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Abstract 

Often a time series exhibits a fairly stable seasonal pattern, making the decision to 
seasonally adjust it straightforward. However some series may show indications of 
seasonality but have a swiftly changing seasonal pattern. One school of thought is that all 
such series should be seasonally adjusted to ensure there is no residual seasonality in the 
published composite adjustments, while another says that only series that have a stable 
adjustment should be seasonally adjusted. This paper examines series with unstable 
seasonal patterns to determine whether it is better to adjust or not to adjust.  
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1. Introduction 

For most monthly and quarterly economic time series from a survey that regularly 
seasonally adjusts its data, the decision as to whether to adjust a particular series is 
straightforward. These series either have a strong indication of a seasonal pattern and a 
resulting adjustment that is acceptably stable, or are not seasonal.  

However, for some series the decision is more difficult. These series may  

 have some seasonality diagnostics indicating that the series is seasonal while others 
do not find seasonality; 

 have evident seasonal autocorrelation that is weak, so that the seasonal pattern 
changes rapidly with time and may be difficult to accurately estimate; 

 be seasonal but unstable, so that the adjusted series is subject to overly large 
revisions; 

 have changed over time, so that series that used to have a measurable seasonal 
pattern no longer do, or vice versa. 

This paper examines series which fall in the first two categories to determine the effect of 
adjusting these mildly seasonal series. In particular, is the seasonal adjustment procedure 
in X-13ARIMA-SEATS (X-13A-S) effective in removing the seasonal pattern, and does it 
estimate the effect accurately? This is done using simulated monthly time series. Section 2 
describes how the series are simulated, and Section 3 gives the results. 

2. Simulation Methodology 

The purpose of the simulation study was to determine how accurate the identification of 
seasonality is in series with a swiftly changing seasonal pattern, and how accurate the 
seasonal adjustment is. To test this, series were created with a known trend, seasonal 
pattern, and irregular component.  
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The trends were obtained from an X-11 adjustment (using X-11 filters combined with 
forecasts from regARIMA models) of 10 published seasonal series from the 
Manufacturers’ Shipments, Inventories, and Orders (M3) Survey. Data from this survey 
can be found at https://www.census.gov/manufacturing/m3/index.html. Estimates from the 
M3 survey are subject to measurement error and sampling error; because they are not based 
on a probability sample, the sampling error cannot be measured. The trends varied in level, 
smoothness, and the presence of sharp changes. 

To create the seasonal patterns, 10 20-year monthly series were simulated from a (1 0 0)12 
model with Phi = 0.4, and 10 more with Phi = 0.9. See Findley, Lytras, and Maravall (2016) 
for a discussion on some properties of these seasonal autoregressive series. These 20 series 
were then seasonally adjusted with X-13A-S, using a multiplicative adjustment, the true 
ARIMA model (for forecasting purposes), and an X-11 seasonal adjustment. Because the 
seasonal autocorrelation decays so quickly with the Phi = 0.4 series, a 3x3 filter was used 
to adjust these series. For the 0.9 series, the program was allowed to select the filter. Table 
1 shows the estimated Phi for the series, the seasonal filter used (** indicates the filter was 
selected by the program), and seasonality diagnostics for these simulated series – the 
seasonal frequencies with a visually significant (V.S.) peak in the spectrum of the original 
series, the p-value from the QS calculated on the original series and the last eight years of 
the original series, and the D8F and M7. These diagnostics are described in Lytras (2007, 
2015) and Findley, Lytras, and McElroy (2017). The diagnostics indicate seasonality when 
there is a V.S. peak at s1, s2, s3, or s4; the QS p-value < 0.01; D8F > 7; and M7 < 1. 

When Phi = 0.4, the series does not have a very stable seasonal pattern. The autocorrelation 
between a value and the value one year ago is 0.4; observations two years apart have an 
autocorrelation of only 0.16. The only diagnostic that consistently detected seasonality in 
these series was the QS statistic of the original series. The spectrum of the original series, 
D8F, and M7 only rarely detected seasonality. 

When Phi = 0.9, the seasonal pattern is more stable. Strong seasonal autocorrelation 
between observations persists for years; the autocorrelation is 0.9 for observations one year 
apart, 0.81 at two years apart, 0.729 at three years, and so on. All diagnostics indicated that 
each series was strongly seasonal. For these series, the 3x3 filter was selected as the final 
seasonal filter for seven series, and the 3x5 filter for three series. 

The scale of the seasonal factors coming out of the X-11 adjustment was different for the 
0.4 and 0.9 series. To make the results comparable and similar to reality, the seasonal 
factors were scaled so that their mean deviation from 1 was 0.049. This value is the average 
deviation from 1 of the seasonal factors of the published M3 series which were identified 
as strongly seasonal and for which X-13A-S automatically selects a multiplicative 
adjustment. Figure 1 shows one set of Phi = 0.4 seasonal factors and one set from the Phi 
= 0.9 series. Both sets of factors exhibit a swiftly changing seasonal pattern, but the Phi = 
0.4 patterns shift direction and cross the 1.0 axis line more often. Table 2 summarizes these 
series of monthly seasonal factors. 
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Table 1: Model information and seasonality diagnostics of the simulated series.  
“**” indicates the seasonal filter was selected by X-13A-S. A diagnostic is in bold when 

it indicates the series is seasonal. 

Phi Series Estimated 
Phi 

V.S. Spectrum 
Peaks 

QS QS 
(Last 8 
years) 

D8F M7 Seasonal 
Filter 

0.4 1 0.345 s4 0.000 0.000 1.135 2.062 3x3  
2 0.466   0.000 0.000 0.905 2.363 3x3  
3 0.376   0.000 0.001 2.041 1.537 3x3  
4 0.484 s3 s4 0.000 0.000 6.203 0.899 3x3  
5 0.376   0.000 0.001 1.203 1.980 3x3  
6 0.447   0.000 0.000 2.511 1.384 3x3  
7 0.372   0.000 0.000 2.503 1.489 3x3  
8 0.327 s3 0.000 0.188 1.266 2.268 3x3  
9 0.461 s5 0.000 0.000 4.078 1.106 3x3  
10 0.422   0.000 0.000 2.938 1.259 3x3     

    

 

0.9 1 0.906 s1 s4 0.000 0.000 26.659 0.411 3x3 **  
2 0.889 s1 s2 s3 s4 0.000 0.000 34.080 0.398 3x3 **  
3 0.920 s2 s4 s5 0.000 0.000 25.741 0.488 3x3 **  
4 0.870 s3 s4 0.000 0.000 29.124 0.403 3x5 **  
5 0.907 s2 s3 s4 0.000 0.000 19.078 0.460 3x3 **  
6 0.888 s1 s3 s4 s5 0.000 0.000 23.214 0.462 3x3 **  
7 0.926 s1 s2 0.000 0.000 33.378 0.504 3x3 **  
8 0.889 s1 s2 s3 s4 s5 0.000 0.000 28.038 0.394 3x5 **  
9 0.912 s2 s4 0.000 0.000 49.316 0.330 3x3 **  
10 0.918 s2 s3 s4 0.000 0.000 62.020 0.313 3x5 ** 

 

 

 

      

Figure 1: One of the sets of seasonal factors from the Phi=0.4 series and the Phi = 0.9 
series 
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Table 2: Descriptive summary statistics of the Phi = 0.4 and Phi = 0.9 monthly seasonal 
factor series 

For each monthly seasonal factor series… Phi = 0.4 Phi = 0.9 
Average number of times they cross one 2.08 0.86 
Average changes in direction 4.03 2.65 

Average spread 0.16 0.09 
Average year-to-year change 0.018 0.008 

 

To simulate the irregular components, five 20-year white noise series were simulated and 
centered on one. These series were then stretched so that the irregular was small compared 
to the seasonal factors (group A); the irregular was comparable to the seasonal factors 
(group B); and the irregular was large compared to the seasonal factors (group C). This is 
to identify differences in the accuracy of the adjustment depending on the scale of the 
irregular. Figure 2 shows one of the Phi = 0.4 seasonal factors overlaid with one of the 
irregular components, showing all three irregular levels. 

The simulated series were then obtained by multiplying each trend, seasonal pattern, and 
irregular component, resulting in 500 series in each of groups A, B, and C for each Phi 
(3000 total series). These series were adjusted using the X-11 method, with: 

 Log transformation 
 Automatic regARIMA model identification and one year of forecasts 
 Identification of additive outliers and level shifts 
 Seasonal filter selected using the global moving seasonality ratio (seasonalma = 

msr) 
 Sigma limits 1.5 to 2.5 

 

Figure 2: Monthly seasonal factors from a Phi = 0.4 series along with one of the simulated 
irregular components at all three levels. 
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An additional 50 group A, B, and C series were created and adjusted using only the trends 
and irregular components. These nonseasonal series provide a base against which to 
measure the results of the seasonal series. 

3. Results 

3.1 Seasonality of the Simulated Series 

Table 3 shows the proportion of series from each group exhibiting seasonality according 
to each seasonality diagnostic. (M7 < 1; D8F > 7; visually significant (V.S.) seasonal peak 
(s1 – s4) in the spectrum of the original series; QS with p<0.01 for the full span and the 
last eight years of the series, for the original series and the prior adjusted series; and 
significance of seasonal regressors added to the model (run with model (0 1 1) ), where the 
F-test has p<0.05.) 

Table 3: Proportion of series in each group indicating seasonality 

Irregular 
Group 

M7 D8F Spectrum 
Peak 

QS  
Ori 

QS 
Prior 
Adj 

QS  
Ori  
(Last 8 
year) 

QS  
Prior 
Adj (Last 
8 year) 

Seasonal 
Regs 

Phi = 0.4         
A 0.60 0.53 0.88 1.00 1.00 1.00 1.00 0.99 
B 0.46 0.22 0.77 1.00 1.00 1.00 0.99 0.81 
C 0.02 0.00 0.24 0.81 0.81 0.37 0.36 0.53 
Phi = 0.9 

        

A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
B 1.00 1.00 0.97 1.00 1.00 0.98 0.98 1.00 
C 0.67 0.29 0.53 0.70 0.70 0.38 0.38 0.98 
Nonseas         
A 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 
B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 

There were almost no indications of seasonality in the nonseasonal series, except for one 
series with a visually significant seasonal peak. Interestingly, most of the nonseasonal 
series had a seasonal peak in the spectrum of the original series (31 Group A, 27 Group B, 
and 28 Group C series) but the peak was visually significant for only one series. 

Unsurprisingly, the Phi = 0.9 series were identified as seasonal more than the Phi = 0.4 
group, and seasonality was identified less as the irregular became larger. The Groups A 
and B Phi = 0.9 series were consistently identified as seasonal. The Group C series had a 
large range in seasonality detections amongst the diagnostics, with D8F identifying the 
least (29%) and the seasonal regressors finding the most (98%). 

For the Phi = 0.4 series, seasonality detection was more varied among all groups. The QS 
identified seasonality at about the same levels as the Phi = 0.9 series: almost all Group A 
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and B series had a significant QS, as did most Group C series when QS was calculated over 
the full span and almost 40% when it was calculated over the last eight years. Interestingly, 
this is the one diagnostic for which seasonality was detected more often in the Phi = 0.4 
series than the Phi = 0.9 series. M7 and D8F were least likely to find seasonality in the Phi 
= 0.4 series in all groups. 

One would expect the Phi = 0.9 series to be detected as seasonal, at least for Groups A and 
B; in Group C the large irregular could mask the rather consistent seasonal pattern. There 
is less certainty about the Phi = 0.4 series. While these series have a modest seasonal 
relationship, the seasonality is not persistent across multiple years. Many analysts would 
not consider the seasonality to be stable enough to adjust. 

3.2 Residual Seasonality of the Simulated Series 

A successful seasonal adjustment will remove the seasonality from the series, so the first 
step in assessing a seasonal adjustment is to check whether there is residual seasonality. 
We look for visually significant peaks in the spectrum of the seasonally adjusted series 
(adjusted for extremes) and the irregular (adjusted for extremes); QS with p-value<0.01 in 
the seasonally adjusted series, the seasonally adjusted series modified for extremes, the 
irregular, and the irregular modified for extremes; and the seasonal regressor F-test to have 
p-value<0.05 when the last eight years of the seasonally adjusted series are modeled with 
seasonal regressors and model (0 1 1). Extreme value adjustments remove the effects of 
both identified outliers and extreme values detected as part of the X-11 procedure. Results 
are in Table 4. 

None of the nonseasonal series exhibited any residual seasonality after being seasonally 
adjusted. Like with the spectrum of the original series, there were a few non-visually 
significant seasonal peaks in the spectrum of the seasonally adjusted series and the 
irregular, but not as many as were found in the original (fewer than 5 in each group).  

Table 4: Proportion of series exhibiting residual seasonality 

Irregular 
Group 

Seas Adj 
Spectrum 

Irregular 
Spectrum 

QS  
Seas Adj 

QS 
Extreme 
Adj Seas 
Adj 

QS 
Irregular 

QS 
Extreme 
Adj 
Irregular 

Seasonal 
Regs 
(Last 8 
years) 

Phi = 0.4 
       

A 0.012 0.030 0.594 0.006 0.632 0.000 0.024 
B 0.000 0.006 0.000 0.000 0.000 0.000 0.000 
C 0.004 0.004 0.000 0.000 0.000 0.000 0.000 
Phi = 0.9        
A 0.000 0.010 0.002 0.000 0.000 0.000 0.004 
B 0.000 0.002 0.000 0.000 0.000 0.000 0.000 
C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Nonseas        
A 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
C 0.012 0.030 0.594 0.006 0.632 0.000 0.024 
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The adjustments of the Phi=0.4 and 0.9 series are almost all successful in removing 
seasonality. All the 0.9 series and the Group B and C 0.4 series have almost no indications 
of residual seasonality. However, for the 0.4 Group A series most diagnostics detect 
residual seasonality in some series. The seasonal regressors and the spectrum of the 
seasonally adjusted series and the irregular each flag between 1%-3% of the series. 
Surprisingly, 59% of the QS of the seasonally adjusted series have a significant p-value 
and 63% of the QS of the irregular are significant. When these series are adjusted for 
extreme values, fewer than 1% of the series have p-value<0.01. The reason that so many 
series have a significant QS for the component itself but not for the component modified 
for extreme values has not been identified. 

3.3 Accuracy of the Adjustments 

The average absolute percent difference (aapd) between the true unadjusted series and each 
estimated seasonally adjusted series was calculated. Table 5 shows the mean aapd of the 
series with no seasonal pattern, the Phi = 0.4 pattern, and the Phi = 0.9 pattern.  

Table 5: Means of average absolute percent differences between the true unadjusted 
series and the estimated seasonally adjusted series, along with the standard error 

Seasonal 
Pattern 

Group A 
aapd (s.e.) 

Group B 
aapd 
(s.e.) 

Group C 
aapd 
(s.e.) 

Phi = 0.4 1.4812 
(0.0057) 

2.3443 
(0.0066) 

4.0857 
(0.0128) 

Phi = 0.9 0.9083 
(0.0041) 

1.8292 
(0.0074) 

3.7121 
(0.0206) 

None 0.6245 
(0.0109) 

1.5666 
(0.0329) 

3.4466 
(0.0743) 

 

The errors in the estimates are smallest when the series being adjusted have no seasonal 
component, and largest for the series with the Phi = 0.4 seasonal pattern. As expected, the 
errors are also largest when the irregular is large compared to the seasonal component. 
Differences are greater between irregular groups than they are between the three seasonal 
groups. For the Group A series, the average error ranged from 0.6% for the nonseasonal 
series to 1.5% for the Phi = 0.4 series. For Group C, the average error ranged from 3.4% 
to 4.1%.  

Figure 3 shows the true seasonal factors and the estimated Group A, B, and C seasonal 
factors of a Phi = 0. 4 and Phi = 0.9 series. These two series have the largest aapd among 
all series in their group that were identified as seasonal by all diagnostics. The Phi = 0.4 
series is especially interesting in August. The true seasonal starts below 1, rises to about 
1.1, and then falls back below 1. The Groups A and B series mimic this behavior, but when 
the series has the large Group C irregular, the estimated seasonal factor never rises above 
1.  

Table 6 shows the average absolute percent differences between the true trend and the 
estimated trends. For both the Phi = 0.4 and 0.9 series, there was less error in the estimate 
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of the trend than that of the seasonally adjusted series. However, in Group A and B the 
nonseasonal series had larger errors when estimating the trend than when estimating the 
seasonal adjustment. (This difference is not significant for Group B.) The Phi = 0.4 series 
had the largest differences between their seasonal adjustment errors and their trend errors, 
with the seasonal adjustment error about 0.5% to 0.8% larger than the trend error. 

 

 

 

Figure 3: Monthly seasonal factors from one Phi = 0.4 and one Phi = 0.9 series, showing 
the differences between the true seasonal factors and the Group A, B, and C estimates 
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Table 6: Means of average absolute percent differences between the true trend and the 
estimated trends, along with the standard error 

Seasonal 
Pattern 

Group A 
aapd (s.e.) 

Group B 
aapd 
(s.e.) 

Group C 
aapd 
(s.e.) 

Phi = 0.4 0.9511 
(0.0071) 

1.7394 
(0.0131) 

3.3289 
(0.0295) 

Phi = 0.9 0.801 
(0.0071) 

1.6664 
(0.0137) 

3.2869 
(0.0297) 

None 0.7373 
(0.019) 

1.6444 
(0.0415) 

3.2672 
(0.0911) 

 

3.4 Stability of the Adjustments 

Findley and Monsell (1984) introduce the sliding spans and history diagnostics for helping 
to determine whether a series which shows evidence of seasonality can be reliably 
estimated. The sliding spans diagnostic divides the series into four overlapping subspans, 
adjusts each span, and calculates the maximum percent difference (mpd) in the estimates 
of the seasonal factors and month-to-month changes in the seasonally adjusted series for 
each point. The proportion of months with an mpd > 3% is found for each series. Findley 
and Monsell recommend that a series with greater than 25% of seasonal factors or 40% of 
month-to-month changes flagged is too unstable to be reliably adjusted. 

Table 7 shows the mean, standard deviation, minimum, and maximum percentage of 
months with flagged seasonal factors and flagged month-to-month changes in the 
seasonally adjusted series for each group. It also shows the percentage of series in each 
group that would be considered too unstable to adjust. All Phi = 0.9 and most Phi = 0.4 
Group A series have a stable adjustment. With the Group B irregular, most Phi = 0.9 and 
half of the Phi = 0.4 series are considered stable enough to adjust. Almost no Group C 
series are stable. 

 

Table 7: Average percentage of months flagged as unstable in the seasonal factors (SF) 
and month-to-month changes in the seasonal adjustment (MM) 

 
 

Phi = 0.4  Phi = 0.9  
Group 

 
Mean Std 

Dev 
Min Max Percent 

Unstable 
Series 

Mean Std 
Dev 

Min Max Percent 
Unstable 
Series 

A SF 17.4 5.9 2.1 34.4 9.6 4.9 4.2 0.0 20.8 0.0 
MM 31.9 7.4 5.3 49.5 9.8 11.1 6.8 0.0 32.6 0.0 

B SF 23.6 7.3 5.6 50.9 39.6 13.7 6.4 0.0 33.3 4.2 
MM 39.7 8.5 15.9 58.9 54.8 27.0 8.5 6.5 55.1 7.4 

C SF 44.9 8.4 23.6 67.6 99.4 40.3 7.2 20.4 66.7 99.6 
MM 62.5 8.9 33.6 79.4 98.2 59.0 9.9 34.3 83.2 99.0 

 

 
2445



 

 

The history diagnostic measures the percent change in the seasonal adjustment and the 
month-to-month change in the seasonal adjustment between the initial estimate of a time 
point (when the series ends with that observation) and the final estimate of the time point 
(when the series extends to the final observation). Each series was run with the history 
diagnostic run over the last eight years. Table 8 shows the mean, standard deviation, 
minimum, and maximum average revisions for the 500 series in each group. The history 
diagnostic has no recommended level of adequate stability. Users develop cutoffs from 
knowledge of the series or use the diagnostic for comparison purposes. 

Table 8: Average absolute percent difference between the initial and the final seasonal 
adjustment (SA) and month-to-month change in the seasonal adjustment (MM) 
  

Phi = 0.4 Phi = 0.9 

Group   Mean Std 
Dev 

Min Max Mean Std 
Dev 

Min Max 

A 
  

SA 1.71 0.30 1.11 2.58 1.16 0.29 0.56 2.21 
MM 1.90 0.27 1.18 2.64 1.21 0.20 0.62 2.04 

B 
  

SA 2.00 0.29 1.29 2.82 1.58 0.28 0.89 2.46 
MM 2.60 0.33 1.74 3.41 2.04 0.36 1.14 3.12 

C 
  

SA 2.86 0.36 2.04 3.91 2.60 0.31 1.80 3.60 
MM 3.97 0.62 2.62 5.78 3.58 0.56 2.32 5.53 

 

Within each group, the average revision and the average error in estimating the adjustment 
are only weakly correlated. Pearson’ correlation statistic for Group A is 0.3 for both the 
Phi = 0.4 and Phi = 0.9 series; the Group C series are not correlated; and the Group B Phi 
= 0.9 series has correlation -0.25 while the Phi = 0.4 series is not correlated.  

4. Conclusion 

Deciding whether to seasonally adjust a series with a quickly changing seasonal pattern 
can be difficult. First one must determine whether a series is seasonal, and as Section 3.1 
shows the seasonality diagnostics can give conflicting information for these mildly 
seasonal series. The X-11 method is largely effective in removing the seasonal patterns 
from these series, but these adjustments are less accurate and less stable than adjustments 
from series with a more stable seasonal pattern. The analyst must then weigh which is more 
important: removing all indications of seasonal autocorrelation in the series or producing 
seasonally adjusted series which are stable and not subject to large revisions. 
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