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Abstract 
 

There are a variety of sources of real-world healthcare data that could be leveraged in the 
clinical studies in the regulatory settings. While such abundant data reflecting real-world 
clinical practice could potentially be used to reduce the cost of clinical trials, challenges 
arise concerning real-world data (RWD) quality, innovative analytical approaches for 
generating robust real-world evidence (RWE) from RWD, and appropriate use of RWE 
for regulatory decisions.  Statistics plays a vital role in meeting all those challenges. This 
presentation will discuss such challenges, and the opportunities they bring about, from 
statistical and regulatory perspectives, illustrated with examples from medical device 
regulatory evaluations.  
 
Keywords: Real-world data/evidence; Propensity score; Power Prior; Composite 
likelihood.  
 

1. Introduction 

In recent years, there is a growing interest in leveraging real-world data (RWD) in 
medical product development. Real-world data in biomedicine refer to the data relating to 
patient health status and/or the delivery of health care routinely collected from a variety 
of sources.  Examples of RWD sources include electronic health records (EHRs), 
insurance claims and billing data, patient registries (product or disease) and lab test 
databases. Here are three examples of national or international patient registries: 1) 
Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS), an 
NIH funded registry for FDA approved mechanically assisted circulatory support 
devices; 2) International Consortium of Orthopedic registries (ICOR); and 3) United 
Network for Organ Sharing (UNOS) registry. Real-world evidence (RWE) in 
biomedicine is the clinical evidence regarding the usage and potential benefits or risks of 
a medical product derived from analysis of RWD. Statistics play a critical role in the 
transformation from RWD to RWE to support regulatory decision-making. This paper 
will discuss how statistical methods are utilized to design and analyze clinical studies, 
when leveraging RWD. We will discuss using propensity score (PS) stratification to 
identify and construct a control group from RWD for a comparative investigational study.  
We will also discuss the application of two PS-based approaches: the PS-integrated 
power prior approach and the PS-integrated composite likelihood approach, to augment a 
single-arm investigational study with RWD, with the option of down-weighting 
information from the RWD. We will focus on study design. 
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2. Constructing a Control Group from RWD in a Comparative Study 

 
A case study - In a prospective comparative study for pre-market approval, a left 
ventricular assist device was evaluated through comparison to a control group 
constructed by selecting patients from the INTERMACS registry who meet the inclusion-
exclusion criteria of the study. The PS stratification method was then used to stratify all 
the patients (treated and control) into strata according to their PS such that the 
distribution of observed baseline covariates is similar between the treated and control 
patients within each stratum, leading to comparable treatment groups in terms of baseline 
covariates.   
 
Formulated by Rosenbaum and Rubin (1983), the propensity score e(X) for a patient with 
a vector X of observed baseline covariates in a comparative study is the conditional 
probability of receiving one treatment (T = 1) rather than the other (T = 0) given X: 

 
e(X) = Pr(T = 1| X). 

 
Propensity score is a balancing score in the sense that conditional on the propensity score, 
the distribution of observed baseline covariates is the same between the treated and 
control patients. Therefore, among patients with the same value of propensity score, the 
distribution of observed covariates is the same between the two group of patients. When 
the propensity scores are balanced across the two treatment groups, the distribution of all 
the observed covariates are balanced in expectation across the two groups. In practice, the 
propensity score is estimated by modeling the probability of treatment group membership 
as a function of the observed covariates, typically via logistic regression. 
 
The propensity score methodology refers to a collection of versatile statistical tools based 
on the concept of propensity score. Commonly used propensity score methods include 
matching and stratification on the propensity score, and inverse probability of treatment 
weighting using the propensity score.  The methods could be used to design and analyze 
an observational study, mimicking some of the characteristics of a randomized controlled 
trial (Rubin 2001. 2007, 2008). The methods have been utilized in regulatory clinical 
studies for the evaluation of safety and effectiveness of medical products.  In recent 
years, they have been used to leverage RWD in clinical studies to support regulatory 
decision-making.  
 
In constructing a control group from RWD for a pre-market confirmatory investigational 
study, statistical and regulatory challenges can emerge. Such challenges include the 
potential of lower quality data in RWD, greater chance of introducing various biases in 
every stage and aspect of the investigational study, and the possibility of lack of 
objectivity in study design and thus the lack of reliability and interpretability of study 
results.   The issues of study design objectivity could be addressed using a two-stage 
objective study design (Yue et al, 2014, 2016; Li et al, 2016), following Rubin’s 
objective design principle (Rubin, 2001).   
 
The first design stage is completed before the initiation of the investigational study. In 
this stage, a preliminary sample size of the investigational study is determined. It is 
important to identify an independent statistician at this stage to later design the study 
using the propensity score methodology. It is good practice for this statistician to be 
blinded to any outcome data, including such outcome data as have already been collected 
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from an RWD source like an existing patient registry, during the entire process of 
designing the study. Some masking mechanism, such as a firewall, is to be planned in this 
stage to control access of outcome data. The second design stage starts ideally as soon as 
patient enrollment is concluded and baseline covariate data are available for all patients. 
The previously identified independent statistician performs the task of estimating the 
propensity scores, matching patients based on the propensity scores, and assessing the 
covariate balance. This process is usually iterative until adequate covariate balance is 
reached. The selection of patients from RWD and sample size estimation are finalized at 
this stage along with a detailed statistical analysis plan (Yue et al 2014). During the entire 
study design process, only the treatment assignment and baseline covariate data are 
needed. Any clinical outcome data and follow-up information are neither needed nor 
accessed. 
 
Illustrative Example 1.  An investigational medical device was compared to a control to 
be selected from a national registry. 
 
The first design stage consists of the following elements:   

• Primary outcome was specified as treatment success;  
• Non-inferiority margin was specified as δ = 11%; 
• Propensity score stratification was planned for study design and outcome 

analysis; 
• Independent statistician was identified; 
• 15 baseline covariates were considered; 
• Significance level was specified as α = 0.025; 
• Proposed sample size: N=250 for the investigational device group;  
• Anticipated sample size: N=500 for the control group. 

 
The second design stage consists of the following elements: 

• Started when the enrollment of investigational study was completed; 
• Based on the pre-specified patient inclusion/exclusion criteria of the 

investigational study,  N=1,000 potential control patients were identified 
from the registry; 

• Based on the treated patients (N = 250) and control patients (N=1,000), PS of 
each patient was estimated with 15 covariates included; 

• PS stratification was performed.  
 

Table 1.  Distribution of patients at the five propensity score quintiles – based on 1250 
patients (control: 1000; treatment: 250). 

 
                                               Propensity Score Quintile 
                                           1          2         3          4         5          Total   

Control           250     244     234     186      86        1000 
Treatment        0         6         16       64      164        250 

 
The enrollment in to the treated group stopped when 250 patients were accumulated. As 
it turned out, 1000 patients from the registry met the selection criteria, and were included 
in the study, resulting in a total sample size of 1250.  A PS model was fit, and a PS 
stratification was done on the 1250 patients by an independent statistician who was 
blinded to the outcome data.  Table 1 displays the number of patients in each propensity 
score stratum.  Given that the first stratum (or PS quintile) contains no patients from the 
treated group, it was considered reasonable to discard the control patients in that stratum 
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(i.e., the first PS quintile), as they look nothing like any treated patients, with respect to 
propensity score and some baseline covariates. However, exclusion of any patients 
treated with the investigational device should be discouraged for pre-market confirmatory 
studies (we want the set of treated patients to be representative of the population of 
interest).  
  
After excluding the 250 control patients in the first PS quintile, the independent statistical 
built a new PS model based on the remaining 1000 patients (while still blinded to the 
outcome data), and the number of patients in each PS quintile is displayed in Table 2. 
 

Table 2. Distribution of patients at the five propensity score quintiles – based on 1000 
patients (control: 750; treatment: 250). 

 
                                                     Propensity Score Quintile 

                                           1          2         3          4         5         Total   
Control           196     193     172     128      61         750 
Treatment        4         7         28       72      139        250 

 
Treatment group comparability with respect to each baseline covariate was then assessed 
and thought to be satisfactory. At this time, power and Type I error rate were revisited 
and found to be adequate. Thus, the second design stage was completed (entirely 
outcome-free), and the independent statistician delivered the report of study design. The 
report contains all the information needed to conduct the outcome analysis including 
which PS stratum each patient belongs to. Each selected control patient would contribute 
100% of their information. 

  
In the outcome analysis, within-stratum comparison was made between the 
investigational device group and the control group based on which an overall treatment 
effect was estimated. 
 
 

3. Augmenting a Single-Arm Investigational Study with RWD 
 
Two PS-based methods have recently been developed for augmenting a single-arm 
investigational study (the current study) with RWD in the following two papers: 
“Propensity Score-Integrated Power Prior Approach for Incorporating Real-World 
Evidence in Single-Arm Studies” (Journal of Biopharmaceutical Statistics, 
https://doi.org/10.1080/10543406.2019.1657133) and “Propensity Score-Integrated 
Composite Likelihood Approach for Incorporating Real-World Evidence in Single-Arm 
Studies” (Journal of Biopharmaceutical Statistics, revision submitted). In those 
approaches, propensity score methodology is used to design a study to incorporate RWD 
by selecting (borrowing) comparable patients from the RWD source. The patient 
information borrowed from the RWD source is then down-weighted via the power prior 
or composite likelihood techniques to perform outcome data analysis.  
  
According to Chen and Ibrahim (2000) a power prior is constructed as follows 

π(θ| D0, α) ∝ [L(θ| D0)]α π0(θ) 
 
where θ is the parameter of interest; 
           L(θ|D0) is the likelihood of the external data D0; 
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           π0(θ) is the initial prior distribution for θ; 
           α, the power parameter (0 ≤ α ≤ 1), controls how much external data to borrow; 
           α = 0: borrow none 
           α = 1: borrow all. 
 
Composite Likelihood (Varin et al, 2011) is a weighted product of probability density 
functions and takes the form: 

𝐿𝐿(𝜃𝜃|𝑌𝑌) = ∏
i
 𝑓𝑓(𝑦𝑦

𝑖𝑖
 |𝜃𝜃) λi 

where λ
i 
is a nonnegative weight to be chosen to discount patient information from the 

RWD data source (For example if λi = 0.6, 60% of this patient’s information is borrowed 
and 40% discounted).  We set λ

i
 = 1, if patient i is from the investigational study (the 

current study); and 0 < λ
i
 ≤ 1, if patient i is from the RWD source. 

 
In this section, we again focus on study design, illustrated by an example below. Here 
patients from the current study are labeled Z = 1 and patients from the RWD source are 
labeled Z = 0, and propensity score is defined accordingly:  
 

e(X) = Pr(Z = 1| X). 
 

Regarding discounting patient information from RWD source, a critical question to 
consider is how and when to determine the discount parameter α or λ for a prospective 
investigational study. 
 
Illustrative Example 2. An investigational study (the current study) was planned to seek 
approval for indication expansion of an approved device. It is known that plenty of off-
label use data were captured in a patient registry.  Based on clinical and statistical 
evaluations, the registry was considered relevant to the current study with adequate 
reliability.  Therefore, it was decided that some data be borrowed from the registry to 
save sample size required for the current study. We set:  
 

• Primary endpoint: one-year adverse event; 
• Parameter of interest: θ, proportion of patients who experienced adverse event(s) 

within a one-year period; 
• Associated hypothesis testing: 

                         Ho :   θ ≥ 36%    vs:   Ha :  θ < 36%; 
• Study success criterion: 

– Posterior probability of θ being less than 0.36 is greater than 0.95; or 
– p-value < 0.05 in frequentist setting; 

• 17 baseline covariates were identified based on prior clinical knowledge; 
• Sample size determination 

– Assume θ = 0.30; 
– Set: power = 80%; significance level = 0.05; 
– Then, N = 380; 
– Based on clinical decision (case-by-case basis), proposed to   

• Enroll 290 patients in the current investigational study 
• Borrow 90 (about 25%) patients from the registry. 
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After the enrollment of all 290 patients was completed in the current study, propensity 
score was estimated for each patient, and 941 external patients were selected using PS, by 
excluding those external patients whose PS is not in the range of that of the patients in the 
current study.  All patients (290 + 941) were grouped into 5 PS strata, with the same 
number of current study patients (290/5 = 58) in each PS stratum.  The purpose of the PS 
stratification is to create strata of patients such that within each stratum external patients 
and patients from the current study are more similar in terms of observed covariates than 
they are overall.  Borrowing of external patients is then carried out within each stratum to 
make it more justified.  The number of registry patients and current study patients are 
displayed in Table 3. 
 

               Table 3. Sample Size in PS Stratum   
                                   1      2       3      4      5     Total   
Current Study (n)      58     58    58    58    58     290 
Registry (n)              281   210  154  187  109    941 

 
Note that it was decided based on clinical considerations that only 90 external patients 
were to be borrowed, but 941 external patients were selected.  Therefore, only a fraction 
of information from each of the 941 external patients can be borrowed.  We consider two 
approaches to incorporating partial information from external patients, a Bayesian 
approach via power prior and a frequentist approach via composite likelihood.   The 
fraction of information to be borrowed is controlled by the power parameter α in the 
former approach and the weight λ in the latter approach.  Now it may seem that all we 
need to do is to set the value of α or λ so that the fraction of information barrowed is 
equivalent to 90 patients.  But it is not that simple.  Since borrowing takes place within 
PS strata, we need to figure out how to allocate the total information to borrow, which is 
equivalent to 90 patients, to each PS stratum. 

 
There are many possible ways to allocate the nominal number of 90 patients into 5 PS 
strata. Our strategy is to make the nominal number of patients to be borrowed in each 
stratum proportional to the similarity of RWD patients and the current study patients in 
terms of baseline covariates in that stratum, where similarity is measured by an 
overlapping coefficient, the overlapping area of propensity score distributions of the two 
groups of patients.  The overlapping coefficient in each stratum is displayed in Table 4. 
The overlapping coefficients are then standardized so that they add up to 1. The 
standardized overlapping coefficients times the total number of patients to be borrowed 
(90) determine the nominal number of patients to be borrowed in each stratum (E.g., in 
the first PS stratum, 90 x 21% = 19). 
 

 
Table 4. Determination of Power Parameter or Weight in Each PS 
Stratum. 
                                  1              2          3         4          5          Total   
Current Study (n)       58          58        58       58        58          290 
Registry (n)                281        210     154     187      109         941 
Overlap Coeff.           0.87       0.78     0.86    0.84     0.77 
Std. Overlap Coef.     21%      19%     21%    20%    19%       100% 
Patients Borrowed      19         17        19       18        17           90 
α (or λ)                       0.07      0.08      0.12    0.10     0.15   
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In each PS stratum, the power parameter α in the Bayesian approach, or the weight λ in 
the frequentist approach, can then be obtained by dividing the nominal number of 
external patients to be borrowed by the total number of RWD patients in that stratum 
(E.g., 19/281 = 0.07 in the first PS stratum).  Having determined α (or λ) in each PS 
stratum, we know the fraction of information each external patient contributes, and the 
study design is complete.  Here, again, all the above design activities were performed by 
an independent statistician who was blinded to the outcome data. 

   
After clinical outcomes were observed from all the patients, the final analysis was 
conducted, based on the PS study design.  For the Bayesian approach, apply the power 
prior within each stratum to get stratum-specific posterior distributions, which are then 
combined to complete the inference for the parameter of interest.   In this example, the 
posterior probability of θ < 36% is 96.9%, which meets the study success criterion.  For 
the frequentist approach, construct the composite likelihood to get stratum-specific 
parameter estimates, which are then combined to complete the inference for the 
parameter of interest.  In this example the maximum likelihood estimate of θ = 31%, p -
value = 0.01. 
 
 

4. Concluding Remarks 
 
High quality real-world data have the potential to play an important role in regulatory 
decision-making.  In this paper we discussed statistical approaches that can be used to 
incorporate RWD in prospective clinical studies, demonstrated by illustrative examples. 
In the first example patients from a registry are used to constitute the control group of a 
comparative device study, with the investigational device arm consisting of prospectively 
enrolled patients.  The second example is a single-arm study in which RWD from off-
label use are synthesized with prospectively enrolled patients to form a single arm study 
to support indication expansion for an approved device.  In both cases the study design is 
based on propensity score methodology, which is utilized to balanced baseline covariates 
between the prospectively enrolled patients and those from an RWD source.  In the 
comparative study the objective of covariate balancing is for making causal inference for 
the treatment effect of an investigational device versus standard of care (the control).  In 
the single arm study covariate balancing is used for making the leveraging of real-world 
data more justified.  Besides using propensity score (stratification) to balance covariates, 
the study design in the second case also involves the determination of the total nominal 
number of external patients to borrow, the nominal number of patients to borrow in each 
propensity score stratum, and the weights used to down-weight information contributed 
by external patients.  Note that all the design activities can and should be carried out 
without any outcome data in sight.  It is important to ensure that the study design is 
outcome-free to safeguard objectivity and integrity so that study results are credible.  The 
implementation of such outcome-free design depends on the cooperation of multiple 
stakeholders with the statistician playing a central role (Xu et al, 2019). More generally, 
statisticians can make myriad contributions in the transformation of RWD into RWE. Our 
case studies are just two examples of such contributions. The methods we have developed 
can readily be used in practice, and we also hope that they can serve as stepping stones 
for more research in the future. 
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