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Abstract
In this article, we overview multiple hypothesis testing procedures in detecting differentially ex-

pressed gene isoforms based on generalized linear models. We apply these methods to a real RNA
sequencing data for illustration.
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1. Introduction

In genome studies, researchers often conduct microarray or RNA sequencing experiments
to identify differentially expressed genes. A major concern in high-dimensional gene ex-
pression analysis is to control the family-wise error rate (FWER). Popular single-step mul-
tiple hypothesis testing methods include Bonferroni method and Scheffé’s method. Holm’s
step-down method is known to provide more powerful tests as compared with Bonferroni
method. Benjamini and Hochberg (BH) step-up method is often used to control the false
discovery rate (FDR). As a reminder, FDR is the expected value of the ratio of the number
of false positives to all misexpressed genes detected. It is defined as 0 if no misexpressed
genes were found. Note that if a method strongly controls FWER then it controls FDR, Du-
doit et al (2003). Multiple comparison procedures in microarray gene expression analysis
have been well developed, Dudoit et al (2002), Dudoit et al (2003), Hsu et al (2006), and Li
and Mansouri (2016). Multiple hypothesis testing methods based on normal theory are im-
plemented in package edgeR (Chen et al, 2019) in detecting differentially expressed genes
for RNA sequencing data. For small-sample experiments, Li et al (2012) proposed the sig-
nificance analysis of sequencing data based on permutation to control the FDR. We provide
an overview of multiple hypothesis testing methods based on normal theory of Chen et al
(2014) and the resampling method of Li et al (2012) in this article. A real example is used
to illustrate the application.

2. Multiple Hypothesis Testing based on Normal Theory

In this section, we review multiple hypothesis testing methods based on a negative binomial
generalized linear model. For gene l, l = 1, · · · , g let Ylij be normalized observation from
i− th treatment and j − th block, i = 1, 2; j = 1, · · · , b. Chen at el (2014) assume Ylij |φ
follows negative binomial distribution with mean µlij and variance µlij + φµ2lij where φ
is the overall dispersion parameter. Alternatively, gene-wise dispersion parameter φl, l =
1, · · · , g may be used if exploratory analysis, for instance, BCV plot of Chen et al (2019),
shows “apparent” heterogeneity among the value of the biological coefficient of variation
(BCV), see Chen et al (2014) for details. We assume normalized observations follow a per
gene generalized linear model that

log(µlij) = Gl + Tli +Blj (2.1)
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where Gl is the overall mean expression from gene l, l = 1, · · · , g; Tli is the i − th
treatment effect on l− th gene with Tl1 +Tl2 = 0 for all l; Blj is the j− th block effect on
l − th gene with

∑
j Blj = 0 for all l. We let Y l be the vector of observations from gene

l, for all l = 1, · · · , g. Write T l = (Tl1, Tl2)
′ and Bl = (Bl1, · · · , Blb)′.

To identify differentially expressed genes, we test a sequence of hypotheses that

H0l : Tl1 − Tl2 = 0 vs. H1l : Tl1 − Tl2 6= 0 (2.2)

for l = 1, · · · , g.
The reduced model under null hypothesis H0l can be written as

log(µlij) = Gl +Blj (2.3)

for l = 1, · · · , g.
Let l(φ;Y l, T̂ l, B̂l) and l(φ;Y l, B̂l) be the log-likelihood function under the full

model (2.1) and the reduced model (2.3) respectively. T̂ l and B̂l are maximum likeli-
hood estimation of the parameters. The likelihood ratio test statistic (LRT) of Chen et al
(2014) takes the form that

LRTl = 2[l(φ;Y l, T̂ l, B̂l)− l(φ;Y l, B̂l)] (2.4)

for l = 1, · · · , g.
The method of Chen et al (2014) approximates p − value by comparing the likeli-

hood ratio test statistic value of (2.4) with Chi− Square distribution with degree of free-
dom df = b − 1. The resulting p − value are adjusted using Bonferroni method, Holm’s
step-down method, or BH step-up method in edgeR. As compared with Holm’s step-down
method and BH step-up method, Bonferroni method is known to be conservative in gene
expression analysis, Dudoit et al (2003). We focus on Holm’s step-down method and BH
step-up method in this article.

To proceed, denote the ordered p− value by

pr1 ≤ pr2 · · · prl−1
≤ prl ≤ prl+1

· · · ≤ prg

which are associated to hypotheses H0r1
, H0r2

, · · · , H0rl−1
, H0rl

, H0rl+1
, · · · , H0rg .

Holm’s step-down method adjusts l − th, l = 1, · · · , g ordered p− value by

pHolmrl
= max

k=1,··· ,l
{min[(g − k + 1)prk , 1]} (2.5)

Holm’s method controls the family-wise error rate. Researchers often attempt to control
the false discovery rate in RNA sequencing gene expression analysis. BH step-up method
provides the control of FDR and it calibrates the ordered p− value in the form that

pBHrl = min
k=l,··· ,g

{min[(g − k + 1)prk , 1]} (2.6)

For details, see page 79 and 80 of Dudoit et al (2003).

3. Significance Analysis of Sequencing Data

It is required by BH step-up method that p−value are accurate. Since sample size of RNA
sequencing data is often small, the testing result of BH method in section 2 is questionable.
Li et al (2012) proposed the method, namely the significance analysis of sequencing data,
based on permutation under complete null hypothesis whose elementary hypothesis is in
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(2.2). In brief, power transformed observations Ylij are assumed to follow Poisson(µli)
for all j = 1, · · · , b which are fit to a log-linear model that

log(µli) = log(di) +Gl + Tli (3.7)

where di denotes the normalized library size for the readings from i−th treatment, i = 1, 2.
Iterative normalization procedure of Li et al (2012) is used to approximate the library size
di, i = 1, 2. To test a sequence of hypotheses in (2.2) in association to the model in (3.7),
the score test statistic of Li et al (2012) for gene l, l = 1, · · · , g is given by

Sl =
(Yl1· − Y

(0)
l1· )2

Y
(0)
l1·

+
(Yl2· − Y

(0)
l2· )2

Y
(0)
l2·

(3.8)

where Yli· =
∑b

j=1 Ylij and Y (0)
li· = bµ̂

(0)
li , i = 1, 2. Note that µ̂(0)li is computed using max-

imum likelihood estimation based on the reduced model in section 3.2 of Li et al (2012).
The FDR of Li et al (2012) is estimated by the following steps.
1) Resample observations from each gene without replacement B times. Let S(r)

1 , · · · ,
S
(r)
g be the statistic value computed based on r−th permutation data set using the equation

in (3.8), r = 1, · · · , B.
2) Let R̂c be the total number of genes rejected by comparing the statistic value in (3.8)

with a cut point c. Let V̂c be the bootstrap mean of “false positives” among all rejected
genes. For the set of “false positives”, see the approximation method in section 4 of Li et
al (2012).

The false discovery rate is computed by FDR = V̂c
R̂c
. We plot a sequence of cut points

c versus their corresponding FDR’s. Set the nominal level of the FDR as α and denote cα
the associated cut point. A gene is detected as differentially expressed if the test statistic
value in (3.8) is greater than cα.

4. Example

We apply the multiplicity adjustment methods in section 2 and 3 to a real RNA sequencing
data. The data is from Tuch et al (2010). RNA samples are from 3 patients (block factor)
and normal and tumor cells (treatment factor) of each patient are used for extraction. The
RNA samples are sequenced in 6 sequencing devices. The resulting measurements are
normalized using upper-quantile normalization procedure of Bullard et al (2010), where the
0.75 − th quantile of each library is used to approximate the library size. The normalized
observations are fit to the generalized linear model in (2.1). To test hypotheses in (2.2), the
asymptotic p−value are adjusted using Bonferroni method, Holm’s step-down method, and
BH step-up method in section 2 respectively. Moreover, we apply the significance analysis
of sequencing data of Li et al (2012) in section 3 to detect differentially expressed genes
using package PoissonSeq of Li (2012). The results are summarized in Figure 1. The Venn
diagram shows that BH step-up method identifies more differentially expressed genes than
step-down and single-step methods. Permutation based method of Li et al (2012) uniquely
detects 73 misexpressed genes. In section 5 of Li et al (2012), it shows that the significance
analysis of sequencing data provides an estimation of the FDR closer to the “ture” level
as compared with BH step-up method. Since the set of misexpressed genes (the list of
misexpressed genes is available on request from the author (bli@citadel.edu)) varies from
one method to another, further investigation is necessary.
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Figure 1: Differentially Expressed Genes. (Note: “bonf”, “holm”, and “BH” denote Bon-
ferroni method, Holm’s step-down method, and BH step-up method in section 2 respec-
tively. “fdr” denotes the significance analysis of sequencing data of Li et el (2012) in
section 3. The permutation size B = 100 to estimate the FDR. The number listed inside
and outside a circle means the number of differentially and not differentially expressed
genes respectively.)
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