
Forecast Combination Using High-Dimensional Precision Matrix∗

Tae-Hwy Lee† Millie Yi Mao‡ Aman Ullah§

Abstract
The estimation of a large covariance matrix is challenging when the dimension p is large relative

to the sample size n. Common approaches to deal with the challenge have been based on thresh-
olding or shrinkage methods in estimating large covariance matrices. We examine the combined
forecasts based on the ISEE estimator of Fan and Lv (2016) and compare it with those based on the
thresholding and shrinkage methods.
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1. Introduction

In many applications of multivariate statistical analysis, such as forecast combination, the
estimation of high-dimensional covariance matrices is a challenging issue especially when
the number of random variables is larger than the number of observations. There are two
popular regularization techniques used in the literature to overcome the challenge – shrink-
age and thresholding methods. See Ledoit and Wolf (2004), Bickel and Levina (2008), Cai
and Liu (2011) and Bailey, Pesaran and Smith (2018).

In most applications however, what we need is not a covariance matrix but its inverse,
which is known as a precision matrix. Therefore another challenge is to invert a covariance
matrix to obtain the precision matrix. Even more challenging is when a covariance matrix
is high-dimensional as it may be computationally heavy to invert or infeasible to invert.

To overcome the difficulty one may directly estimate precision matrices rather than
indirectly from inverting the covariance matrices. Fan and Lv (2016) propose a method
called the ‘innovated scalable efficient estimation’ (ISEE) for the direct estimation of a large
precision matrix through linear transformation, which bypasses inverting a large covariance
matrix. We examine the efficiency of the ISEE estimator in comparison with that of several
shrinkage methods and thresholding methods by Monte Carlo simulations, which show the
advantage of the ISEE estimator in resolving the “forecast combination puzzle”.

This paper is organized as follows. In Section 2, we introduce the estimation algorithm
of high-dimensional precision matrices. In Section 3, we study forecast combination using
the ISEE estimator. Section 4 concludes.

2. The ISEE Algorithm

Consider a p-variate random vector

x = (X1, . . . , Xp)
′ ∼ N (µ,Σ) (1)

where µ is a p-dimensional mean vector, Σ = (σjk) is a p × p covariance matrix. Define
the precision matrix as Ω = (ωjk), the inverse Σ−1 of the covariance matrix Σ. Assume
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the mean vector µ = 0 without loss of generality. Throughout this paper, X represents a
random variable, x represents a vector of the random variables, and X represents a data
matrix.

In most applications (in statistical estimation, forecast combination, optimal portfolio
estimation, etc), what we need is not the covariance matrix Σ but its inverse Ω = Σ−1

(the precision matrix). For example, consider Xj (j = 1, . . . , p) as a forecast from model
j. The optimal combination w′x of the p forecasts in x can be obtained with the optimal
weight given by

w =
Σ−1ι

ι′Σ−1ι
(2)

where ι = (1, ..., 1)′ is a p × 1 vector of ones. See Bates and Granger (1969), Stock
and Watson (2004), and Timmermann (2006). Note that the precision matrix Ω = Σ−1

is needed instead of the covariance matrix Σ. Nevertheless, the literature is largely about
estimation of Σ rather than Ω = Σ−1.

For any subsets A,B ⊂ {1, ..., p} , denote xA a subvector of x formed by its compo-
nents with indices in A, and ΩA,B = (ωjk)j∈A,k∈B a submatrix of Ω with rows in A and
columns in B. Denote the cardinality of the set A by |A| . In this paper we make |A| = 2
when the number of nodes p is even and |A| = 2 or 3 when p is an odd number.

Inverting the sample covariance matrix is difficult or infeasible. To avoid this problem,
Fan and Lv (2016) suggest a new approach – the innovated scalable efficient estimation
(ISEE) of large precision matrices based on the following linear transformation

z = Ωx, (3)

where the mean and variance of z are

E (z) = E (Ωx) = 0, (4)

COV (z) = COV (Ωx) = ΩCOV (x) Ω = ΩΣΩ = Ω.

If the transformed vector z can be obtained, then estimating the precision matrix Ω is equiv-
alent to estimating the covariance matrix of z. Obtaining z by the two parts Ω and x is not
feasible since it depends on the unknown precision matrix Ω. Instead, Fan and Lv (2016)
break the long vector z into small subvectors with each subvector corresponding to a parti-
tion of the index set {1, ..., p}.

For any subset A ⊂ {1, ..., p}, write z = Ωx in partition(
zA
zAc

)
=

(
ΩA,A ΩA,Ac

ΩAc,A ΩAC ,AC

)(
xA
xAc

)
=

(
ΩA,AxA + ΩA,AcxAc

ΩAc,AxA + ΩAC ,ACxAc

)
, (5)

with Ac denoting the complement of the subset A, to obtain

zA = ΩA,AxA + ΩA,AcxAc = ΩA,A

(
xA + Ω−1A,AΩA,AcxAc

)
≡ ΩA,AeA, (6)

where
eA ≡ xA + Ω−1A,AΩA,AcxAc . (7)

Under the assumption of the normality of x, z ∼ N (0,Ω). The subset zA = ΩA,AeA ∼
N (0,ΩA,A), which means eA ∼ N

(
0,Ω−1A,A

)
. Note that

E (eA|xAc) = E
(
xA + Ω−1A,AΩA,AcxAc |xAc

)
= E (xA|xAc) + Ω−1A,AΩA,AcxAc = 0
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which implies that the conditional mean of xA is

E (xA|xAc) = −Ω−1A,AΩA,AcxAc .

The conditional covariance of xA is

V (xA|xAc) = E
[
(xA − E (xA|xAc))

′ (xA − E (xA|xAc)) |xAc

]
= E

(
e′AeA|xAc

)
= Ω−1A,A.

The last equality holds because eA and xAc are independent.1 Hence, the conditional
distribution of xA given xAc is

xA|xAc ∼ N
(
−Ω−1A,AΩA,AcxAc ,Ω−1A,A

)
. (8)

Thus, we can obtain eA as the error term from the linear regression of xA on xAc . Accord-
ingly, the multivariate linear regression of xA on xAc has the form

xA = CTAxAc + eA,

where CA = −ΩAc,AΩ−1A,A represents the coefficient matrix and eA is the vector of regres-
sion errors.

In matrix form, regress a submatrix XA on the rest of the data XAc

XA = XAcCA + EA,

where XA and XAc are submatrices of X with columns in A and its complements Ac, CA
is the regression coefficient matrix and EA is an n × |A| matrix of errors. For each node
j ∈ A, Fan and Lv (2016) consider the univariate linear regression model for response Xj ,
which is the jth column of data matrix X

Xj
n×1

= XAc

n×(p−|A|)
βj

(p−|A|)×1
+ Ej
n×1

which is estimated by the penalized least squares with the scaled Lasso

(
β̂j , θ̂

1/2

j

)
= arg min

βj∈Rp−|A|,σ>0

{
‖Xj −XAcβj‖22

2nσ
+
σ

2
+ λ||β∗||1

}
, (9)

where β∗ is the Hadamard (component-wise) product of two (p− |A|)-dimensional vectors
βj and

(
n−1/2||Xk||2

)
k∈Ac with Xk the kth column of X, λ ≥ 0 is a regularization pa-

rameter associated with the weighted L1-penalty, and ‖v‖q denotes the Lq-norm of a given
vector v for q ≥ 1.

Based on the regression step, for each node j in the index set A, define

Êj = Xj −XAc β̂j

ÊA = (Êj)j∈A.

Then ΩA,A and ẐA are estimated by

Ω̂A,A = (n−1Ê′AÊA)−1, (10)

1COV(eA,xAc) = COV
(
xA + Ω−1

A,AΩA,AcxAc ,xAc

)
= ΣA,Ac + Ω−1

A,AΩA,AcΣAc,Ac . Based on the
property of the inverse of a partitioned matrix, ΣA,Ac = −Ω−1

A,AΩA,AcΣAc,Ac . Thus, COV(eA,xAc) = 0.
Since eA and xAc have joint normality, they are independent.
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The unobservable submatrix ZA is estimated by

ẐA = ÊAΩ̂A.

Stacking ẐA for all the partitions A’s, the ISEE estimates the empirical matrix Ẑ as the
n× p matrix

Ẑ
n×p

=
(
ẐA

)
∀A

(11)

Therefore, the initial ISEE estimator of the precision matrix of X is the sample covariance
matrix of Ẑ, which is computed as

Ω̂ISEE,ini = n−1Ẑ′Ẑ. (12)

Remark: In Fan and Lv (2016), they refine the initial ISEE estimator by thresholding. For
a given threshold τ ≥ 0, define the new estimator with thresholding as

Ω̂ISEE,g = Tτ

(
Ω̂ISEE,ini

)
,

where Tτ (B) =
(
bjk1{|bjk|≥τ}

)
denotes the matrix B = (bjk) with threshold τ . The

choice of the threshold τ is made through a cross-validation method in Fan and Lv (2016).
Based on Ω̂ISEE,g, one can update the (j, k) entry of Ω̂ISEE,g when the nodes j and k are
from different index sets A’s by replacing the off-diagonal entry of the 2× 2 matrix Ω̂A,A

with A being {j, k}. The resulting updated precision matrix estimator is Ω̂ISEE .

3. Application to Forecast Combination

In this section, we conduct Monte Carlo simulations to compare performance of the high-
dimensional precision matrix estimator by the ISEE algorithm and other shrinkage and
thresholding estimators in computing the precision matrices. Four other high-dimensional
matrix regularization approaches are compared:

LW: Ledoit and Wolf (2004)

UT: Bickel and Levina (2008)

AT: Cai and Liu (2011)

MT: Bailey, Pesaran and Smith (2018)

LW is a shrinkage estimator of a large covariance matrix, which is a weighted average
between the large sample covariance matrix and the identity matrix multiplying the mean of
diagonal elements. UT is a “universal thresholding” estimator of a large covariance matrix,
where the threshold is chosen by cross-validation. The elements whose absolute values
are smaller than the threshold are shrunk to 0. AT is an “adaptive thresholding” estimator
of a large covariance matrix, where each element has a different threshold value. MT is
a “multiple testing” estimator of a large covariance matrix, where the sample covariance
matrix is decomposed into the diagonal and correlation matrix. The correlation matrix is
regularized by the universal thresholding method.

The optimal forecast combination weight w is given by equation (2), where Σ−1 is
the precision matrix of the forecast errors of p forecasts. However, in practice the optimal
forecast combination is often found to be outperformed by the equally-weighted combined
forecast with w = 1

p ι = (1p , ...,
1
p)′ (which will be referred to as the 1/p model below). For
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example, the 1/p model is optimal if Σ = Ip×p in (2). Stock and Watson (2004) call this
the “forecast combination puzzle”. See also Timmermann (2006) and Elliott (2011). Smith
and Wallis (2009) show this puzzle can happen due to estimation error of the combining
weights.

We apply the ISEE estimator as well as the four other shrinkage and thresholding meth-
ods to obtain the optimal forecast combination weight w. Under the optimal forecast com-
bination weight w obtained using the ISEE estimator, the mean-squared forecast errors are
much smaller than those of the other methods and also smaller than the simple average
combined forecast. Hence the ISEE estimator resolves the forecast combination puzzle.

For Monte Carlo simulation, we generate the data yt from MA(∞) :

yt =

∞∑
k=0

βket−k. (13)

where β ∈ {0.6, 0.7, 0.8, 0.9} and et ∼ i.i.d.N(0, 1). Forecasts of yt+1 (one-step ahead)
are based on AR(l) models:

ŷt = µ̂+ φ̂1yt−1 + · · ·+ φ̂lyt−l. (14)

We set the number of regression periods m = 100, the number of prediction periods n =
100, number of lags l ∈ {0, 1, . . . , 12}, where the dimensionality p = 13 for 13 forecast
models. We evaluate the performance of 6 estimators – 1/p, LW, UT, AT, MT, and ISEE.
The mean-squared forecast errors (MSFE) of ISEE estimator are much smaller than the
MSFE of the simple 1/p averaging combined forecasts, as shown in Table 1. It indicates
that the ISEE estimator resolves the forecast combination puzzle.

Table 1: Forecast Combination
β 1/p LW UT AT MT ISEE

0.6 1.06 1.00 0.93 0.91 0.91 0.87
0.7 1.06 0.99 0.90 0.92 0.92 0.89
0.8 1.07 0.99 0.92 0.93 0.91 0.86
0.9 1.08 1.01 0.93 1.01 0.94 0.89

4. Conclusions

In this paper, based on the ISEE algorithm by Fan and Lv (2016), we conduct Monte
Carlo simulations to estimate a high-dimensional precision matrix Ω in constructing the
optimal forecast combination. We show that the ISEE estimator can address the forecast
combination puzzle better than the shrinkage and thresholding methods.
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