exp(x′iγyi)

1 + exp(x′iγ)

1

1 + exp(x′iβ(p) + βp+1yi)

× exp

(
−1

2
(β − β̂)T (102Σ̂)−1(β − β̂)

)
.

(4)

Before drawing samples from this posterior distribution, we have to check its propriety
first. Since the product on second row of (4) is always less than one and we know the
normal distribution is proper, we only need to show the first row

n∏
i=1

exp(x′iγyi)

1 + exp(x′iγ)
×

n∏
i=1

exp(x′iβ(p) + βp+1yi)

1 + exp(x′iβ(p) + βp+1yi)
(5)

is proper. We see that β and γ are independent in (5), and their individual densities are
log-concave (see detailed proof on Nandram et al., 2018), thus the joint density must be
log-concave. Due to the property of log-concavity, we know (5) is proper, which proves (4)
is proper.

Now, our goal is to apply Markov chain Monte Carlo (MCMC) methods to draw sam-
ples of β,γ and yi, i = n+1, ..., N from posterior distribution (4) and combine each set of
the prediction units with the sample units to obtain the inferences of population proportion.
In the next part, we will describe the samplers and algorithm applied.

2.2 MCMC algorithm

It is easy to derive the conditional densities of vector β,γ. The derivation of (iii) is less
straightforward, we leave the proof at Appendix. The conditional posterior densities are

(i) f(β, | y, I) ∝
N∏
i=1

exp((x′iβ(p) + βp+1yi)Ii)

1 + exp(x′iβ(p) + βp+1yi)
×exp

(
−1

2
(β − β̂)T (102Σ̂)−1(β − β̂)

)
;
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(ii) f(γ | y, I) ∝
N∏
i=1

exp(x′iγyi)

1 + exp(x′iγ)
;

(iii) P (yi = 1 | γ,β) =
exp(x′iγ)(1 + exp(x′iβ(p)))

exp(x′iγ)(1 + exp(x′iβ(p))) + 1 + exp(x′iβ(p) + βp+1)
,

P (yi = 0 | γ,β) = 1− P (yi = 1 | γ,β), i = n+ 1, ..., N.

Because the density of β or γ is not in a simple form, we use Metropolis-Hastings
algorithm for these two sets of parameters. Whereas the conditional distribution of yi, i =
n+ 1, ..., N has close form, which is Bernoulli distribution with probability of success cal-
culated by (iii), it is nature to use Gibbs sampler with univariate Metropolis steps. It can be
shown that each of the components preserves the stationary distribution of the chain, and
the convergence will obtain in the combination steps (Carlin and Louis, 2009).

Algorithm: For (t = 1, ..., T ), repeat:

1. Draw β∗ from multivariate t-distribution, where the proposal mean vector is the
mode of (i), and covariance matrix is given by its inverse of the Hessian of the nega-
tive log-likelihood function (-LL). Keep the degrees of freedom ν fixed through out
the iterations. It is standard to tune the Metropolis step by varying ν. Denote this
proposal density by g(β, | y, I)

2. Compute the acceptance ratio

r =
f(β∗, | y, I)g(β(t−1), | y, I)

g(β∗, | y, I)f(β(t− 1), | y, I)

3. Draw u from uniform U(0, 1), if u ≤ min(1, r), set β(t) = β∗

else, set β(t) = β(t−1).
Keep a record of the jumping number.

4. Similarly, adapt steps 1-3 to draw γ(t) based on formula (ii)

5. For each i, i = n+ 1, ..., N , calculate the probability of success by formula (iii), and
draw the corresponding y from its Bernoulli distribution.

After iterations are done, we need to check if the jumping rates for β or γ are within the
range of (25%, 75%). If the jumping rate is not acceptable, i.e. too low or too high, we
have to change the value for ν and repeat the above steps.

3. Simulation and Results

3.1 Dataset Description

We use simulated dataset to test our model. First, we generate values for the covariates
Age, Race, Gender, Education from distributions listed in Table 1: Age is from normal
distribution with mean 50 and standard deviation 2, Race, Gender, and Education are from
Bernoulli with probabilities of 0.45, 0.3, and 0.4 respectively. We draw N = 10000 from
each.

Second, we formulate a relation between the covariates variable X and the analysis
variable Y :

vi = b0 + b1x1i + b2x2i + b3x3i + b4x4i + εi
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Table 1: Distributions for covariates

Covariate Distribution
Age N(50, 22)
Race Bernoulli(0.45)
Gender Bernoulli(0.3)
Education Bernoulli(0.4)

where x2, x3, x4 are samples from the distributions in Table 1, and x1 are the values of Age
scaled to mean = 0, sd = 1. In our simulation dataset, we use b0 = 50, b1 = 2, b2 =
4, b3 = 3, b4 = 8, and εi ∼ N(0, 22). Then, to get the binary outcome variable Y, we use a
threshold with the value of 56, which is about the median of the population. Y is defined
by

yi =

{
1 vi > 56
0 vi ≤ 56 .

Lastly, to mimic a pattern of nonignorable nonresponse, we resample by the rule{
P (Ii = 1|yi = 1) = 0.13
P (Ii = 1|yi = 0) = 0.07 .

Use the strategy above, we obtain n = 1009 samples, out of N = 10000 in the population.
The sample proportion is 0.615, while the true population proportion is 0.470. We see that
the sample proportion overestimates the population proportion by 31%.

3.2 Results and Conclusion

By running 50,000 iterations, burn-in the first 5000, and thinning by 45, we obtain 1,000
sets of MCMC samples. The jumping rate for γ is 0.68, for β is 0.60, which are acceptable
as these are between 0.25 and 0.75. The parameter estimates and HPD intervals are shown
in Table 2. Our program is written in R language, and it takes about 5 hours to finish 50,000
iterations. How to improve the program efficiency could be in our extension study.

Table 2: The 95% HPD interval for parameters γ, β and ȳ

γ Mean HPD interval β Mean HPD interval ȳ HPD interval
γ0 -6.03 (-6.88, -5.13) β0 -2.49 (-2.59, -2.40) 0.479 (0.456, 0.507)
γ1 2.02 (1.71, 2.36) β1 0.03 (-0.04, 0.10)
γ2 4.28 (3.50, 4.99) β2 -0.00 (-0.14, 0.14)
γ3 2.91 (2.26, 3.54) β3 -0.16 (-0.30, -0.02)
γ4 8.00 (7.08, 9.05) β4 0.19 (-0.11, 0.48)

β5 0.49 (0.10, 0.86)

It is worth noting that the HPD interval for β5 does not contains 0, meaning y is sig-
nificant in the selection model and thus correctly detected the MNAR mechanism. The
posterior mean for the population proportion of Y is 0.479, with HPD interval of (0.456,
0.507). We see that this is close to the true population proportion, showing that the model
successfully adjusts the sample bias and predicts the population proportion. The histogram
of the population proportion predictions is in Figure 1.
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Furthermore, we conduct Geweke’s Diagnostics to check the convergence of each pa-
rameter to its target distribution. From Table 3, We see that all the p-values from the Z tests
are greater than 0.05, and the effective sample size for each parameter is acceptable.

Table 3: Geweke’s Diagnostics for γ and β

γ p-value effective size α p-value effective size
γ0 0.74 1098 β0 0.14 866
γ1 0.73 1130 β1 0.99 642
γ2 0.24 805 β2 0.75 660
γ3 0.35 1430 β3 0.90 772
γ4 0.90 1000 β4 0.74 533

β5 0.66 484

Figure 1: Histogram of Population Proportion Prediction

3.3 Model Comparison

3.3.1 Logistic Regression Model

If the missingness scheme is not MNAR, we would use a single logistic regression as
ignorable selection model for binary outcome data. Here, we use it as our baseline model
to compare results. By fitting the model with the samples, and applying the model to the
nonsample covariates, we get the estimation of population proportion as 0.501.

3.3.2 Horvitz-Thompson Estimator

Horvitz-Thompson (H-T) estimator (1952) has long been used as an unbiased estimator
when the weight of samples are correctly specified. The expression to calculate population
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Table 4: Results comparison

True Value Our Model (95% HPD) Ignorable model H-T Hajek
Sampled 0.615

Population 0.470 0.479 (0.456, 0.507) 0.501 0.5216 0.5220

mean is

ŶHT =

n∑
i=1

yi
Pri

,

where Pri is the inclusion probability, and it can be obtained in a model with covariates.
Here, we use propensity scores to construct the probability of selection.

Using logit link function, propensity score can be calculated by:

πi = P (Ri = 1|xi;α) =
ex
′
iα

1 + ex
′
iα
, (6)

for i = 1, 2, ...N . Thus, with the selection probability is defined by Pri =
nπi∑N
i=1 πi

.

For the simulated data, we obtain the value for H-T estimator is 0.5216.

3.3.3 Hajek Estimator

Hajek estimator of the population mean, defined by Sarndal, Swensson and Wretman
(2003) is

ŶH =

∑n
i=1 yi/Pri∑n
i=1 1/Pri

,

where Pri is the selection probability. We use the same formula for selection probability
as for Hovitz-Thompson estimator.

The result is 0.5220, with the comparison among those models listed in Table 4.

4. Conclusion and Possible Research Extension

It is usually difficult to learn about the missing data mechanism. However, incorporating
the outcome variable into the selection model and testing its statistical significance give us
a sense about the selection mechanism. Moreover, our model can automatically adjust to
different missing data mechanisms with varied significance of parameters, providing the
model and covariates are correctly specified.

There are a few interesting reseach extensions. First, instead of using nonprobability
samples alone, DiSogra et al. (2012) introduced an idea referred to as “blended calibration”
in which a small probability sample is combined with a parallel nonprobability sample.
Many researches have been conducted on how to combine these two to increase the accu-
racy of estimates derived from nonprobability samples alone (Sakshaug et al., 2019). By
using our modeling strategy, probability samples should be straightforward to be entered
into likelihood function.

Second, we could further extend our reasearch to the case where the response is cate-
gorical data, so multinomial distribution would be used to model as such.
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Third, there are likely to be heterogeneity in big data, which can be addressed by post-
stratifying the population into small areas. Thus, poststratification and small area estima-
tion could be used to borrow strength from the neighboring cells.

Furthermore, nearest neighbor approach with variability incorporated can be studied.

A. Appendix

Conditional Distribution for yi
We know that Y is binary variable, which means it is from Bernoulli distribution and

characterized by the success probability P (yi = 1 | ...), i = n+ 1, ..., N . From (3), we see
that

P (yi = 1 | Ii = 0,xi,γ,β, βp+1) = k
exp(x′iγ)

1 + exp(x′iγ)

1

1 + exp(x′iβ + βp+1)
(7)

where k is a constant of which the value is the product of the rest of fractions in the joint
distribution. Similarly, by plugging in yi = 0, we have

P (yi = 0 | Ii = 0,xi,γ,β, βp+1) = k
1

1 + exp(x′iγ)

1

1 + exp(x′iβ)
(8)

where k is the product of the same fractions, and thus has the same value as in (4).
By using the property that P (yi = 1 | ...) + P (yi = 0 | ...) = 1 we can solve for k,

k =
(1 + exp(x′iγ))(1 + exp(x′iβ + βp+1))(1 + exp(x′iβ))

exp(x′iγ)(1 + exp(x′iβ)) + 1 + exp(x′iβ + βp+1)
(9)

Putting (7) and (9) together, we arrived at

P (yi = 1 | xi,γ,β, βp+1) =
(1 + exp(x′iγ))(1 + exp(x′iβ + βp+1))(1 + exp(x′iβ))

exp(x′iγ)(1 + exp(x′iβ)) + 1 + exp(x′iβ + βp+1)

× exp(x′iγ)

1 + exp(x′iγ)

1

1 + exp(x′iβ + βp+1)

=
exp(x′iγ)(1 + exp(x′iβ))

exp(x′iγ)(1 + exp(x′iβ)) + 1 + exp(x′iβ + βp+1)
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