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Abstract
This research is concerned with an implicit merit of analyzing multiple solutions in application of

the classical method of moments. A system-wide computation on one of Karl Pearson’s biometric
samples is performed, specifically to search for additional parameter estimates by extra participation
of the sixth moment measurement and equation. An alternative investigation is also made for the
three-component normal mixture model, conditional on a specification with five regular parameters.
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1. Introduction

At present, studying the mixture of normal random variables seems not so particularly
difficult as contrasted to the beginning of the twentieth century. Back a few then years
to the date of the innovative Pearson (1894), the immediate next decade did not attain
substantial progress, either to generalize the underlying method of solving equations or
effectively to disseminate the contributed method of moments. Increasing the transparency
of the methodology appeared much later; for example, see Charlier and Wicksell (1924),
Pollard (1934), Cohen (1967), among others.

The concerned mixed normality could be practically described as a sum of weighted
normal random variables, but the weight is stochastic following the zero-one Bernoulli
variability. We can write x D Iu C .1 � I /v and assign that u is normally distributed with
mean �1.or ˛/ and standard deviation �1.or �/, v is also normally distributed with mean
�2.or ˇ/ and standard deviation �2.or ı/, but I is only binary with Pr.I D 0/ D � versus
Pr.I D 1/ D 1 � �; the three random variables have zero stochastic dependence. Let �.z/

denote the standard normal probability density function 1p
2�

exp.�z2

2
/. It follows that a

convenient formula of x’s probability density is

f .x/ D
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�.
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�2
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�2
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�
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x � ˛

�
/ C

1 � �

ı
�.

x � ˇ

ı
/: (1)

When a random sample of x is available as fxtg
N
1 , equating the five sample moments

.m1; m2; � � � ; m5/ to the corresponded ordinal moment integrals could generate a nonlin-
ear and simultaneous equation system with parameters as the variables. For simplicity of
symbols, the second set of parameters .˛; ˇ; �; ı; �/ is preferred in displaying the equation
system:

m1 D�˛ C .1 � �/ˇ;

m2 D�.˛2
C �2/ C .1 � �/.ˇ2

C ı2/;

m3 D�˛.˛2
C 3�2/ C .1 � �/ˇ.ˇ2

C 3ı2/;

m4 D�.˛4
C 6˛2�2

C 3�4/ C .1 � �/.ˇ4
C 6ˇ2ı2

C 3ı4/;

m5 D�˛.˛4
C 10˛2�2

C 15�4/ C .1 � �/ˇ.ˇ4
C 10ˇ2ı2

C 15ı4/: (2)
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When the equation relationship of m6 is placed to the above system, the method of moments
would require a different research process to increase the performance of the parameter es-
timation. The purpose of this paper is to present an example for imitating the sketched
process and related decisions. For compatibility of technical contents, and other familiar
benefits, the computations in this paper mostly apply Pearson’s first sample of 1000 biomet-
ric measurements–breadth of forehead of crabs. It should be concerned that since 1970s the
normal mixture model has evolved significantly, via the use of regression functions or/and
generalized normal distributions to more complicated data. For examples of this advance-
ment, in part, the reader is referred to Quandt and Ramsey (1978), Ball and Torous (1983),
Cosslett and Lee (1985), McLachlan and Peel (2000), Dai et al. (2018).

This paper is planned as follows. Section 2 performs an interpretation on Pearson’s
equation finding and parameter estimates. Section 3 exhibits an adverse consequence of
applying the measurement m6 into the modified estimation. The problem is diminished in
Section 4, by changing the model to a three-component specification. Section 5 contains
the summary and conclusion of the research.

2. Pearson’s Estimator and Application

Pearson demonstrated that a nonic polynomial equation could indirectly solve the equation
system of his moment estimator. The equation’s argued parameter (variable) was selected
after implementing a particular transform of three parameters, which causes that the proper
roots in solution should be negative.

In modern notation, especially with the sample cumulants .k3; k4; k5/, the nonic equa-
tion is written

a9p9
C a8p8

C � � � C a2p2
C a1p C a0 D 0;

where the ten coefficients are as follows:

a9 D 24;

a8 D 0; a7 D 84k4; a6 D 36k2
3 ; a5 D 9.8k3k5 C 10k2

4/;

a4 D 6.74k2
3k4 � 3k2

5/; a3 D 9.32k4
3 � 12k3k4k5 C 3k3

4/;

a2 D �9.7k2
3k2

4 C 8k3
3k5/; a1 D �96k4

3k4; a0 D �24k6
3 : (3)

It is helpful to review the following cumulant-to-moment conversions

k3 D m3 � 3m1m2 C 2m3
1;

k4 D m4 � 3m2
2 � 4m1m3 C 12m2

1m2 � 6m4
1;

k5 D m5 � 5m1m4 � 10m2m3 C 20m2
1m3 C 30m1m2

2 � 60m3
1m2 C 24m5

1: (4)

Notice that the sum of coefficients in each case equation is zero. These three conversion
formulas reveal that directly deriving the nonic equation from the moment conditions was
a very difficult task; Pearson applied both raw and central moments to reach his classic
solution.

Through laborious calculations, Pearson obtained the first five sample moments:

m1 D 16:799; m2 D 304:923; m3 D 5831:759; m4 D 116061:435; m5 D 2385609:719I

his notation to mj was �0
j . He found three real roots: �8.757, �6.724, 4.170, which after

contemporary computation are improved to �8.51646, �6.72225, 4.16932. Pearson delin-
eated that the first root is better than the second, since the sample’s sixth central moment
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(his notation �6) is equal to 177004 approximately, and the two negative roots have the
respective predictions 188099 and 192446. It is believed that Pearson was constrained by
the calculation of higher sample moments for providing stronger evidence to support the
aforementioned decision making.

3. Taking m6 and Its Equation into Computation

To examine the parameter estimates retrievable from the two algebraic roots, with the cal-
culated moments, it is convenient to use the abbreviation � as .�1; �2; �1; �2; �/. The two
vector of parameter estimates in upper precision are written

O�1 D .13:39801; 19:30311; 4:51164; 3:10942; 0:42406/;

O�2 D .14:37198; 19:56875; 4:77025; 2:87726; 0:53298/:

They could individually make predictions on the sixth moment and the sixth central mo-
ment. The outcome is (50399505.747, 189500.094) by O�1 and (50402599.907, 192420.887)
by O�2: In contrast to the corresponded sample averages (50392382.883, 181943.441), the
acceptance of O�1 is better supported.

The above decision could be further agreed, if the moment estimator of solving the
equation system of fm1; m2; m3; m4g and m6 has only one feasible solution. Switching the
notation, the new moment equation is

m6 D�Œ˛6
C 15.˛4�2

C 3˛2�4
C �6/� C .1 � �/Œˇ6

C 15.ˇ4ı2
C 3ˇ2ı4

C ı6/�: (5)

However, the modified equation system has empty solution, maybe because the largeness of
m6 D 50392382.883 has affected the process of iterative computation. The four analogous
exchanges between m6 and one of fm1; m2; m3; m4g have the same problem of empty
solution. The author has conjectured that Pearson’s method of deriving the nonic equation
is useful in distinguishing the common source of the computational puzzle. This conjecture
is posed for future research, in part because of anticipating a more practical analysis.

4. The Three-Component Model

In this section an interesting perspective is inquired. If it is possible to find a similar model
as well as its major moment estimator, will the former problem of two roots and/or empty
solution disappear? To depict this expectation, the function form and parameterization of
f .x/ is adjusted to

g.x/ D
�

�
�.

x � � C 


�
/ C

!

�
�.

x � �

�
/ C

1 � � � !

�
�.

x � � � 


�
/: (6)

Subsequently, the moment equation system is changed to

m1 D�.� � 
/ C !� C .1 � � � !/.� C 
/;

m2 D�Œ.� � 
/2
C �2� C !.�2

C �2/ C .1 � � � !/Œ.� C 
/2
C �2�;

m3 D�.� � 
/Œ.� � 
/2
C 3�2� C !�.�2

C 3�2/ C .1 � � � !/ � � � ;

m4 D�Œ.� � 
/4
C 6.� � 
/2�2

C 3�4� C !.�4
C 6�2�2

C 3�4/ C � � � ;

m5 D�.� � 
/Œ.� � 
/4
C 10.� � 
/2�2

C 15�4� C !�.�4
C � � � / C � � � : (7)

When solving the above equation system for the same data set, the problem of two roots
occurs again. The two vector of estimates for .�; 
; �; �; !/ � # are expressed as

O#1 D .13:56181; 5:77191; 3:09148; 0:07435; 0:29045/;
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O#2 D .10:91176; 7:79145; 3:30948; 0:00426; 0:23646/:

The simple prediction method suggests accepting O#1 and rejecting O#2, whereas the re-
spective predictions are 185987.432 and 193949.263, in contrast to the central moment
c6 D 181943:441, an average from the sample. Notice that O#1’s prediction is better than
that of O�1

When m5 is replaced by m6, the moment method still have two roots, unlike the empty
solution in the two-component model. Moreover, the replacement is permissible for three
more cases, with m4; m3; m2 but not possible with m1. Though m1 cannot be replaced
by m6, the research emerges to find that if m1 is replaced by m6=m5

1 then there are two
roots, like the other three cases. Notice that m1 and m6=m5

1 has approximate order and the
implemented equation is

m6

m5
1

D
�Œ.� � 
/6 C 15.� � 
/4�2 C 45.� � 
/2�4 C 15�6� C � � �

Œ�.� � 
/ C !� C .1 � � � !/.� C 
/�5
: (8)

The three-component model was further estimated with a variation of replacement.
The modified estimation of replacing m5 by c6, instead of by m6, has two roots in solution.
Moreover, when the replacement was advanced to the next higher-order central moments
persistently, the exchange with c10 found single root. The vector of retrieved parameter
estimates is

M# D .18:52952; 8:41952; 3:23462; 0:21032; 0:78489/:

Thus, the numerical use of extra higher moments should be guarded if possible.
Relied on O�1 and O#1, the author continued to realize the respective maximum likeli-

hood estimation of the two models. The interesting inference made in this section is a
consequence of carefully examining the moment-based and the likelihood-based estimates
listed in Table 1, Table 2A and 2B.

5. Summary and Conclusion

This research has two interesting implications: (i) Regarding the classical method of mo-
ments, if the two-component mixture model has encountered the problem of multiple roots
or empty solution, one should consult analogous estimation on the three-component model
for remedy. (ii) Pearson’s method of deriving the nonic equation was conjectured to be able
to diagnose a category of algebraic problems in modern application of the method of mo-
ment. In addition, while editing this paper, the author has further reviewed the expositions
in Lee (2016) and Weisstein (2019) to recognize that the three-component model’s moment
estimator could be formulated into a quartic equation under a very plausible condition.
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Table 1. Method-of-Moments Estimates of g.x/ with mj vs m6 Replacement

mj O� O
 O� O� O! L. O#/

m5 13:5145 5:8373 3:0801 0:0711 0:2951 �2953:0408

11:0806 7:6940 3:2778 0:0057 0:2454 �2956:3255

m4 13:4455 5:9187 3:0713 0:0668 0:2998 �2953:0508

11:3272 7:5321 3:2410 0:0083 0:2570 �2956:1164

m3 13:3226 6:0394 3:0679 0:0602 0:3039 �2953:1160

11:7174 7:2595 3:1947 0:0137 0:2726 �2956:1164

m2 12:8662 6:4089 3:0918 0:0418 0:3027 �2953:6032

12:5901 6:6178 3:1134 0:0332 0:2977 �2954:0133

m1 13:6229 5:7104 3:0936 0:0780 0:2877 �2953:0883

10:8426 7:8511 3:3156 0:0034 0:2345 �2956:4699

Note:

1. The symbol L. O#/ stands for the log-likelihood at # D O# .
2. The standard errors of the method-of-moments estimates could be determined according to

a standard formula of the generalized method of moments. For related interpretations of the
asymptotic theory, one could refer to Schmidt (1982) and Hansen (1982), among others.
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Table 2A. The Standard Method-of-Moments Estimates

pdf O�1 O�2 O�1 O�2
O� L. O�/

f .x/ 13:3981 19:3031 4:5116 3:1094 0:4241 �2953:9672

14:3720 19:5688 4:703 2:8773 0:5330 �2954:3795

pdf O� O
 O� O� O! L. O#/

g.x/ 13:5618 5:7719 3:0915 0:0744 0:2905 �2953:0544

10:9118 7:7915 3:3095 0:0043 0:2365 �2956:3316

Table 2B. The Maximum Likelihood Estimates

pdf Q�1 Q�2 Q�1 Q�2
Q� L. Q�/

f .x/ 13:5609
.2:8546/

19:2697
.0:6260/

4:5782
.0:9231/

3:1548
.0:4050/

0:4328
.0:2731/

�2953:8820

pdf Q� Q
 Q� Q� Q! L. Q#/

g.x/ 13:4476
.0:6092/

5:8720
.0:5240/

3:0924
.0:1758/

0:0682
.0:0296/

0:2928
.0:0391/

�2953:0326

Note:

1. The maximum likelihood estimation of this research is completed with the Gretl package; see
the optimization techniques and commands documented in Cottrell and Lucchetti (2018).

2. The vector of standard errors, below the estimates, is computed from inverting the numerical
Hessian matrix.
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Table A-1. Attached Frequency Counts–The First Sample Estimated in Pearson (1894)

xt Freq. xt Freq. xt Freq. xt Freq.

1 1 8 19 15 54 22 47

2 3 9 20 16 74 23 43

3 5 10 25 17 84 24 24

4 2 11 40 18 86 25 19

5 7 12 31 19 96 26 9

6 10 13 60 20 85 27 5

7 13 14 62 21 75 28 0

Note:

1. The frequency of xt D 29 being only one should be added to the table to have N D 1000.
2. The sample mean and variance are 16.799 and 22.717. The sample skewness and kurtosis

are �0.498 and 3.055.
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