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Let me start by thanking Sixia Chen for inviting me to discuss these four fine papers.  
Two (the ones presented by Chen and by David Haziza) are on imputing for an absent 
variable on a probability survey given a nonprobability sample with that variable and a 
vector of common variables. One paper (presented by Lingxiao Wang) is on weighting a 
nonprobability sample when there is a probability sample with a vector of common 
covariates.  The final (presented by Danhyang Lee), an outlier, is on imputing for 
missing variables in a probability survey.  Because of time constraints and the limited 
abilities of this discussant, I will not give any of the papers the justice it deserves.  
  
The outlier paper (Lee and Kim; our chair Jae-Kwang Kim had a hand in writing two of 
the four papers) imputes for missing values using a conditional Gaussian mixture model. 
Survey data is rarely Gaussian, but to me that assumption may be a good enough 
approximation for imputation. I have a bigger problem in assuming data is multivariate 
Gaussian, but that may not be so much of a problem when the population in divided up 
like it is.   

One suggestion I have is to use the cross-validation variance estimator in You (2009) as a 
method for choosing G rather than the Bayesian Information Criterion (BIC).  You’s 
variance estimator is the usual linearization variance estimator for an estimator from a 
complex sample but it replaces differences between sampled values and predicted values 
in the usual linearization variance estimator with differences between sampled values and 
predicted values computed without the associated sampled value.   

The paper by Chen, Yang, and Kim first points out that the simplest way to impute for a 
missing variable in a probability sample is to use its predicted value from the 
nonprobability sample.  This requires one to assume that a known parametric model 
holds in the population from which they both derive. When, as is often the case, the 
nonprobability sample is much larger than the probability sample, a more robust 
alternative applies kernel estimation to the nonprobability sample.  One of the 
contributions of this paper, which I will not discuss, is how to estimate the variance of the 
resulting estimation.   

Because kernel estimation suffers from the curse of dimensionality an alternative using a 
general additive model is also proposed by Chen and company.  I wonder whether the 
two approach could be combined with the predicted value from the general additive 
model used as the single covariate in kernel estimation.      

The paper from Wang and her coauthors (Graubard, Katki, and Li) is itself a bit or an 
outlier.  It is not so much on parameter estimation but on fitting a model: yk  = f(xk

T) + 
k.  Here, the nonprobability sample will be used to fit the model, that is, finding a  
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such that E(k | xk) = 0 for all possible xk, but it needs to be weighted − with the help of 
the probability sample − for the results to apply to the population.  The authors correctly 
point out that even if we assume the same model fits the nonprobability sample and the 
population, weights are needed if either the probability a unit has been selected for the 
nonprobability sample is informative (i.e., depends on the dependent variable of the 
model, yk, even after accounting for the independent variables, xk) or the model fails.  In 
the latter case, the question becomes, how should one fit a model when it fails?  The 
authors treat fitting a maximum-likelihood estimating equation for the entire population 
as the goal of model fitting when a model fails.  This can be done by weighting the 
maximum-likelihood estimating equation.  I would instead replace the standard model 

assumption E(k | xk) = 0 with the less binding general model assumption, E(kxk ) = 0 

(Kott 2018).  My approach and the authors’ produce identical results for the linear model 
with independent and identically distributed errors and for a logistic model with 
independent errors, but not always (see, for example, Kott and Frechtel 2018). Under 
either approach, weights are needed to find a consistent estimator for . 

To produce quasi-probability weights for a nonprobability sample, denoted here by S0, it 
has become popular to combine it with a probability sample S1 covering the same 
population U. After that, one estimates the probability k that a population unit k in the 
blended sample S = S0  S1 was originally from the nonprobability sample given a vector 
of covariates xk available for members from both samples (when used here, “sample” 
always refers to a respondent sample). Valliant and Dever (2011) suggest that the inverse 
of this estimated probability − which they, following much of the literature, call a 
“propensity” − can be used as a quasi-probability sampling weight either directly,      
wk =  or indirectly after some form or poststratification.  For example, Lee (2006) 
proposes sorting the blended sample by their  values, then breaking the sample into 
cells of nearly equal size, and finally assigning to k the poststratified weight 

 where  is the estimated-from-the-probability-sample population 
size of cell c containing nonprobability-sampled unit k, and n0c is the number of members 
of S0 in c .  
 
Although estimating k = Pr(k  S0 | k  S ; xk)  by fitting a logistic regression on xk in 
the blended sample is often treated as an estimate for Pr(k  S0 | xk),  Robbins (2017) 
argues that a better estimate for the quasi-probability that k is in the nonprobability 
sample when S0  S1 =  is  p0k = Pr(k  S0 | xk) = k /(1− ), where k is the known 
probability that k is chosen for the probability sample (which can include an adjustment 
for unit nonresponse when needed).  It is assumed  is also known for members in the 
population that are not in S1.  
  
To see how p0k = Pr(k  S0 | xk) is derived, start with  Pr(k  S1 | k  S ; xk)     
Pr(k  S | xk),  and  Pr(k  S0 | xk) = Pr(k  S0 | k  S; xk)  Pr(k  S | xk)), then solve for 
Pr(k  S0| xk).  Elliott and Valliant (2017) make a similar point, suggesting a more 
sophisticated method could be used in estimating k. 

In discussions with the authors, they pointed out that for them estimating the k was only 
a means to an end – creating kernel weights (with  and 1 −  employed in defining a 
distance measure between xj  for j  S0 and xi  for i  S1).  I would have used the inverse 
of Robbins’s p0k in place of their kernel weight for k  S0. (The paper discusses using 
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either a direct or a poststratified version of an estimated probability of k being in S0 based 
on replacing S in k = Pr(k  S0 | k  S; xk) with the union of S0 and a weighted version of 
S1, the poststratified method attributed to Lee and Valliant 2009.  That union, however, 
is purely mythical.)  Better still would be to estimate and then invert the probability of 
drawing a unit into the nonprobability sample with a calibration equation as described in 
Kott (2019) and below.  

Suppose the selection model for unit k being in the nonprobability sample is a logistic 
function of xk:  

                     Pr(k  S0 | xk) = 1/[1 + exp(xk
T)]. 

One can estimate  in is a consistent manner under mild conditions we assume to hold by 
a finding a g that satisfies the calibration equation:  

                         =                 (1)      

 
The quasi-probability weight for k S0 is then wk =1 + exp(xk

Tg).  The WTADJST 
procedure in SUDAAN 11 (RTI International 2012) can be used to fit equation (1).  
There are also packages in R that can be used for this purpose.  
   
Observe that ty0 = S0 wkyk is an unbiased estimator for Ty = U yk in some sense if either 
the selection model holds or the following linear prediction (outcome) model holds:  
E(yk) = xk

T, whether or not unit k is in the sample.  This property is sometimes called 
“double robustness,” although I prefer “double protection against selection bias.”  The 
property also obtains when some of the estimated totals for some of the components of xk  
on the right-hand size of the calibration equation in (1) are replaced by the actual 
population totals for by estimates for a different probability sample.   
 
The paper by Chen and Haziza (presented by David Haziza; observe that our organizer 
like our chair also had a hand in writing two of the papers in this section) is on multiple 
robustness. My own view − based on my interpretation of D’Arrigo and Skinner (2010) 
where the wrong selection model coupled with a flawed prediction model appears to 
remove most of the selection bias due to nonresponse − is that double protection may be 
enough for handling nonresponse. For nonprobability samples, however, multiple 
protection may indeed be needed.  Rather than discuss that the Chen and Haziza paper 
per se, I will offer my own version of multiple protection concentrating entirely on 
weighting the nonprobability sample in order to estimate Ty.   
 
Suppose we have J candidate selection models and J candidate outcome models.  If 
anyone of the 2J candidate models holds, then ty0 is nearly unbiased for Ty  in some 
sense (adding dummy candidate models when needed to equalize the number of selection 
and prediction models should not be difficult).  Multiple protection obtains under mild 
conditions we assume to hold by finding an h that satisfies the calibration equation:  
 
                                (2) 

where pkj  
is the estimated probability that unit k  S0 in the jth potential selection model, 

and m
k 

= (m
k1  …, m

kJ
)T, where each component fits a different one of j = 1, …, J 
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prediction models; that is Ej(yk) = mj(xk) = mkj . The model fits are made in S0 without 
weights.  The multiply-protected weight for kS0  is wk = 

.   

Each of the J prediction models implicitly assumes that selection into the nonprobability 
model is ignorable (given xk) and that the error structure of the prediction model and the 
probability-sample design is such that weighted sum in the probability sample S1 of the 
mkj is a consistent estimator for the weighted sum of the yk; that is,  
 

                    rel dif  

 
converges to 0 in probability as the sample grows arbitrarily large.      
 
Recall that at most only one model needs to hold in the population.  Note that even if an 
ignorable prediction model holds, weights may be needed to estimate Ty with ty0 in a 
nearly unbiased fashion.  
 
The expression on the left-hand side of the calibration equation in (2) was chosen because 
it can be fit using the WTADJX routine in SUDAAN 11 (2012) (the routine would be 
applied to S0 with the log(pkj) as the model variables, the mkj as the calibration variables, 
and the summation on right-hand side of (2) serving as the poststratification totals).  
Observe that if the jth  selection model is correct and the only selection model fitting all J  
kS1 mkj/k, then hj should be close to -1, while the other hg values should be close to 0 
(technically, hj converges to -1, and hg, for g j, converges to 0 as the sample grows 
arbitrarily large).   
 
For an example of equation (2), let yk be a binary (0/1) variable, while xk = (1 zk)T , where 
z is continuous.  Now suppose we have two candidate selection and two candidate 
prediction models:  
 

pk = 1/[1 + exp(11 + 12zk)]                                  (3)  
pk = 1/[1 + exp(21 + 22log[zk])]                             (4)  
  
yk = 1/[1 + exp(11 + 12zk)]                                  (5) 
yk = 1/[1 + exp(21 + 22log[zk])].                             (6)  

 
We can estimate the parameters of the first selection model (3) using equation (1), and 
then estimate the second selection model (4) by again using equation (1) but with xk 
replaced by (1 log[zk])T. The fitted values from equation (3) (1/[1 + exp(g11 + g12zk)], 
where gab is the estimate for ab) are the pk1 in equation (2) while the fitted values from 
equation (4) are the pk2.  We can estimate the parameters of the two prediction models by 
running logistic regressions on the nonprobability sample. The fitted values from 
equation (5)  (1/[1 + exp(b11 + b12zk)], where bab is the estimate for ab) are the mk1 in both 
the nonprobability and probability samples of equation (2), while the fitted values from 
equation (6) are the mk2 in both samples.  
 
A limitation of this approach to multiple protection is that just as it is possible to find a g 
that fits equation (1) without selection into S0 really being a logistic function of xk, it is 
possible that more than one of the J candidate selection models fits all J  kS1 mkj/k  
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even though only one, if that many, is really the selection model for members of S0.  As 
a result, equation (2) will likely not have a single solution.        
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