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Abstract
This paper aims to improve the prediction under model instabilities. Model instability is defined as
a permanent change in the parameters of the model. We introduce a combined estimator of the post-
break data and full-sample data and show that this combined estimator has a lower MSFE compared
to the post-break estimator, which is a standard solution under model instabilities. The combination
weight lies between zero and one. Monte Carlo experiment demonstrates our theoretical findings.
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1. Introduction

Many macroeconomic and financial time series are subject to structural breaks. Since the
1960s, a voluminous literature on structural changes has been developed. Structural change
in linear regressions was considered early on by Chow (1960), and Quandt (1960). Seminal
works were mostly designed for the specific case of a single change. Bai (1997a) and Bai
(1997b) study the least squares estimation of a regression model with a single break and
with multiple breaks, respectively. Bai and Perron (1998) extend the sup-type test to models
with multiple changes and propose a double maximum test against the alternative under
which only the maximum number of breaks is prescribed. They also consider a sequential
test for the null hypothesis of l breaks against the alternative of l+ 1 breaks. The literature
on detecting the structural break is massive and there are some cost efficient program to
detect the breaks. For a comprehensive survey on structural changes, see Perron (2006)
and Casini and Perron (2018).

Since the seminal work by Bates and Granger (1969), forecast combination has been
proved to be an effective way to improve forecasting performance. Especially under model
instability, the performance of the forecast can be boosted by forecast combinations method,
see Diebold and Pauly (1987), Clements and Hendry (1998, 2006), Stock and Watson
(2004), Pesaran and Timmermann (2005, 2007), Timmermann (2006), Pesaran and Pick
(2011), Pesaran and Timmermann (2007), Rossi (2013), and Pesaran et al. (2013) inter
alia.

The goal of this paper is to introduce a combined estimator which lowers the forecast
error under model instabilities. The standard solution for forecasting under model instabil-
ities is to use the post-break estimator, but this estimator can not improve the forecast when
there is not enough observations in the post-sample. Our proposed combined estimator is
the combination of the post-break estimator and the full-sample estimator with combination
weight w ∈ [0, 1]. Using the pre-break data biases the forecast, but reduces the forecast
error variance.

We undertake a Monte Carlo experiment with different set up for the break points,
different numbers of the regressors, and various break sizes in both coefficients and er-
ror variances to compare the forecasting performance of our proposed combined estimator
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with the post-break estimator. We calculate the mean squared forecast error (MSFE) for the
proposed combined estimator and the post-break estimator and evaluate their performance
under various set up. This experiment confirms the out-performance of our proposed com-
bined estimator relative to the post-break estimator in forecasting under structural breaks
in the sense of MSFE.

The outline of the paper is as follows. Section 2 sets up the model under structural break
and introduces the proposed combined estimator and its asymptotic risk. For simplicity, we
discuss the problem under a single break, but generalization of the method to the multiple
breaks is straightforward. Section 3 reports Monte Carlo simulation. Finally, Section 4
concludes.

2. The Structural Break Model

Consider the linear structural break model as yt = x′tβt + σtεt, in which the k × 1 vector
of coefficients, βt, and the error variance, σt, are subject to a break at time T1. So we can
write the model as:

yt =

{
x′tβ(1) + σ(1)εt if 1 < t ≤ T1

x′tβ(2) + σ(2)εt if T1 < t < T,
(1)

where xt is k× 1, εt ∼ i.i.d.(0, 1), t ∈ {1, . . . , T} and T1 is the break point with 1 < T1 <
T . In this set up we have only one break (two regimes). Assume that we know the break
point.

2.1 Combined Estimator with Weight w ∈ [0, 1]

This section introduces the combined estimator of the post-break data estimator and full-
sample data estimator with a combination weight w ∈ [0, 1]. The proposed estimator is:

β̂w = wβ̂Full + (1− w)β̂(2), (2)

where β̂Full is the estimator for the coefficient by using full-sample data, t = {1, . . . , T},
and β̂(2) is the estimator for the coefficient using the data after the breakpoint. Before
deriving the asymptotic risk for this combined estimator, at first we want to derive the
distribution for each estimator.

2.2 Full-Sample Estimator

The full-sample estimator is constructed under the null hypothesis that there is no break in
the model, β(1) = β(2), so it uses all of the observations to estimate β. Under the alternative
hypothesis there is a break such that β1 = β2 + δ1√

T
. We denote this full-sample estimator

as β̂Full, and estimate the coefficient by the Generalized Least Square (GLS) as:
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where Ω = diag(σ2
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2
(1), σ

2
(2), . . . , σ

2
(2)) is a T×T matrix andX = (x1, x2, . . . , xT )′

= (X ′1 X
′
2)′ is T × k matrix of regressors. So X1 is T1 × k matrix of observations before

the break point, and X2 is (T − T1)× k matrix of observations after the break point. As-
sume that T − T1 ≥ k + 1, so we will have enough observations in the post-break sample.
This is the assumption to have well defined estimator otherwise the number of unknown
parameters would be larger than number of observations. By simplification:
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where VF =
(
X′Ω−1X

T

)−1 p−→ Q−1 is the variance of the full-sample estimator, b1 = T1
T

shows the proportion of pre-break observations,
(
X′1Ω−1

1 X1

T1

)
p−→ Q1 and Ω1 is the variance

of the pre-break data which is equal to Ω1 = diag(σ2
(1), . . . , σ

2
(1)). This is the two step GLS

method in which in the first step we need to estimate the σ̂2
(1) and σ̂2

(2), and the second step
estimates the coefficients.

2.3 Post-break Estimator

The post-break estimator focuses on the observations after the break point. So:

β̂(2) = (X ′2 Ω−1
2 X2)−1X ′2 Ω−1

2 Y2, (5)

where Ω2 = diag(σ2
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2
(2)) is a (T − T1)× (T − T1) matrix. By simplification:
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where V(2) = 1
1−b1

(
X′2 Ω−1

2 X2

T−T1

)−1 p−→ 1
1−b1Q

−1
2 is the variance of the post-break estimator.
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Theorem 1. The joint distribution of the full-sample estimator and post-break estimator
is:

√
T
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Given that, √
T
(
β̂(2) − β̂Full

) d−→ G′ V 1/2Z (8)

and √
T
(
β̂(2) − β(2)

) d−→ G′2V
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where G = (−I I)′ and G2 = (0 I)′.

�

Theorem 1 presents the joint asymptotic distribution of the full-sample estimator and
the post-break estimator, and the combined estimator with weight w ∈ [0, 1]. The joint
asymptotic distribution of the full-sample estimator and the post-break estimator is nor-
mally distributed. Based on the derived distribution, the full-sample estimator is biased but
more efficient. On the other side, the post-break estimator is unbiased but it is less efficient
compared to the full- sample estimator because it is not using all available information in
the sample. Thus, the proposed combined estimator exploits the trade-off between bias and
variance of the two estimators.

2.4 Asymptotic Risk for the Combined Estimator

In this section we want to find the asymptotic risk for the proposed combined estimator for
the case that we have only one break. Since our focus is on forecasting, it seems reasonable
to consider β(2) as the true parameter vector in the definition of the risk.

Lemma 2. When an estimator has asymptotic distribution,
√
T (β̂ − β)

d−→ $, then we can
derive risk for this estimator as ρ(β̂,W) = E($′W$). See Lehmann and Casella (1998).

�

Based on Lemma 2, we can write the asymptotic risk for our estimator as:
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Theorem 3. The asymptotic risk for the combined estimator with weight w can be written
as:

ρ(β̂w,W) = ρ(β̂(2),W)− w

(
2 tr
(
W
(
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))
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[
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(
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�

Based on Theorem 3, the combined estimator with weight w has a smaller risk than the
post-break estimator if the term inside the parenthesis be positive.

If 0 ≤ w ≤ 2 tr
(
W
(
V(2)−VF

))
tr
(
W
(
V(2)−VF

))
+θ′V 1/2GWG′V 1/2θ

, then this condition is satisfied and the

optimal w∗ can be derived as:
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)
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)
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. (12)

Finally by plugging the optimal w∗(W) in equation (12) into the risk function, we have the
following theorem.

Theorem 4. The asymptotic risk for the combined estimator with weight w can be derived
by plugging back the optimal w∗(W) in equation (12) into the risk function, and is equal
to:

ρ(β̂w,W) = ρ(β̂(2),W)−

[
tr(W
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V(2) − VF

)
)
]2

tr(W
(
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�

Theorem 4 shows that under the condition that 0 ≤ w ≤ 2 tr
(
W
(
V(2)−VF

))
tr
(
W
(
V(2)−VF

))
+θ′V 1/2GWG′V 1/2θ

,

the risk of the combined estimator is less than the post-break estimator which means that
there is a gain using the pre-break data under model instabilities.
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Table 1: Simulation results with T = 100

q = 0.5 q = 1

λ k = 3 k = 8 k = 3 k = 8

b1 = 0.6

0 0.960 0.884 0.972 0.911

0.5 0.999 0.982 0.999 0.981

1 0.999 0.997 0.999 0.996

3. Monte Carlo Simulations

This section provides some Monto Carlo results based on the combined estimator with
weight w ∈ [0, 1] and the post-break estimator. The goal is to compare the MSFEs for
these estimators. To do this, Let t = {1, ..., T} with T = 100, q =

σ(1)
σ(2)
∈ {0.5, 1}

shows the magnitude of the break in the error variances and k = {3, 8} represents different
number of regressors. We do the Monte Carlo for the case that the proportion of the pre-
break sample observations, b1 = T1

T , is equal to 0.6. Suppose xt ∼ N(0, 1), and εt ∼
i.i.d. N(0, 1). The data generating process for the single break case is:

yt =

{
x′tβ(1) + qεt if 1 ≤ t ≤ T1

x′tβ(2) + εt if T1 < t ≤ T. (14)

Let β(2) be a vector of ones, and β(1) = β(2) + δ1√
T

under the local alternative. Assume

that λ ≡ δ1√
T
∈ {0, 0.5, 1} represents different break sizes in the coefficient. The number

of replications is 1000.
Table 1 shows the results of the Monte Carlo. We report the results based on Relative

MSFE with respect to the post-break estimator which is the benchmark estimator, i.e.,

RMSFEw =
MSFE(β̂w)

MSFE(β̂(2))
. (15)

Table 1 shows the relative MSFE for different numbers of regressors, k, different break
ratios in the error variance, q, and different break sizes in the coefficient, λ. Based on the
results of Table 1, the relative MSFE are all less than one which means that the combined
estimator has a lower MSFE than the post-break estimator. If the break happens towards the
end of the sample (large b1), the gain from using the combine estimator increases because
the post-break estimator cannot perform well when there is not enough observations in the
post-break sample. For the small break sizes, there is huge advantage in using the combined
estimator and this advantage increases as the number of regressors (k) increases. For the
large break size (λ = 1), the relative MSFE is almost one which means that the post-break
estimator and the combined estimator perform equally under the large break. Actually
for the large break size, there is not much gain using the combined estimator because the
full-sample estimator adds more bias to the combine estimator.

4. Conclusion

In this paper we introduce the combined estimator of the full-sample estimator (using all
observations in the sample), and the post-break estimator which uses the observations after
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the break point. The standard solution for forecasting under structural break is to use the
post-break estimator, but it has been shown that using pre-break observations can decrease
the MSFE. As our combined estimator uses the pre-break observations, we are able to re-
duce the variance of forecast error at the cost of adding some bias. Based on the simulation
results, the combined estimator has a lower MSFE compared to the post-break estimator
regardless of the breakpoint or break size.
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