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Abstract
Quarterly seasonal adjustments in official statistics are often not the result of a direct adjustment of
the quarterly series, but instead are an indirect adjustment arising from the aggregation of the sea-
sonally adjusted monthly series. However, the temporal aggregation of nonseasonal monthly series
to a quarterly frequency can exhibit seasonality; we provide a rigorous framework for understanding
how this occurs. To solve the problem, we build on prior work that uses benchmarking to enforce
seasonal adjustment adequacy as temporal aggregation is applied, where adequacy is metrized and
supplied as a hard constraint to the benchmarking optimization problem. It is vital to use a sea-
sonality diagnostic that examines a time series at high seasonal lags, and can properly capture type
I and type II errors, and therefore we propose to utilize new autoregressive seasonality diagnos-
tics in tandem with the proposed benchmarking procedure. We examine the proposed procedure on
X-13ARIMA-SEATS seasonal adjustments of several economic time series.
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1. Introduction

The problem of the presence of residual seasonality in published GDP has recently been
publicized through a series of articles, with concerns first being articulated by Furman
(2015), Gilbert et al. (2015), Rudebusch et al. (2015), and Groen and Russo (2015). These
critiques have prompted renewed interest in seasonality diagnostics and seasonal adjust-
ment at the Bureau of Economic Analysis (BEA) – see the discussion in Lengerman et al.
(2017). McCulla and Smith (2015) review some of the changes BEA has implemented in
response to the critiques, whereas Phillips and Wang (2016) points out continuing difficul-
ties. Preliminary findings at BEA determined that residual seasonality could arise from the
aggregation of monthly source data to a quarterly frequency (Moulton and Cowan, 2016);
this phenomenon was demonstrated through simulations and theoretical models (McElroy,
2016).

When monthly source data is available in a raw form, it can be seasonally adjusted and
then aggegrated, resulting in the indirect adjustment of the quarterly data. Alternatively, it
can be first aggregated and then adjusted, resulting in the direct adjustment of the quarterly
data. Whereas operationally there is more control over outcomes in the latter approach (as
the analyst has control over program settings to ensure adequacy), the direct adjustment
will typically be different from the indirect adjustment, and in particular is not equal to
aggregation of the monthly adjustment.

BEA requires this equality be preserved, because for certain components of GDP,
monthly seasonally adjusted numbers are published. In particular, the goods and services
portion of Personal Consumption of Expenditure (PCE), which accounts for two thirds of
GDP, is published at a monthly frequency and needs to be consistent with quarterly values.
∗U.S. Census Bureau, 4600 Silver Hill Road, Washington, DC 20233-9100
†Retired (U.S. Census Bureau)
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Further complicating matters, for some components of GDP there is no monthly raw data
available, i.e., only the monthly seasonal adjustments have been provided to BEA (by other
agencies). Hence there is no way to compute a quarterly aggregate, and therefore no way
to compute a direct adjustment; apparently, the indirect adjustment is the only available
method, and in some cases the adjustment is inadequate.

This paper addresses these problems by extending the reconciliation methodology ad-
vocated in McElroy (2018), which focused upon the related problem of cross-aggregation
of time series with the same sampling frequency. The novelty of our method lies in us-
ing nonlinear optimization to obtain reconciled series (which satisfy the aggregation con-
straints across frequency) such that seasonal adjustment adequacy holds. While there exists
a substantial literature on the enforcing of temporal aggregation constraints (i.e., bench-
marking), the key issue of adequacy – namely, that the final quarterly adjustment does not
exhibit seasonality – has not been addressed (cf. Denton (1971), Dagum (1979), Cholette
(1984), Dagum and Cholette (2006), Di Fonzo and Marini (2011), Quenneville and Fortier
(2012), and Chen (2012)). Although it has been recognized in the seasonal adjustment com-
munity that this is a pervasive challenge (cf. Hood and Findley (2001) and Astolfi, Ladiray,
and Mazzi (2001)), there is no available method that simultaneously addresses frequency
aggregation and adequacy.

Our solution involves nonlinear optimization for each series, whereby monthly adjust-
ments are changed as little as possible, such that they are still adequate and also aggregate
to the quarterly adjustment, which is also enforced to be adequate. In the case that no raw
monthly data is available, we utilize the seasonal adjustment of the indirect quarterly ad-
justment (assuming it is inadequate – otherwise we are already done) as the program’s
quarterly benchmark. We motivate our work by a discussion of the quarterly aggregation
phenomenon in Section 2, followed by a rigorous treatment of how dynamics are altered by
aggregation in Section 3. Section 4 proposes the benchmarking methodology, and Section 5
illustrates with a couple of applications to economic data. Section 6 offers some concluding
remarks.

2. The Phenomenon of Seasonality in Frequency Aggregated Series

The phenomenon of “frequency-aggregated seasonality” refers to the situation where a
change in sampling frequency via flow aggregation results in the manifestation of season-
ality. For example, we may have a monthly time series that exhibits no seasonality, and
yet when aggregated to a quarterly frequency displays seasonality. A second case arises
when the monthly series is indeed seasonal, is seasonally adjusted, and the quarterly ag-
gregate of the monthly adjustment displays seasonality. In either case, direct adjustment of
the quarterly series results in removal of seasonality, but typically this direct adjustment
will no longer be an aggregate of the monthly adjustment. If these types of aggregation
relationships are desirable, then a modification of the direct adjustment is needed.

Such phenomena have been empirically observed in PCE goods and services data, as
noted and discussed in McElroy (2018). A possible explanation from economics is sug-
gested by budgets and quotas: a certain amount of resources is allocated on a quarterly
basis, but is expended in the three months of that quarter as needs arise. Hence there is
no seasonal pattern on a monthly basis, but the rationing becomes apparent at a quarterly
frequency; naturally, this indicates a negative correlation between months that lie within
the same quarter. We proceed to describe a process with these properties. Suppose that a
monthly series {Xt} for t ∈ Z can be written in terms of latent processes {St} and {Nt},
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Figure 1: Simulated monthly series with salient seasonality (and trend).
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Figure 2: Simulated monthly series, consisting of monthly seasonality plus quota noise.

representing unobserved seasonal and nonseasonal dynamics respectively:

Xt = St +Nt. (1)

We suppose that {St} has apparent seasonality, but that the variability in the so-called
“quota” noise {Nt} is so high that no seasonality is apparent in {Xt} (see McElroy (2018)
for a related discussion). Figure 1 shows a simulated {St}, together with a time trend, and
Figure 2 shows the result of adding quota noise. There is no apparent seasonality in this
monthly series. In particular, there is no oscillatory pattern present in the sample autocorre-
lations (Figure 3), and the values at lags 12, 24, and 36 are low. As for the spectral density,
there are only minor peaks present, and these are not located exactly at the seasonal fre-
quencies denoted by vertical lines in Figure 4. (See Findley, Lytras, and McElroy (2017)
for a discussion of seasonality diagnostics.)

The quota noise {Nt} is constructed as a nonstationary process where every third ran-
dom variable equals the negative of the sum of the previous two:

Nt = −Nt−1 −Nt−2 if tmod 3 = 0.

(Alternative constructions can be envisioned: the covariance matrices of the three random

 
2482



0 5 10 15 20 25 30 35
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

AC
F

Figure 3: Autocorrelation plot of noisy monthly series. (Big spikes at lags 12, 24, and 36
would indicate seasonality.)
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Figure 4: Spectral density plot of noisy monthly series. (Big spikes at seasonal frequencies
1, 2, 3, 4, 5, 6 in red would indicate seasonality.)

variables corresponding to a given quarter can be defined to have [1, 1, 1]′ as a null vector, or
an approximate null vector.) Flow aggregation means that every three monthly observations
are summed to a quarterly value; applying such an operator to {Nt}, we clearly obtain zero,
so that the flow aggregation of {Xt} equals the flow aggregation of {St} – which is likely
to still be seasonal, as is discussed in Section 3 below. In our example, the flow aggregation
of {Xt} (and {St}) is displayed in Figure 5; the quarterly seasonality is highly significant
and apparent.

In practice we find that examples tend to be less dramatic: for instance, it may occur
that a given monthly series exhibits very weak seasonality, and hence is not adjusted, but its
quarterly aggregation displays a much greater degree of seasonality – requiring action. In
such a case, indirect adjustment is tantamount to quarterly aggregation (since the original
monthly series is not adjusted at all), and hence is inadequate.
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Figure 5: Quarterly aggregation of simulated monthly series with quota noise.

3. How Frequency Aggregation Alters ARIMA Structure

We here discuss how the structure of an ARIMA process is altered by down-sampling and
frequency aggregation. Let a given high-frequency process {Xt} have an ARIMA structure,
such that δ(B)Xt = Yt is stationary and φ(B)Yt = θ(B)Zt, where φ and θ are degree p and
q polynomials with roots outside the unit circle, and δ is a degree d polynomial with roots
on the unit circle. (We can relax this slightly, so that θ is permitted to have roots on the unit
circle.) Set ϕ(z) = δ(z)φ(z), the pseudo-autoregressive polynomial. For a positive integer
s, we consider embedding a given high-frequency process as a s-variate low-frequency
process {Xn}, where the jth component of Xn is Xns+j . This jth component is called
the jth season’s series; considering all such series together in vector format is called the
seasonal vector series. This type of embedding has been studied by many authors: see
Gladyshev (1961), Tiao and Grupe (1980), Osborn (1991), and Franses (1994).

The embedding results of this section expand on those of Tiao and Grupe (1980) by
developing the algebra; we first set out some notation. The backshift operator B acts on
the high-frequency time index via BXt = Xt−1; the corresponding low-frequency lag
operator is defined to be L = Bs, so that LXn = Xn−1. The s × s identity matrix is
denoted 1s, and we use underlines to denote matrices. Given a scalar Laurent series ψ(z),
its embedded Laurent series is defined to be the s × s-dimensional matrix Laurent series
ψ(L) =

∑
k ψkL

k, where the r,m coefficients of ψ
k

are given by ψr−m+s∗k; cf. equation
(2.7) of Tiao and Grupe (1980). Also, if ψ(B) is a polynomial of degree q, then the degree
of the matrix polynomial ψ(L) is bq/sc+ 1.

Illustration: Consider the polynomials d(B) = 1−B and U(B) with s = 4. The embed-
ding yields

d(L) =


1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1

 +


0 0 0 −1
0 0 0 0
0 0 0 0
0 0 0 0

 L

U(L) =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 +


0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

 L.
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Even though the ideal of matrix polynomials is not Abelian, the seasonal embedding
mapping is a homomorphism with respect to polynomial products, which is an important
property. IfW denotes the embedding, and a(B) and b(B) are two scalar polynomials, then
W(a · b) =W(a) ·W(b). As a result, if a scalar polynomial c(B) factorizes into a product
c(B) = a(B)·b(B), then automatically c(L) = a(L)·b(L). Furthermore, because the scalar
product is Abelian, it follows from the homomorphism property that c(L) = b(L) · a(L).

Proposition 1 Let W be the mapping of a(B) to a(L), with ak(r,m) = ar−m+ks. Then
W is a homomorphism.

Proof of Proposition 1. Let er and em denote unit vectors. The kth coefficient of a(L) ·
b(L) is

∑
j aj bk−j . The (r,m)th entry of such is

e′r
∑
j

aj bk−jem =
∑
j

∑
h

aj(r, h) bk−j(h,m)

=
∑
j,h

ar−h+sj bh−m+s(k−j)

=
∑
`

a` br−m−`+sk

by change of variable. This is recognized as cr−m+sk, or ck(r,m). 2

The seasonal embedding can be applied to a scalar process as follows. Suppose δ(B)Xt =
ψ(B)Zt, where {Zt} is white noise of variance σ2, and ψ(z) = θ(z)/φ(z). (Below we con-
sider an extension to non-ARIMA processes.) Then the seasonal embedding is

δ(L)Xn = ψ(L)Zn,

where {Zn} is vector white noise with variance matrix equal to σ21s. We can use these
results to describe the ARIMA model for the down-sampled and frequency-aggregated
processes. First, the matrix polynomial δ(L) can be written in terms of its adjoint and
determinant as follows:

δ](L) δ(L) = det δ(L) 1s. (2)

This equation implicitly defines the adjoint δ](L), which has dimension equal to D(s −
1), where D is the degree of δ(L). We note in passing that the two matrix polynomials
commute with one another. Also, the degree of det δ(L) is Ds. As discussed above, D =
bd/sc + 1, so the degree of the determinantal polynomial is d + ds where 0 ≤ ds < d is
the remainder occurring when d is divided by s.

Consider Lemma 1 of Tiao and Grupe (1980), and apply this to the embedding of δ(B).
It follows that if ζ is a root of δ(z), then ζs has the property that δ(ζs) is a singular matrix
with row eigenvector [1, ζ, . . . , ζs−1]. Hence we can conclude that ζs is a root of det δ(z),
and this accounts for exactly d of the Ds = d+ds roots. (Note that taking the sth power of
the various roots ζ of δ(z) can result in repeated roots.) The converse is also true: if some
ξ is a root of det δ(z), then necessarily δ(ξ) is singular, indicating it has a left null-vector,
i.e., a left eigenvector with associated eigenvalue of zero – the only such eigenvalues are
given by the roots of δ(z). Hence, the actual degree of det δ(z) is d, because the final ds
coefficients are all zero. As a result, we obtain

det δ(z) =

d∏
j=1

(1− z/ζsj ).
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Next, using (2) we see that each component of Xn can be differenced to stationarity by
application of det δ(L), because

det δ(L)Xn = δ](L)ψ(L)Zn

and the right hand side is a stationary process. Denoting this stationary process by Yn,
we can obtain an adjoint polynomial for φ(L) in the same manner, only now the roots are
outside the unit circle. Let P be the degree of φ(L), which satisfies P = bp/sc+ 1. Using
the homomorphism property of Proposition 1, we have

Yn = δ](L)φ(L)−1 θ(L)Zn

detφ(L)Yn = δ](L)φ](L) θ(L)Zn.

Now we can deduce the ARIMA model structure of down-sampled or aggregated compo-
nents by left-multiplying by an appropriate row vector: for the jth sub-series (correspond-
ing to season 1 ≤ j ≤ s), we have Xns+j = e′jXn, which is an ARIMA process written
as

det δ(L) detφ(L)Xns+j = ϑ(j)(L) εn,

where ϑ(j)(z) is a polynomial of degreeD(s−1)+P (s−1)+Q of unit leading coefficient,
where Q = bq/sc + 1 and εn is a white noise of variance σ2j . The polynomial is obtained
by spectral factorization, and satisfies

ϑ(j)(L)ϑ(j)(L−1)σ2j = e′j δ
](L)φ](L) θ(L) θ(L−1)

′
φ](L−1)

′
δ](L−1)

′
ej σ

2.

If instead we consider frequency-aggregation, then we must apply the row vector ι, which
is the sum of the ej vectors. The process Xns = ι′Xn is an ARIMA process written as

det δ(L) detφ(L)Xns = ϑ(0)(L) εn,

where ϑ(0)(z) is a polynomial of degreeD(s−1)+P (s−1)+Q of unit leading coefficient,
and εn is a white noise of variance σ20 . The polynomial is obtained by spectral factorization,
and satisfies

ϑ(0)(L)ϑ(0)(L−1)σ20 = ι′ δ](L)φ](L) θ(L) θ(L−1)
′
φ](L−1)

′
δ](L−1)

′
ι σ2.

Clearly, other linear combinations of Xn have dynamics determined in a similar manner.
Next, we may ask how the dynamics of the down-sampled or frequency-aggregated pro-
cesses may be inferred from these new ARIMA structures. It is clear that the new pseudo-
autoregressive operator given by det δ(L) detφ(L) is obtained from ϕ(z) by simply rais-
ing each root to the power s. In McElroy (2019) it is argued that the root structure of the
pseudo-autoregressive polynomial governs the dynamics of the process, although the mov-
ing average structure also plays a role (it can retard or even annihilate persistent oscillatory
effects).

A high-frequency process exhibiting seasonality will typically have an autoregressive
root of the form ρ−1 eiω for ρ ∈ (0, 1) (but close to one) and ω = 2πj/r for some
1 ≤ j ≤ r, where r is the number of seasons. In passing to a low-frequency process,
we down-sample or aggregate by first embedding in a process with s seasons. Hence, these
autoregressive roots get mapped to ρ−s e2πijs/r, so depending on the relationship of s to
r the seasonality could be completely removed, or perhaps just shifted. For example, if
r = 12 and s = 3, as occurs when passing from monthly to quarterly data, we have
2πjs/r = πj/2, which takes the values of π/2 or π depending on j. Hence, the six sea-
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sonal frequencies are automatically mapped to the two quarterly frequencies through the
autoregressive root structure.

In terms of the ideas discussed in the previous section, our analysis can now be ex-
tended to the case that {Xt} satisfies (1), and the latent seasonal process {St} follows
some ARIMA model – but the quota noise {Nt} is heteroscedastic. Note that by embed-
ding the quota noise, we obtain a stationary process Nn: the s-dimensional process {Nn}
is by assumption a white noise sequence with covariance matrix ΣN satisfying ι′ΣN ι = 0
(or more generally, equals a small number). Therefore, the frequency-aggregated process
Xns = ι′Xn still has the ARIMA structure described above, even when quota noise has
been added to obfuscate {St}.

4. Benchmarking Methodology

The benchmarking problem involves a time series sampled at a high and low frequency,
which for simplicity we suppose to be the monthly and quarterly frequency, respectively.
We wish to adjust both the monthly and quarterly data such that the resulting seasonal
adjustments are adequate, which means that according to some seasonality diagnostic there
is no seasonality. The monthly series is denoted {Xt,m} and the quarterly is denoted {Xi,q},
where t, i ∈ Z and are related via t = 3 i+ j for j = 1, 2, 3. The data satisfy the following
frequency aggregation property:

Xi,q = X3i+1,m +X3i+2,m +X3i+3,m (3)

for the ith quarter. Direct adjustments of the monthly and quarterly series will utilize an
N symbol, for nonseasonal, i.e., {Nt,m} and {Ni,q} respectively. These direct adjustments
need not satisfy (3). If they do not, we seek modifications {Yt,m} and {Yi,q} that satisfy
(3), are close to the direct adjustments, and are adequate. If we have available {Xt,m}, we
can compute all other quantities, viz. {Xi,q}, {Nt,m}, and {Ni,q}. However, in some cases
only {Nt,m} is available, in which case we define {Ni,q} as follows: (i) aggregate {Nt,m}
and test for seasonality; (ii) if adequate we are done, but otherwise seasonally adjust and
declare the result to be {Ni,q}.

We ensure the above criteria hold by minimizing the discrepancy between {Yt,m} and
{Nt,m}, and between {Yi,q} and {Ni,q}, while imposing (3) and adequacy of both {Yt,m}
and {Yi,q}. Actually, we can just plug (3) into the optimization criterion, yielding for each
quarter i

L(Y3i+1,m, Y3i+2,m, Y3i+3,m) =

Ni,q −
3∑
j=1

Y3i+j,m

2

/Ni,q

+

3∑
j=1

(N3i+j,m − Y3i+j,m)2/N3i+j,m.

(4)

Adequacy is checked by applying a diagnostic δ to both putative solutions for the monthly
and quarterly series, which is compared to a threshold α. In McElroy (2018) the QS diag-
nostic (Maravall, 2012) was utilized, but some problems with spurious detections of sea-
sonality have raised concerns about this method. Here we instead use the root diagnostic
of McElroy (2019), which can be adapted to different sampling frequencies, and offers a
p-value for rejection of the null hypothesis that seasonality is present to a given degree.
Specifically, we examine the p-values as a function of seasonal persistence ρ at frequency
2π/4 (the quarterly seasonal frequency) and 2πj/12 for j = 1, 2, . . . , 5 (the monthly sea-
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sonal frequencies), and demand that all ρ, such that the p-value is less than a given α, satisfy
ρ < .98, this value corresponding to a substantial degree of oscillation in the autocorrela-
tion function. In other words, we wish to enforce that

max
ρ∈(.98,1)

p(ρ) ≤ α, (5)

where p(ρ) denotes the p-value as a function of ρ determined by the null hypothesis. Such
a condition says that the null hypothesis of seasonality of degree ρ can be rejected at level
α for all ρ ∈ (.98, 1). This threshold .98 can be altered; lowering it demands that even
weaker forms of seasonality must also be screened out, so that we are more exacting of our
requirements on the adjustment, whereas raising the threshold means we are more relaxed
in our standards. Our notation for the corresponding constraints is

δ{Y1,m, . . . , Y3i+3,m} ≤ α, δ{Y1,q, . . . , Yi,q} ≤ α, (6)

where δ indicates the maximum of p-values (5) computed on either the monthly or quarterly
data. Hence, we seek to minimize (4) subject to (6). One approach is to use Lagrangian
techniques with inequality constraints (cf. Kuhn and Tucker (1951)), or utilize the intro-
duction of slack variables. Instead, following an approach reviewed in Smith and Coit
(1995), we convert the constrained minimization problem into a penalized minimization,
and iteratively increase the penalty. This is accomplished by introducing tuning parameters
ωm, ωq > 0 and minimizing∑

i

H(Y3i+1,m, Y3i+2,m, Y3i+3,m) =
∑
i

L(Y3i+1,m, Y3i+2,m, Y3i+3,m)

+ ωm (min [α− δ{Y1,m, . . . , Y3i+3,m, . . .}, 0])2

+ ωq (min [α− δ{Y1,q, . . . , Yi,q, . . .}, 0])2.

The rationale is that each of the two penalty terms is zero if and only if δ ≤ α; so if δ > α,
a large positive value is added to the objective function, and such solutions will tend to
be rejected. In practice, if inadequate solutions are obtained then one must adjust ωm or
ωq upwards. Our own implementation uses an iterative scheme, whereby the optimization
problem is initialized with prior solutions and we gradually increment ωm and ωq (starting
at an initial value of zero, which enforces no adequacy) until (6) is satisfied.

Now it is possible that an adequate solution is obtained immediately, where ωm = ωq =
0. This can happen because the mere attempt to impose aggregation constraints can yield
adequate adjustments, since the new monthly values Y3i+j,m are forced to resemble the
given direct monthly adjustmentsN3i+j,m, which are adequate themselves. More generally,
if the initial solution with ωm = ωq = 0 yields inadequate monthly or quarterly reconciled
series, then we must gradually increment these penalties, repeating until the diagnostics’
conditions are satisfied. For this procedure to be numerically feasible, it is essential for
the diagnostics to be quickly computed. The root diagnostics (McElroy, 2019) require no
nonlinear optimization, and the critical values can be speedily obtained using Monte Carlo.

Because the optimization portion of the reconciliation procedure is the major bottle-
neck, it is preferable to use an algorithm that will find a solution quickly. For the examples
in this paper, we use the Bound Optimization by Quadratic Approximation (BOBYQA) al-
gorithm of Powell (2009), as implemented in the minqa (v1.2.4; Bates et al., 2014) package
in R. As the name of the algorithm suggests, the algorithm seeks to minimize an objective
function F (x), where x is an n-dimensional input, subject to some bounds on the elements
of x; the bounds, however, can be arbitrarily large. The algorithm iteratively constructs a
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quadratic approximation Q to the objective function F such that, over sets of interpolation
points y that are chosen and adjusted automatically, Q(y) = F (y). The model updates by
minimizing the Frobenius norm of the the change to the second derivative matrix of Q; it
requires no calculation of the first derivative of the objective function itself.

5. Applications

We have examined data for 49 economic series taken from various surveys conducted by
the U.S. Census Bureau. These series measure quantities such as inventories and shipments,
construction spending, or imports and exports. Using the same range for ρ as described
above and an α level of 0.1 for the root diagnostic, the majority of these series are such
that the null hypothesis of seasonality of degree ρ is rejected at both a monthly level and
an aggregated quarterly level. The applications used for illustration are drawn from the
remaining subset of series for which the raw monthly series appears to have some weak
seasonality present, but is deemed nonseasonal (and thus left as is), while the resulting
quarterly aggregate is more noticeably seasonal. For these examples, we have used a dis-
crete set of values for ρ, incrementing from 0.98 to 1 by 0.001, and an α level of 0.1 for
the root diagnostic. Also, instead of using a fixed order p for the autoregressive polynomial
in the root diagnostic, we have opted to allow the order p to be chosen using a selection
criterion (e.g., AIC); McElroy (2019) discusses the advantages and disadvantages of these
two approaches. Our optimization starts with an initial value of zero for both ωm and ωq,
incrementing each by 1000 should the solution fail to satisfy the conditions required for
adequacy.

5.1 Example 1: Imports of Steelmaking and Ferroalloying Materials

We first examine International Trade data for imports of steelmaking and ferroalloying ma-
terials.1 The span we will consider is from January 1991 through December 2005. Figure 6
shows the monthly series and its quarterly aggregate. Figure 7 provides the corresponding
spectral density and autocorrelation functions for the differenced, log transformed versions
of both the monthly series and its quarterly aggregate. Visually, the spectral density for
the monthly series does not seem to suggest that there is any seasonality present, nor are
the values of the autocorrelation function particularly pronounced at the seasonal lags. For
the aggregated series, however, there is a peak that is close to the quarterly frequency in
the spectral density, and there is a large value for the autocorrelation function at the sec-
ond seasonal lag (lag 8). Additionally, computing the QS statistic for the differenced, log
transformed versions of both series suggests that while the monthly series is not a strong
candidate for seasonal adjustment (p-value of 0.137), the quarterly aggregated series is
seasonal (p-value of 0.008).

We apply the root diagnostic to the monthly series, the quarterly aggregate, the monthly
seasonal adjustment, and indirect and direct quarterly seasonal adjustments. Note that since
the monthly series is not adjusted, the results for monthly series and monthly seasonal
adjustment should be more or less the same, as should the results for the quarterly aggregate
and the indirect quarterly seasonal adjustment – since the critical values are determined by
Monte Carlo, some minor fluctuations should be expected.
1Available online at https://www.bea.gov/international/detailed-trade-data as
historical data under the IDS-0182 heading. Numbers are subject to error arising from a variety of sources,
including nonsampling error. For more information, refer to https://www.census.gov/foreign-t
rade/index.html or https://www.bea.gov/resources/methodologies/us-interna
tional-economic-accounts-concepts-methods.
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Figure 6: Monthly series for imports of steelmaking and ferroalloying materials and its
quarterly aggregate. Data sourced from Bureau of Economic Analysis, U.S. Trade in
Goods.
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Figure 7: Spectral densities and autocorrelation functions for monthly import series and
quarterly aggregate. Data sourced from Bureau of Economic Analysis, U.S. Trade in
Goods.
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Table 1 shows the values of ρ for which the specified series is deemed seasonal by the
root diagnostic. The empty set for the monthly series indicates that the series is not consid-
ered seasonal for any of the tested values of ρ, while the quarterly aggregate appears to be
seasonal for most of the tested values. Hence, we apply the optimization step, finding an
adequate solution with ωm = ωq = 0. The last two rows of Table 1 show that the resulting
reconciled monthly series and its quarterly aggregate are not viewed as seasonal by the root
diagnostic. Figure 8 visually supports this, as neither the spectrum nor the autocorrelation
function suggests that there is seasonality still present in either the reconciled monthly or
quarterly series. Figures 9 and 10 provide comparisons of the reconciled monthly series
to the original monthly series and the reconciled quarterly series to the original quarterly
aggregate. For the most part, we see that the reconciliation (the red lines) does not make
drastic alterations to the original monthly and quarterly series (the black lines); rather, it
seems to attenuate some of the more extreme fluctuations observed in the original series.

Series ρ

Monthly ∅
Qtrly Agg [0.980, 0.994]
Monthly SA ∅
Indirect Qtrly SA [0.980, 0.994]
Direct Qtrly SA ∅
Reconciled Mthly ∅
Reconciled Qtrly ∅

Table 1: Values of ρ for which the root diagnostic applied to the given series of import data
has a p-value exceeding α = 0.1. Data sourced from Bureau of Economic Analysis, U.S.
Trade in Goods.

5.2 Example 2: State and Local Construction Spending for Hospitals

Next, we look at state and local construction spending for hospitals, where the quantity
being measured is the value of construction put in place.2 The span for consideration here
is January 1993 through March 2010. Figure 11 displays the monthly series and its quarterly
aggregate. In addition, we display the spectral densities and autocorrelation functions for
the corresponding differenced, log transformed series in Figure 12. The monthly series
seems to be weakly seasonal, as the peaks in the spectral density are slightly offset from the
seasonal frequencies associated with monthly series, and the values of the autocorrelation
function for the first two seasonal lags are large. Similarly, the peak in the spectral density
for the quarterly aggregate is also slightly offset from the relevant frequency for quarterly
series, although there is a fairly pronounced spike in the autocorrelation function at the
second seasonal lag. The QS diagnostic for both of these series yields a p-value of 0, so
the diagnostic indicates that both the monthly series and its quarterly aggregate are actually
seasonal.

Table 2 shows the values of ρ for which the specified series is deemed seasonal by
the root diagnostic. The empty set for the monthly series indicates that the series is not
considered seasonal for any of the tested values of ρ, while the quarterly aggregate appears
2Numbers for the Value of Construction Put in Place (VIP) Survey were found on https://www.census
.gov/construction/c30/historical data.html. These numbers are subject to sampling and
nonsampling error; methodology for this survey can be found at https://www.census.gov/constru
ction/c30/methodology.html.
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Figure 8: Spectral densities and autocorrelation functions for reconciled monthly and quar-
terly import series. Reconciliation applied to data sourced from Bureau of Economic Anal-
ysis, U.S. Trade in Goods.
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Figure 9: Comparisons of monthly series (black) to reconciled monthly series (red) for
import series. Data sourced from Bureau of Economic Analysis, U.S. Trade in Goods.
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Figure 10: Comparisons of quarterly aggregate (black) to reconciled quarterly aggregate
(red) for import series. Data sourced from Bureau of Economic Analysis, U.S. Trade in
Goods.
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Figure 11: Monthly construction spending series and its quarterly aggregate. Data sourced
from U.S. Census Bureau, VIP Survey.
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Figure 12: Spectral densities and autocorrelation functions for monthly construction spend-
ing series and quarterly aggregate. Data sourced from U.S. Census Bureau, VIP Survey.
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to be seasonal for the tested values on the lower end of the interval. Again, we apply the
optimization step, finding an adequate solution with ωm = ωq = 0. The last two rows
of Table 2 show that the resulting reconciled monthly series and its quarterly aggregate
are not classified as being seasonal by the root diagnostic. Looking at Figure 13, we see
that in the reconciled series the peaks that were previously seen in the spectral densities
have been eliminated. Also, the values of the autocorrelation functions at the seasonal lags
have decreased relative to what they were for the original series. Figures 14 and 15 provide
comparisons of the reconciled monthly series to the original monthly series, the reconciled
quarterly series to the original quarterly aggregate, and the reconciled quarterly series to the
direct seasonal adjustment of the quarterly aggregate. We see that the changes to the original
monthly series induced by the reconciliation process are minor. The quarterly aggregate
is more affected, though; it can be seen that some of the sharper changes in the original
aggregated series have been damped during the reconciliation process.

Series ρ

Monthly ∅
Qtrly Agg [0.980, 0.985]
Monthly SA ∅
Indirect Qtrly SA [0.980, 0.985]
Direct Qtrly SA ∅
Reconciled Mthly ∅
Reconciled Qtrly ∅

Table 2: Values of ρ for which the root diagnostic applied to the given series of construction
spending data has a p-value exceeding α = 0.1. Data sourced from U.S. Census Bureau,
VIP Survey.

6. Conclusion

Residual seasonality in a quarterly series can occur when a monthly series is aggregated to
a quarterly frequency. This is true even if the monthly series is nonseasonal. Given a sea-
sonally adjusted monthly series, the detection of seasonality in the corresponding quarterly
aggregate is undesirable. But the simplest method of ensuring a quarterly series is non-
seasonal, viz. direct seasonal adjustment, has the drawback of not preserving accounting
relationships. That is, the quarterly aggregate of a monthly seasonally adjusted series will
usually not be equal to the seasonal adjustment of the quarterly aggregated raw series. For
economists, this situation is equally undesirable.

What we propose is a procedure that is similar to benchmarking in that it makes small
modifications to series, such that the accounting relationship between the monthly series
and its quarterly aggregate is preserved. Whereas seasonality has typically not been a con-
sideration when benchmarking has been applied (McElroy (2018) seems to be the first case
of incorporating benchmarking with seasonality diagnostics), our idea attempts to ensure
that the modifications are done such that the reconciled monthly series and its quarterly
aggregate are both nonseasonal (i.e., adequately seasonally adjusted). We do so by viewing
the benchmarking problem as a penalized minimization problem – our modified objective
function includes penalty terms for solutions that are still deemed seasonal.

We illustrate the procedure with two economic series that are readily available; note
that the raw components of GDP are protected against publication, and therefore could
not be used as illustrations in this paper. The two monthly series considered are either
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Figure 13: Spectral densities and autocorrelation functions for reconciled monthly and
quarterly construction spending series. Reconciliation applied to data sourced from U.S.
Census Bureau, VIP Survey.
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Figure 14: Comparisons of monthly series (black) to reconciled monthly series (red) for
construction series. Data sourced from U.S. Census Bureau, VIP Survey.
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Figure 15: Comparisons of quarterly aggregate (black) to reconciled quarterly aggregate
(red) for construction series. Data sourced from U.S. Census Bureau, VIP Survey.
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nonseasonal or weakly seasonal, and neither is seasonally adjusted. However, both of their
quarterly aggregates are more noticeably seasonal. When we use our procedure on these
series, the final outcomes are not considered seasonal for monthly or quarterly frequencies,
and the accounting relationship is preserved.

One important facet of the methodology is the determination of autoregressive order p
in the root diagnostic. Although results work fairly well when there are no unit roots present
in the data – and either using a large fixed p or determining p via AIC can yield sensible
diagnostics – the asymptotic framework deteriorates when roots are close to unit, say of
magnitude .998 or greater. In fact, the root diagnostics of McElroy (2019) have low power
against unit root alternatives, because the asymptotic theory is predicated upon stationarity;
either method of choosing p is likely to give fallacious results in such a scenario. However,
these are cases where the seasonality is more obvious anyways, such that seasonal adjust-
ment would more obviously be routinely applied.

Given this reality, and the absence of a diagnostic that simultaneously addresses the de-
tection of nonstationary (unit root) seasonality as well as stationary (dynamic) seasonality,
we recommend that the root diagnostic be used in tandem with practitioner judgment as to
the seasonality apparent in a given monthly series, with other exploratory tools – such as
autocorrelation plots and spectral density plots – being utilized to screen out the important
unit root case. We note that the discrimination of nonstationary versus stationary season-
ality is acknowledged to be a challenging problem, and therefore our examples here have
focused on the cases where the seasonality present in the monthly series is clearly of a
weaker, dynamic variety.

When the root diagnostic determines that the monthly series (or monthly seasonally
adjusted series) and the quarterly aggregated counterpart are nonseasonal, the optimization
algorithm is not invoked. However, when the optimization step is required, then the practi-
cality of this proposed procedure depends on the speed with which a solution can be found.
Our examples used the BOBYQA algorithm from the outset, but as noted earlier, it is pos-
sible to obtain an adequate solution using initial values of 0 for both ωm and ωq. When
both are 0, the penalty terms in the objective function disappear, turning this into a fairly
straightforward problem of optimizing the L expression seen in (4), which can be solved
directly. Hence, we can design it so that the optimization algorithm is only required if ωm
or ωq is positive-valued, with the exact solution used in the case where both are 0. This will
yield a fast first step with an adequate outcome in many cases.
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