
Big Stick Design Within Arbitrary Boundaries Minimizes the Selection Bias in an 

Open-Label Trial 

 
 

Olga Kuznetsova1 
1Late Development Statistics, Merck & Co., Inc., Rahway, NJ USA  

 

 

 
Abstract 
The investigator in a randomized open-label single-center trial knows the treatment 
assignments of all randomized subjects and based the knowledge of the allocation 
procedure used in the trial can often make a guess regarding the treatment to be assigned 
to the next subject. This allows the investigator to introduce the selection bias in the study 
results [Rosenberger and Lachin, 2016] by allocating subjects with a better prognosis to a 
specific treatment group. Blackwell and Hodges (1957) demonstrated that the truncated 
binomial design of the size N (an even number), where subjects are allocated at random 
with probability ½ until one of the treatment arms reaches the full size of N/2 subjects and 
the remaining subjects are allocated to the opposite arm, minimizes the selection bias 
among all 1:1 allocation procedures that assign N/2 subjects to each treatment.  We expand 
this fact to allocation spaces other than an N×N square by demonstrating that among all 
two-arm equal allocation procedures with an arbitrary allocation space the selection bias is 
minimized with the procedure that allocates subjects at random with probability ½ as long 
as allocation to both treatments is allowed. 
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1. Introduction 
 
The investigator in a randomized open-label single-center trial knows the treatment 
assignments of all randomized subjects and based on that and the knowledge of the 
allocation procedure used in the trial can often make a guess regarding the treatment to be 
assigned to the next subject.  With that, the investigator can allocate subjects with a better 
prognosis to a specific treatment group, introducing the selection bias in the study results 
[Rosenberger and Lachin, 2016].  
 
The extent of the selection bias depends on the allocation procedure and the guessing 
strategy employed by the investigator.  In this paper we will consider only two-arm equal 
allocation procedures symmetric with respect to the two treatments. Such symmetry is a 
common feature of 1:1 allocation procedures; it also ensures that the unconditional 
allocation ratio is 1:1 regardless of the order of the subject’s enrollment. 
 
When a 1:1 allocation procedure that preserves the unconditional allocation ratio at every 
allocation is designed to have exactly equal group sizes at the end of the allocation, the 
highest selection bias is achieved with the directional strategy [Kuznetsova, 2017].  The 
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directional strategy means guessing the treatment that has the conditional probability of 
>1/2 to be assigned to the next subject [Berger, 2005].  When both treatments have 
conditional probabilities of ½ to be assigned next, no selection bias can be introduced at 
the next allocation and the guess is made by a toss of a fair coin.  When the allocation 
sequence is not required to end with exactly equal treatment group sizes, the directional 
strategy remains a practical choice.  
 
For most restricted 1:1 allocation procedures the conditional probability of the 
underrepresented treatment is >1/2.  For such procedures the directional strategy coincides 
with the convergence strategy that dictates guessing the underrepresented treatment.  For 
some 1:1 allocation procedures the conditional probability of the underrepresented 
treatment is either >1/2 or is equal to ½ (as is the case with the big stick design until the 
boundary is reached).  In this case, the convergence strategy results in the same selection 
bias as the directional strategy.  While the directional strategy requires the knowledge of 
the allocation procedure, the convergence strategy does not.  Since for most 1:1 allocation 
procedures the directional strategy results in the same selection bias as the convergence 
strategy, the directional strategy is often not even mentioned in the context of the equal 
allocation. However, when the underrepresented treatment is given conditional probability 
<1/2, the directional strategy differs from the convergence strategy and is applied to 
maximize the selection bias. 
 
Blackwell and Hodges (1957) demonstrated that the truncated binomial design of the size 
N (an even number), where subjects are allocated at random with probability ½ until one 
of the treatment arms reaches the full size of N/2 subjects (the remaining subjects are 
allocated to the opposite arm), minimizes the selection bias among all 1:1 allocation 
procedures that assign N/2 subjects to each treatment.  The selection bias is derived in a 
context when the investigator knows the allocation procedure employed in the study. 
 
While Blackwell and Hodges (1957) solved the problem of minimizing the selection bias 
among the procedures with the allocation space restriction that the group sizes are equal to 
N/2 each, the problem remained unsolved for other restrictions on the allocation space.   
 
In Section 2 we will demonstrate that for arbitrary restrictions on the allocation space the 
selection bias is minimized when subjects are allocated at random with probability ½ as 
long as the allocation to both treatments is allowed. We will introduce concepts and 
notation used throughout the paper in Section 1. A brief discussion completes the paper. 
 

2. Concepts and Notation 
 
We will visualize an allocation sequence as a path along the integer grid in the 2-
dimensional space.   The horizontal axis represents allocation to Treatment 1; the vertical 
axis represents allocation to Treatment 2.  The allocation path starts at the origin and with 
each allocation moves one unit along the axis that corresponds to the assigned treatment.  
After i allocations, the allocation path ends up at the node with coordinates (N1i, N2i), where 
Nli is the number of Treatment l, l =1, 2, allocations within the first i allocations.    
 
The set of nodes that can be realized with a given allocation procedure forms its allocation 
space.  For example, for the two-arm Permuted Block Randomization (PBR) (Zelen, 1974) 
with the permuted block size 2, the allocation space for a study subjects is a chain of unitary 
squares placed along the diagonal (Figure 1a).  The allocation space of the truncated 
binomial design of the size N is the N/2×N/2 square.   
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c) 

Figure 1: The allocation space of a) PBR with the permuted block size 2 for N=8; b) BSD 
with b=2 for N=8; c) CR for N=6. 
 
Soares and Wu (1982) introduced the Big Stick Design (BSD) with the imbalance 
intolerance parameter b that allocates subjects at random with probability ½ as long as the 
imbalance in treatment assignments is below b. When the imbalance of b is reached, the 
subject is allocated to the underrepresented treatment.  Thus, the allocation space of the big 
stick design is a strip of height 2b on a two-dimensional unitary grid.  The PBR with the 
permuted block size 1 (Figure 1a) is the big stick design with b=1.  Figure 1b depicts the 
allocation space for the big stick design with b=2.  
 
The truncated binomial design can be considered a big stick design within the boundaries 
of the N×N square.  However, boundaries other than those of a square or a strip can be 
considered for a restricted allocation procedure. For example, for the permuted block 
design with varying block sizes [Rosenberger and Lachin, 2016] the boundaries outline a 
sequence of non-overlapping squares of varying dimensions.  Varying the imbalance 
intolerance parameter as suggested by Zelen (1974) turns the allocation space into a series 
of overlapping squares of varying dimensions.  If one if interested in keeping the balance 
in treatment assignments tighter at the beginning of enrollment than later on when more 
subjects are enrolled, the allocation space can be made narrow at the beginning and 
widened up as the allocation progresses.  
 
For complete randomization of N subjects, the group totals N1 and N2 can take any 
combination such that N1 + N2 =N and thus, the allocation space is a triangle depicted in 
Figure 1c. 
 
The BSD can be generalized to any allocation space as the procedure that allocates subjects 
at random with probability ½ as long as allocation to both treatments is allowed and 
allocates the subject deterministically when the allocation path reaches the boundary of the 
allocation space. With that, complete randomization can be considered a big stick design 
within its boundaries. 

 
2330



 
We will call the nodes that can be realized with the allocation procedure after i allocations 
the nodes of generation i. We will number the nodes from 1 to mi, where mi is the number 
of nodes in generation i. We will call the probability for an allocation sequence to reside in 
the j-th node in generation i the resident probability of the node and denote it Rij. The sum 
of the resident probabilities across the nodes of the same generation is 1.  
 
Under the Blackwell-Hodges (1957) model, the selection bias is represented by the 
expected difference in the treatment group means in absence of a treatment effect 
[Rosenberger and Lachin, 2016].  In a study with 1:1 allocation of N subjects where 
N1=N2=N/2, the selection bias is proportional to the expected bias factor 𝐸𝐸(𝐹𝐹) = 𝐸𝐸(𝐺𝐺) −
𝑁𝑁
2
 , where G is the total number of correct guesses [Rosenberger and Lachin, 2016]. 

 
Let 𝑣𝑣1𝑖𝑖𝑖𝑖 denote the conditional probability of Treatment 1 allocation from the j-th node in 
generation i. Then as demonstrated in Rosenberger and Lachin (2016) for the convergence 
strategy (also true for the directional strategy), the expected bias factor is  
 
𝐸𝐸(𝐹𝐹) = ∑ E �𝑣𝑣1𝑖𝑖𝑖𝑖 −

1
2
�𝑁𝑁−1

𝑖𝑖=0 ,       (1) 
 
Expression (1) can be written in terms of the resident probabilities  Rij, j=1 to mi, of the mi 
nodes in generation i: 
 
𝐸𝐸(𝐹𝐹) = ∑ ∑ 𝑅𝑅𝑖𝑖𝑖𝑖 �𝑣𝑣1𝑖𝑖𝑖𝑖 −

1
2
�𝑚𝑚𝑖𝑖

𝑖𝑖=1
𝑁𝑁−1
𝑖𝑖=0       (2) 

 
 

3. Big Stick Design Minimizes the Selection Bias 
 
Theorem 1.  Among all 1:1 allocation procedures symmetric with respect to Treatments 1 
and 2 and arbitrary pre-specified symmetric boundaries on the allocation space, the big 
stick design has the lowest selection bias when the investigator knows the allocation 
procedure used in the study and follows the directional strategy. 
 
Proof.  We will prove this statement by induction.  
 
1)  First, consider the smallest allocation space possible in a study with N subjects – the 
allocation space of the BSD with the maximum tolerated imbalance of 1 (Figure 1a). This 
is the only possible allocation procedure within the specified boundaries, and thus, has the 
lowest possible selection bias. 
 
We will show that as this allocation space is expanded to a larger allocation space, the BSD 
within the expanded space continues to provide the smallest selection bias.  
 
2) Suppose, Theorem 1 is true for the allocation space S (shaded in Figure 2) that has an 
open corner ADC on its boundary, so that the assignment from node A is deterministic (to 
Treatment 2).  Node B one step to the right from node A does not belong to S.   We will 
show that Theorem 1 is also true for the allocation space S1 formed by adding node B to 
the allocation space S (Figure 2). 
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Figure 2:  The open corner ADC on the low boundary of the allocation space S (shaded 
area) and node B added to space S to extend it to space S1.  
 
Let Procedure 1 be a 1:1 allocation procedure on space S1. Denote by x the conditional 
probability of Treatment 1 allocation from node D and by y the conditional probability of 
Treatment 1 allocation from node A with Procedure 1 (Figure 2).  Let us denote by RA, RB, 
RC, and RD the resident probabilities of the nodes A, B, C, and D, respectively, with 
Procedure 1. As can be seen from Figure 2, RB =yRA  and RC=yRA+xRD.  
 
Let Procedure 2 be the allocation procedure on the allocation space S generated from 
Procedure 1 by making the allocation from node A to node D deterministic.  With Procedure 
2, the resident probability of node D becomes RD(2)=RD+RB=RD+yRA  and the conditional 
probability of Treatment 1 allocation from node D becomes RC/(RB+RD).  The resident 
probabilities of nodes other than B and D are the same under Procedures 1 and 2. The 
conditional probabilities of Treatment 1 allocation for nodes other than A, B, and D are the 
same under Procedures 1 and 2. 
 
We can also look at Procedure 1 as the procedure that is generated from Procedure 2 by 
allowing the allocation from node A to node B with probability y, 0< y<1.  
 
The expected bias factor of Procedure 1 (EBF1) is reduced compared to the expected bias 
factor of Procedure 2 (EBF2). Let us denote by γ the difference in the expected bias factors 
for the two procedures: γ =EBF2-EBF1.  
 
Lemma 1.  For the allocation space S1, for any value of y, 0< y<1,  γ≤½RA ; γ reaches the 
minimum of ½RA if and only if y= ½. 
 
Proof of Lemma 1. From (2), 
 
𝛾𝛾 = �1

2
𝑅𝑅𝐴𝐴 + 𝑅𝑅𝐷𝐷(2) � 𝑅𝑅𝐶𝐶

𝑅𝑅𝐷𝐷2
− 1

2
�� − �𝑅𝑅𝐴𝐴 �𝑦𝑦 −

1
2
� + 1

2
𝑅𝑅𝐵𝐵 + 𝑅𝑅𝐷𝐷 �𝑥𝑥 −

1
2
�� =  

= 𝑅𝑅𝐴𝐴 �
1
2
− �𝑦𝑦 − 1

2
� − 1

2
𝑦𝑦 � + �𝑅𝑅𝐷𝐷(2) � 𝑅𝑅𝐶𝐶

𝑅𝑅𝐷𝐷2
− 1

2
� − 𝑅𝑅𝐷𝐷 �𝑥𝑥 −

1
2
��   (3) 

 
From (0), the second term 
 
𝑅𝑅𝐷𝐷(2) � 𝑅𝑅𝐶𝐶

𝑅𝑅𝐷𝐷2
− 1

2
� − 𝑅𝑅𝐷𝐷 �𝑥𝑥 −

1
2
� = �𝑥𝑥𝑅𝑅𝐷𝐷 + 𝑦𝑦𝑅𝑅𝐴𝐴 −

1
2

(𝑦𝑦𝑅𝑅𝐴𝐴 + 𝑅𝑅𝐷𝐷)� − 𝑅𝑅𝐷𝐷 �𝑥𝑥 −
1
2
� =  

= �𝑅𝑅𝐷𝐷 �𝑥𝑥 −
1
2
� − 1

2
𝑦𝑦𝑅𝑅𝐴𝐴� − 𝑅𝑅𝐷𝐷 �𝑥𝑥 −

1
2
� ≤ 1

2
𝑦𝑦𝑅𝑅𝐴𝐴     (4) 
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Thus, from (3) and (4) 
 
𝛾𝛾 ≤ 𝑅𝑅𝐴𝐴 �

1
2
− �𝑦𝑦 − 1

2
� − 1

2
𝑦𝑦 � + 1

2
𝑦𝑦𝑅𝑅𝐴𝐴 = 𝑅𝑅𝐴𝐴 �

1
2
− �𝑦𝑦 − 1

2
�� ≤ 1

2
𝑅𝑅𝐴𝐴  (5) 

 
and γ reaches its maximum at y=1/2.  EOP of Lemma 1. 
 
From Lemma 1, if the big stick design has the smallest EBF among all procedures on space 
S then the big stick design also has the smallest EBF on its expansion S1 obtained by closing 
the open corner on the boundary of S. 
 
Now we will show that the BSD also provides the smallest selection bias when an 
allocation space has more than a single node in the N-th generation.   
 
Consider the closed corner CDA on the boundary of the allocation space S2 (the shaded 
area in Figure 3), where D is the node in the last (the N-th) generation.  Let S3 be the 
allocation space obtained by adding node B (the node one step to the right from A) to S.  
 

 
 
Figure 3:  The closed corner CDA on the boundary of the allocation space S2 (shaded area) 
and node B added to space S2 to extend it to space S3.  
 
 
Let Procedure 3 be a 1:1 allocation procedure on space S3, with y denoting the conditional 
probability of Treatment 1 allocation from node A with Procedure 1 (Figure 3).  Let 
Procedure 4 be the allocation procedure on the allocation space S2 generated from 
Procedure 1 by making the allocation from node A to node D deterministic.  The resident 
probabilities of all nodes are the same under Procedures 3 and 4; the conditional 
probabilities of Treatment 1 allocation for nodes other than A are also the same under 
Procedures 3 and 4. 
 
Let us denote by γ2 the difference in the expected bias factors for the two procedures: γ2 
=EBF4-EBF3. 
 
Lemma 2.  For the allocation space S3, for any value of y, 0< y<1,  γ2≤½RA ; γ2 reaches the 
minimum of ½RA if and only if y= ½. 
 
Proof of Lemma 2. From (2), the difference in the expected bias factors for the two 
procedures is  
𝛾𝛾2 = 1

2
𝑅𝑅𝐴𝐴 − 𝑅𝑅𝐴𝐴 �𝑦𝑦 −

1
2
� = 𝑅𝑅𝐴𝐴 �

1
2
− �𝑦𝑦 − 1

2
�� ≤ 1

2
𝑅𝑅𝐴𝐴 . The difference is maximized when 

y=1/2.  
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Thus, from Lemma 2, if the big stick design has the smallest EBF among all procedures on 
space S2 then the big stick design also has the smallest EBF on space S3. EOP of Lemma 2. 
 
Of note, to keep the expanded allocation space symmetric with respect to Treatments 1 and 
2, when node B is added to the allocation space, a node symmetrical to B with respect to 
the diagonal should be added to the allocation space as well. 
 
Starting with the chain of N/2 unitary squares (Figure 1a) any allocation space symmetrical 
with respect to Treatments 1 and 2 for an N-subject allocation can be built by closing the 
open corners on the boundary and opening the closed corners at the last generation one by 
one. From Lemmas 1 and 2, for every expansion of the original shape the BSD provides 
the smallest selection bias.  EOP of Theorem 1. 
 

3. Discussion. 
 
 
The two-arm equal allocation procedures are often compared in the selection bias they can 
generate in an open-label study.  It is useful to know that for the same allocation space the 
BSD results in the smallest selection bias. This makes the BSD the standard against which 
all other allocation procedures can be compared in selection bias.    
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