
 
Theory and Practice of Equivalence and Non-Inferiority 

Analyses 
 
 

Kallappa M. Koti  
 Food and Drug Administration (Retired) 

Kallappa.koti@gmail.com 

 

 

 
Abstract 
 
In this presentation, we point out some instances where statistical methods, which are 
advocated in some publications, are inferior to those which are thought to be technically 
more accurate and appropriate. Here are two examples. (i) The delta method based 
confidence interval approach for demonstrating non-inferiority in terms of the ratio of 
means is inaccurate and inappropriate. The delta-method contradicts theoretical results. 
Confidence interval is computed using a very crude variance estimate. Fieller-Hinkley 
distribution based analysis is a better option. (ii) The phrase “Mantel-Haenszel average 
risk difference (MHARD)” is meaningless in a non-inferiority setting. The phrase is a 
name for a clumsy estimand, which is data-dependent and leads to several shortcomings 
in the non-inferiority analysis. The MH type test by Yanagawa et al. is a valid approach 
and accommodates varying non-inferiority margins. The W-square test, which is a 
recently proposed MH type test, provides asymptotic unconditional inference. We 
provide further details and some related references.  
 
Key Words: Statistical practice, Taylor series expansion, biased estimate, Fieller’s 
theorem, 2×2 contingency tables, hypergeometric distribution, CMH test. 
 
 

1. Introduction 
 
The null hypothesis in a non-inferiority study states that the endpoint for the experimental 
treatment is worse than that for the positive control treatment by a pre-specified margin, 
and rejection of the null hypothesis at a pre-specified level of significance is used to 
support a claim that permits a conclusion of non-inferiority (Mauri and D’Agostino, 
2017). D’Agostino Sr. et al. (2003) explain how to write the standard null and alternative 
hypotheses for proving non-inferiority. Let T and ‘Test’ represent the value of the 
efficacy variable for the new (experimental) treatment. Similarly let C and ‘Control’ 
represent the value of the efficacy variable for the active control. The null and alternative 
hypotheses are 
 
                                          H0: 𝐶 − 𝑇 ≥ 𝑀 (C is superior to T) 
                                          H1: 𝐶 − 𝑇 < 𝑀 (T is not inferior to C)                              (1.1) 
 
Here 𝐶 and 𝑇 are some parameters; 𝐶 − 𝑇 is a parametric function, and  𝑀 is the non-
inferiority margin. The determination of the margin in a non-inferiority trial is based on 
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both statistical reasoning and clinical judgement. We don’t discuss how to find 𝑀. 
Rejection of the null hypothesis is needed to conclude non-inferiority. In order to assess 
if non-inferiority is met one can perform a one-sided hypothesis test at α level of 
significance. Equivalently, we can compute a 100(1 − 2α)  per cent two-sided 
confidence interval (CI) for the difference (𝐶 − 𝑇). If the confidence interval’s upper 
bound is less than 𝑀, then with 100(1 − 2α) per cent confidence, it is concluded that the 
active control is more efficacious than the experimental product by no more than  𝑀, 
hence one can claim non-inferiority of the experimental product as compared to the 
active control at an α level of significance (D’Agostino Sr. et al., 2003).   
 
The efficacy analysis of non-inferiority trials is not simple and straight forward. The 
parametric function to be used in the hypotheses need not be a difference. It may be a 
ratio. It is argued that the ratio-based evaluation of equivalence and non-inferiority often 
reflects clinical rationale. However, it is perceived that assessing non-inferiority and 
equivalence when defined in terms of the ratio of parameters is more difficult than the 
problem defined in terms of the difference of parameters. Reference is made to Hauschke 
and Hothorn (2006), and Berger and Hsu (1996) for further details. We have two 
objectives in this article. Our first objective is to discuss non-inferiority evaluation in 
terms of the ratio of means when the efficacy endpoint is a continuous variable. 
Specifically, we conclude that the delta method based confidence interval approach for 
demonstrating non-inferiority in terms of the ratio of means, which is proposed in 
Rothmann et al. (2012), is unscientific and inappropriate. 
 
Stratification is often carried out in randomized clinical trials. It is an important method 
used to adjust for prognostic factors. Mantel-Haenszel (1959) proposed a model-free test 
to compare binomial proportions between treatments in superiority trials when 
randomization is stratified. Non-inferiority testing also arises in stratified analysis of 
binary data. Yanagawa et al. (1994) proposed a Mantel-Haenszel-type statistic for testing 
whether a new treatment is at least as effective as the standard treatment in comparative 
binomial trials. Our second objective is to discuss non-inferiority evaluation when the 
efficacy endpoint is a binary outcome and randomization is stratified. In particular, we 
argue that the phrase “Mantel-Haenszel average risk difference”, which is advocated in 
Rothmann et al. (2012), is meaningless and the associated analysis is inferior in proving 
non-inferiority.  
 
Several authors have written on the two topics that are discussed and criticized in this 
article. We have cited Rothmann et al. (2012) for discussion. We sincerely look for 
opposing arguments on our views from practising statisticians.  
 
 

2. Ratio of the sample means 
 
In Section 12.3, Rothmann et al. (2012) consider the situation where larger outcomes are 
more desired than smaller outcomes. The objective is to test the null hypothesis H0 versus 
the alternative HA stated as follows. 
 

         𝐻0 : 𝜇𝐸 𝜇𝐶 ≤ 𝛿⁄   vs. 𝐻𝐴  : 𝜇𝐸 𝜇𝐶 > 𝛿⁄ ,   𝜇𝐸 , 𝜇𝐶 > 0, and 0 < 𝛿 < 1.           (2.1) 
 
A parallel group design setting is assumed. In the following, 𝑋1,  𝑋2 , ∙  ∙ ,  𝑋𝑛𝐶  and 
𝑌1,  𝑌2 , ∙  ∙ ,  𝑌𝑛𝐸  denote independent random samples from the control arm and the 
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experimental arm, respectively. In the following, 𝜇𝐶  and 𝜇𝐸  denote the population means 
of the control arm and the experimental arm, respectively. The population variances are 
denoted by 𝜎𝐶2 and 𝜎𝐸2, respectively. As usual, 𝑋 and 𝑌  denote the sample means. And 
𝑆𝐸
2 and 𝑆𝐶2 denote the sample variances. No distributional assumptions on 𝑋𝑠 and 𝑌𝑠 are 

made. 
 
2.1 The delta method and the confidence interval 
To discuss asymptotic normality of the ratio of sample means, Govindarajulu (1988) 
assumed that 𝑋 and  𝑌 are statistically independent, and noted that 
 

𝑌

𝑋
−
 𝜇𝐸

𝜇𝐶
 =  

𝑌 𝜇𝐶 − 𝑋 𝜇𝐸

𝑋 𝜇𝐶
 =  

𝜇𝐶 (𝑌−𝜇𝐸) − 𝜇𝐸 (𝑋−𝜇𝐶)

𝑋 𝜇𝐶
 , 

 
and used the approximation: 
 
                    √𝑛𝐸  ( 

𝑌

𝑋
−
 𝜇𝐸

𝜇𝐶
 ) ≈ √𝑛𝐸 ( 

𝑌−𝜇𝐸 

𝜇𝐶
) − √𝑛𝐸 

𝜇𝐸

𝜇𝐶
2  ( 𝑋 − 𝜇𝐶 ) .                         (2.2) 

 
Note that the expectation of the right hand side of (2.2) is 0. The variance of the right 
hand side of (2.2), which is an approximation variance of 𝑌 𝑋⁄  , is 
 

                     𝑣𝑎𝑟 ( 𝑌
𝑋
 ) ≅  

𝜎𝐸
2

𝜇𝐶
2 +

𝑛𝐸

𝑛𝐶

𝜇𝐸
2 𝜎𝐶

2 

𝜇𝐶
4 = ( 

 𝜇𝐸

𝜇𝐶
 )2 [ 

𝜎𝐸
2

𝜇𝐸
2 + 

𝑛𝐸

𝑛𝐶

𝜎𝐶
2

𝜇𝐶
2 
 ] , 𝜇𝐶 ≠ 0  

 
Then they claimed that     
 

√𝑛𝐸  (
𝑌

𝑋
−
 𝜇𝐸
𝜇𝐶
)  ~  𝐴𝑁 (0 ,  (

 𝜇𝐸
𝜇𝐶
)
2

 [ 
𝜎𝐸
2

𝜇𝐸
2 + 

𝑛𝐸
𝑛𝐶

𝜎𝐶
2

𝜇𝐶
2  
 ] ) 

  
 
Rothmann et al. (2012) have the same concept. They state:   
 
                                               √𝑛 (𝑌

𝑋
−
 𝜇𝐸

𝜇𝐶
)  

  𝑑  
→  𝑁 (0,

𝜎𝐸
2 𝑛𝐸⁄

𝜇𝐶
2 +

𝜇𝐸 
2 𝜎𝐶

2 𝑛𝐶⁄

𝜇𝐶
4  

 )     
Note that 

                                            𝑣𝑎𝑟 ( 𝑌
𝑋
 ) ≅ (

 𝜇𝐸

𝜇𝐶
)
2

(
𝜎𝐸
2 𝑛𝐸⁄

𝜇𝐸
2 +

𝜎𝐶
2 𝑛𝐶⁄

𝜇𝐶
2 
)                                  (2.3)      

     
The unrestricted delta-method estimator of the variance of the ratio of sample means 𝑌 𝑋⁄ , 
which is used in Rothmann et al. (2012), is 
 

                                              𝑣𝑎𝑟̂ ( 
𝑌

𝑋
 ) = ( 

𝑌

𝑋
 )
2

( 
𝑆𝐸
2 𝑛𝐸⁄

𝑌
2 +

𝑆𝐶
2 𝑛𝐶⁄

𝑋
2
  
 )                               (2.4) 

 
They use it to define the test statistic 𝑊𝑅 (subscript R stands for Rothmann et al.): 
 

                                         𝑊𝑅 = ( 
𝑌

𝑋
− 𝛿) √( 

𝑌

𝑋
 )
2

( 
𝑆𝐸
2 𝑛𝐸⁄

𝑌
2 +

𝑆𝐶
2 𝑛𝐶⁄

𝑋
2
  
 )⁄                          (2.5)   
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The delta-method approximate 100(1 − 𝛼)% confidence interval for the ratio 𝜇𝐸 𝜇𝐶⁄  of 
population means, as given in Rothmann et al. (2012, p. 338) is as follows. 
   

                           𝑦 𝑥⁄  ± 𝑧∝ 2⁄  √( 𝑦 𝑥⁄  )
2 ( 

𝑆𝐸
2 𝑛𝐸⁄

𝑦
2 +

𝑆𝐶
2 𝑛𝐶⁄

𝑥
2
  
 )                                     (2.6) 

 
They intend to reject the null hypothesis  𝐻0  in (2.1) if the lower confidence limit 
exceeds 𝛿. Rothmann et al. (2012) have also stated that the test statistic in (2.5) can be 
modified to use an estimator of the standard error that is restricted to 𝜇𝐸 𝜇𝐶 = 𝛿⁄ . 
 
2.2 Author’s comments on the delta method approach 
Rothmann et al. (2012, p. 334) state: The advantage of using 𝜇𝐸 − 𝛿𝜇𝐶  in practice is that 
smaller sample sizes should be needed for 𝑌 − 𝛿𝑋  to be approximately normally 
distributed than the required sample sizes needed for 𝑌 𝑋⁄  to be approximately normally 
distributed. This statement is subject to criticism: If 𝑋𝑖 and  𝑌𝑖  are normally distributed, 
the statistic 𝑌 − 𝛿𝑋 is normally distributed when sample sizes are as small as 2 in each 
arm. If 𝑋𝑖 and  𝑌𝑖 are not normally distributed, one needs samples of sizes of 30 or more 
in each arm for 𝑌 − 𝛿𝑋 to follow approximate normal distribution. On the other hand, the 
ratio 𝑌 𝑋⁄  is not normally distributed, no matter what sample sizes you choose.  
 
Readers may refer to Hauschke et al. (1999) who studied sample size determination for 
proving equivalence based on the ratio of two means for normally distributed data. 
 
When a statistician is asked about the distribution of a ratio, the first thing he or she 
thinks about is the following. “If 𝑋1and 𝑋2  are i.i.d. from 𝑁(0, 1), then the ratio 𝑈 =
 𝑋1 𝑋2⁄  is Cauchy with probability density function:   
 
                                                  𝑓(𝑢) = 𝜋−1 (1 + 𝑢2⁄ ), 𝑢 ∈ 𝑅. 
 
The mean of 𝑈, i.e., 𝐸(𝑈) does not exist.”  It does not need a reference. 
 
As stated in Section 3 below, Hinkley (1969) derived the exact distribution function of 
the ratio of two random variables- having a bivariate normal distribution. He also derived 
an approximation to the distribution function of the ratio when the denominator is a 
positive valued random variable. These distribution functions are given in the next 
section in (3.1) and (3.2), respectively.  Clearly, the ratio 𝑊 in (3.1) or in (3.2) in Section 
3 below is not normally distributed. 
 
When the exact distribution of a statistic is given, why anyone wants a delta method 
based approximation? Knowing that the ratio of sample means is not normally 
distributed, it is irrational and awkward to look for a normal approximation. Delta-
method is unnecessary, inaccurate, and contradicts theoretical results in this case.  
 
The sample ratio 𝑌 𝑋⁄  is not an unbiased estimator of the ratio 𝜇𝐸 𝜇𝐶⁄  of the population 

means. In Fieller’s theorem, the ratio 𝑦 𝑥⁄  of sample means is considered as a point 
estimate of the ratio 𝜇𝐸 𝜇𝐶⁄  of population means. 
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Several comments are in order: One may recall that 𝐸 (𝑌
2
) = 𝑣𝑎𝑟( 𝑌 ) + 𝜇𝐸

2 . Therefore, 

replacing 𝜇𝐸2  in the unrestricted variance estimate in (2.5) by 𝑌
2
is not a thoughtful step. 

Similar comment applies for substituting 𝑋
2
 in place of 𝜇𝐶2  . We would not assume that 

variance of 𝑋 is zero or close to zero. The following expected value of the ratio of the 
sample means given in (2.7) is a second order Taylor series expansion approximation. It 
is an improved version. One may refer to   Govindarajulu (1988) and in some websites 
including www.stat.cmu.edu/~hseltman/files/ratio.pdf.   
 
                                              𝐸 ( 𝑌

𝑋
 )  ≅  

 𝜇𝐸

𝜇𝐶
 (1 +

𝜎𝐶
2

𝑛𝐶 𝜇𝐶
2 )                                                      (2.7) 

 
The website by Seltman also contains approximate expected value and variance of the 
ratio 𝑌 𝑋⁄  when 𝑌 and 𝑋 are not independent.  
 
Rothmann et al. conveniently ignore the improved expected value given by (2.7) in 
defining the test statistic 𝑊𝑅  of (2.5). Substitution of ( 𝑌 𝑋⁄  )2  in place of ( 𝜇𝐸 𝜇𝐶⁄ )2 
makes the unrestricted variance estimator given by (2.5) unscientific and unreliable. 
Rothmann et al. (2012, p. 337-338) state: “Alternatively, the denominator in the test 
statistic 𝑊𝑅 can be modified to use an estimator of the standard error that is restricted 
to 𝜇𝐸 𝜇𝐶 = 𝛿⁄ .” No, it does not help. The variance of 𝑌 𝑋⁄  still contains 𝜇𝐸 2  and 𝜇𝐶2 , and 
the denominator of 𝑊𝑅 still ends up with 𝑌

2
and 𝑋

2
. Either way, they hit a dead end.  

 
The test statistic 𝑊𝑅 of (2.5) is a complicated function of 𝑌, 𝑋, 𝑆𝐸2 , and 𝑆𝐶2.  A question: 
is 𝑊𝑅  ~ 𝑁(0, 1)? The denominator of the right hand side of 𝑊𝑅  in (2.5) contains, for 
example, 𝑆𝐸2  and 𝑌

2
.  We point out that, for example, if 𝑌𝑠  are normally distributed, 

(𝑛𝐸 − 1)𝑆𝐸
2 𝜎𝐸

2⁄  ~ χ2(𝑛𝐸 − 1) , and 𝑛𝐸𝑌
2
𝜎𝐸
2⁄  ~ χ2(1, 𝜏),  where 𝜏 = 𝜇𝐸 2 𝜎𝐶

2⁄  is the 
noncentrality parameter. Rothmann et al. (2012) did not provide proper justification for 
𝑊𝑅  ~ 𝑁(0, 1). The 𝑊𝑅 based p-value has no value in practice. 
 
 

3. Fieller-Hinkley distribution based analysis 
 
Fieller (1932) derived the probability distribution function of the ratio of two correlated 
normal random variables with nonzero means. Hinkley (1969) examined the exact 
distribution of the ratio and the standard approximation based on assuming the 
denominator is a positive valued random variable.  We state it as it is in Hinkley (1969). 
Let 𝑋1and 𝑋2 be normally distributed random variables with means 𝜃𝑖 and 𝜎𝑖2 (𝑖 = 1, 2) 
and correlation coefficient 𝜌, and let  𝑊 = 𝑋1 𝑋2⁄  . The exact distribution of 𝑊 and the 
standard approximation based on assuming 𝑋2 > 0 are examined in some detail. The 
exact cumulative distribution function 𝐹(𝑤) of 𝑊 is:  
 
          𝐹(𝑤) = 𝐿 {  𝜃1−𝜃2𝑤  

𝜎1𝜎2  𝑎(𝑤)  
, −

𝜃2

𝜎2  
,
𝜎2  𝑤−𝜌𝜎1

𝜎1𝜎2  𝑎(𝑤) 
} + 𝐿 {  

𝜃2𝑤−𝜃1  

𝜎1𝜎2  𝑎(𝑤)  
,
𝜃2

𝜎2  
,
𝜎2  𝑤−𝜌𝜎1

𝜎1𝜎2  𝑎(𝑤) 
} ,    (3.1) 

 
where  
                                         𝑎(𝑤) = ( 𝑤2 𝜎12⁄ − 2𝜌𝑤 𝜎1𝜎2  ⁄ + 1 𝜎2

2⁄  )1/2, 
and 
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                                  𝐿(ℎ, 𝑘; 𝛾) =  1

2𝜋 √1−𝛾2  
 ∫ ∫ 𝑒𝑥𝑝 {−

𝑥2−2𝛾𝑥𝑦+𝑦2  

2(1−𝛾2)
}

∞

𝑘

∞

ℎ
 𝑑𝑥 𝑑𝑦    

 
is the standard bivariate normal integral. The distribution function 𝐹(𝑤)  is easy to 
calculate (see Koti, 2007). The Fieller’s pdf whose distribution function is given by (3.1) 
is not necessarily unimodal. 
  
In addition, Hinkley (1969) has shown that as 𝜃2 𝜎2  → ∞⁄ , i.e. as 𝑃(𝑋2 > 0) → 1,  
  

                              𝐹(𝑤) → 𝐺(𝑤) = Φ [ 𝜃2𝑤−𝜃1
𝜎1𝜎2  𝑎(𝑤)

 ]                                                (3.2) 
 

We apply Hinkley’s approximation (3.2) for 𝑊 = 𝑌 𝑋⁄ . We go back to the notation of 
Section 2. We note that  𝐸(𝑌) = 𝜇𝐸  ,   𝑣𝑎𝑟(𝑌) = 𝜎12 = 𝜎𝐸2 𝑛𝐸⁄ ,  𝐸(𝑋) = 𝜇𝐶 , 
and  𝑣𝑎𝑟(𝑋) = 𝜎22  = 𝜎𝐶2 𝑛𝐶⁄ . To be consistent with, Rothmann et al., we consider a 
parallel group design and set the correlation coefficient 𝜌 equal to 0.We also assume 
that 𝜇𝐶 𝜎𝐶  → ⁄ ∞, i.e.,  𝑃(𝑋 > 0) → 1. The distribution function 𝐺 of 𝑊 = 𝑌 𝑋⁄  is given 
by 
 

                                       𝐺(𝑤) =  Φ [ 𝜇𝐶  (𝑤 − 𝛿)
𝜎1 𝜎2  𝑎(𝑤)

 ] ,                                                  (3.3) 
 

where δ =  𝜇𝐸 𝜇𝐶 ,  ⁄ and 𝑎(𝑤)  is given above in (3.1) with modified subscripts. Let 
 �̂�1
2 = 𝑠1

2 𝑛1⁄  and �̂�22 = 𝑠22 𝑛2⁄ , where 𝑠12  and 𝑠22  are the observed values of the sample 
variances 𝑆12 and  𝑆22 , respectively. Let   
 
                                  �̂�(𝑤) = Φ [ 𝑥 𝑤−𝑦

 �̂�1�̂�2 �̂�(𝑤)
 ] ,   �̂�(𝑤) = (

 𝑤2

 �̂�1
2 +

1

 �̂�2
2)
1/2                      (3.4) 

 
A 100(1 − 2α) percent confidence interval (CI) for the ratio 𝜇𝐸 𝜇𝐶⁄  is given by the 
interval  

                CI = ( �̂�−1(α), �̂�−1(1 −α) ) , for α < 1 − α.                                 (3.5) 
 
It is simple to compute the CI of (3.5). Tabulate �̂� to find the limits. That is, calculate �̂�, 
for example, for 𝑤 = 0.1, 0.11, ∙ ∙  , 1.09, 1.10 and search for 𝑤 for which �̂�(𝑤) = 0.05 
and �̂�(𝑤) = 0.95. Alternatively, solve for 𝑤: 
 

�̂�(𝑤) = α, and �̂�(𝑤) = 1 − α. 
 

See Koti (2007) for details.  
 
 

4. Mantel-Haenszel average risk difference 
 
Rothmann et al., (2012, p. 299) have stated that there are many choices for how to do a 
stratified or adjusted non-inferiority analysis of a binary endpoint. This is one of them. 
This is an adjusted analysis, which uses the harmonic mean of the number of subjects in 
the experimental and control arms within a stratum as the stratum weight. Table 1 below 
contains some basic notation. 

 

 
2282



Table 1: The ith contingency table in Rothmann et al. (2012, p. 301) 
 

 
Treatment 

Outcome:  
Total      Success Failure 

E 𝑥𝐸,𝑖  𝑛𝐸,𝑖 − 𝑥𝐸,𝑖 𝑛𝐸,𝑖 
C 𝑥𝐶,𝑖 𝑛𝐶,𝑖 − 𝑥𝐶,𝑖 𝑛𝐶,𝑖  

Total* 𝑛𝑖+1  𝑁𝑖 
             
 * Rothmann et al. did not show 𝑛𝑖+1 in the table. 

           
They denote the sample proportions of successes in the 𝑖th (𝑖 = 1, 2, . .  , 𝑘) stratum as 
�̂�𝐸,𝑖 and �̂�𝐶,𝑖 for the experimental arm and the control arm, respectively. Rothmann et al. 
(2012, p. 301) define the so called the Mantel-Haenszel estimator of the common risk 
difference across strata by 
 

                               ∆̂𝑀𝐻  =   
∑  (𝑛𝐶,𝑖 𝑥𝐸,𝑖−𝑛𝐸,𝑖 𝑥𝐶,𝑖)

∑  (𝑛𝐸,𝑖×𝑛𝐶,𝑖 𝑁𝑖⁄ )
= ∑𝑤𝑖 ∆̂𝑖  ∑ 𝑤𝑖⁄  ,                        (4.1) 

 
where ∆̂𝑖=  �̂�𝐸,𝑖 − �̂�𝐶,𝑖  is the difference in the sample proportions in stratum 𝑖 , and 
 𝑤𝑖 = 𝑛𝐸,𝑖 × 𝑛𝐶,𝑖 𝑁𝑖⁄ .  Note that summation is over 𝑖 = 1, 2, . .  , 𝑘. They state that the 
weight  𝑤𝑖 for a given stratum can be considered as the harmonic mean of the within-
stratum sizes for the experimental and control arms. 
 
The estimators    
 
                  �̂�𝐸,𝑀𝐻  =  

∑(𝑛𝐸,𝑖×𝑛𝐶,𝑖 𝑁𝑖⁄ ) �̂�𝐸,𝑖

∑(𝑛𝐸,𝑖×𝑛𝐶,𝑖 𝑁𝑖⁄ )
   and   �̂�𝐶,𝑀𝐻  =  

∑(𝑛𝐸,𝑖×𝑛𝐶,𝑖 𝑁𝑖⁄ ) �̂�𝐶,𝑖

∑(𝑛𝐸,𝑖×𝑛𝐶,𝑖 𝑁𝑖⁄ )
               (4.2)    

 
are regarded as the Mantel-Haenszel estimators of 𝑝𝐸  and  𝑝𝐶  , respectively. We have 
explicitly defined them in Section 4.1 below. Rothmann et al. say that the parameters  𝑝𝐸 
and  𝑝𝐶  are analogous weighted averages of the respective strata probabilities of success. 
They point out that 
 
                                                  ∆̂𝑀𝐻  =  �̂�𝐸,𝑀𝐻 − �̂�𝐶,𝑀𝐻                                            (4.3)  
 
We think that �̂�𝐸,𝑀𝐻 and �̂�𝐶,𝑀𝐻 may be alternatively better written as  

 
                                    �̂�𝐸,𝑀𝐻 = ∑  𝑤𝑖

′�̂�𝐸,𝑖
𝑘
1 , and �̂�𝐶,𝑀𝐻 = ∑  𝑤𝑖

′�̂�𝐶,𝑖
𝑘
1 ,                       (4.4) 

where 
                                          𝑤𝑖′ = 

𝑛𝐶,𝑖×𝑛𝐸,𝑖 (𝑛𝐶,𝑖+𝑛𝐸,𝑖)⁄

∑ [𝑛𝐶,𝑖×𝑛𝐸,𝑖 (𝑛𝐶,𝑖+𝑛𝐸,𝑖)⁄ ]𝑘
1

                                             (4.5) 

 
It follows that                      

                                            ∆̂𝑀𝐻  = ∑  𝑤𝑖
′(�̂�𝐸,𝑖 − �̂�𝐶,𝑖)

𝑘
1                                         (4.6) 

 
The estimand  
                                                     ∆𝑀𝐻  =  𝑝𝐸,𝑀𝐻 − 𝑝𝐶,𝑀𝐻 ,                                       (4.7) 
 
where 
                                     𝑝𝐸,𝑀𝐻 = ∑ 𝑤𝑖

′𝑝𝐸,𝑖
𝑘
1  and 𝑝𝐶,𝑀𝐻 = ∑ 𝑤𝑖

′𝑝𝐶,𝑖
𝑘
1 ,                         (4.8)  
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is called the Mantel-Haenszel average risk difference (MHARD). Rothmann et al. (2012) 
state that when �̂�𝐸,𝑀𝐻  and �̂�𝐶,𝑀𝐻  have approximate normal distributions, confidence 
intervals can be found for the Mantel-Haenszel average risk difference ∆𝑀𝐻  of (4.7). 
 
4.1 Author’s comments on MHARD 
In this section, we briefly refer to Stokes et al. (1995), Nam (1992) and Radhakrishna 
(1965) and borrow as much information as needed, to save reader’s time.  Note that, by 
definition, 𝑝𝐸 and 𝑝𝐶 are:  
 
                                       𝑝𝐸 = ∑ 𝑤𝑖

′𝑝𝐸,𝑖
𝑘
1   and   𝑝𝐶 = ∑ 𝑤𝑖

′𝑝𝐶,𝑖
𝑘
1                                 (4.9)   

 
Rothmann et al. (2012) left out 𝑀𝐻 in the subscripts of the parameters 𝑝𝐸 and 𝑝𝐶. As seen 
from (4.8), we have included 𝑀𝐻 in the subscripts of 𝑝𝐸 and  𝑝𝐶 . The estimand ∆𝑀𝐻 
proposed in Rothmann et al. has several pitfalls and shortcomings. First, we point out that 
the estimand ∆𝑀𝐻 is mathematically intractable. Now 
 
                                           𝐸 (∆̂𝑀𝐻)  = 𝐸 [ ∑  𝑤𝑖

′(�̂�𝐸,𝑖 − �̂�𝐶,𝑖) 
𝑘
1 ]                             (4.10) 

                                        
We know that 𝐸(�̂�𝐸,𝑖 − �̂�𝐶,𝑖) = 𝑝𝐸,𝑖 − 𝑝𝐶,𝑖. How do we handle the weights 𝑤𝑖′  in (4.5) in 
computing the expectation on the right hand side of (4.6)? It is a legitimate question 
because the MHARD is the pivotal parametric function that also depends on the weights 
that are data-dependent. As seen from (4.13) below, the Cochran-Mantel-Haenszel 
(CMH) test uses the weights {𝑤𝑖}, which equal to the inverse of the harmonic mean of 
𝑛𝐶,𝑖  and  𝑛𝐸,𝑖 . Radhakrishna (1965), who discussed the Cochran’s (1954) method of 
combining the results from several 2×2 contingency tables, identified the problem. He 
stated that the weights {𝑤𝑖} are assumed to have zero variances. The weights { 𝑤𝑖′} lead to 
unconventional null and alternative hypotheses in a non-inferiority trial. See the 
hypotheses stated in (4.16) below. The investigator does not know the weights at the trial 
planning stage. The investigator will have a hard time in determining a suitable non-
inferiority margin.  
 
Next, we explain why the adjective Mantel-Haenszel in the characterization of the 
estimand ∆𝑀𝐻  is not justified. In superiority trial, under 𝐻0 , the null hypothesis of no 
treatment difference, 𝑥𝐸,𝑖  has a hypergeometric distribution and its expected value is 
(Stokes et al., 1995; page 40): 
 
                          𝐸( 𝑥𝐸,𝑖  | 𝐻0 : 𝑝𝑖1 − 𝑝𝑖2 = 0) =  

𝑛𝑖+1×𝑛𝐸,𝑖

𝑛𝐶,𝑖+𝑛𝐸,𝑖
 (= 𝑚𝑖11)  ,                    (4.11) 

 
where 𝑛𝑖+1, as shown in Table 1, is the total number of successes. Stokes et al. (1995) 
denote this expected value of 𝑥𝐸,𝑖 as  𝑚𝑖11 on page 40 i.e., in Section 3.2 of their book. It 
is used in the numerator of the Mantel-Haenszel statistic QMH. The statistic QMH, in their 
(Stokes et al.) notation, is as follows.  
 
                              𝑄𝑀𝐻 = {∑𝑛ℎ11 −∑𝑚ℎ11}2 ∑𝑣ℎ11⁄  
 
                              𝑄𝑀𝐻 = { ∑( 𝑛ℎ1+𝑛ℎ2+ 𝑛ℎ⁄ )(𝑝ℎ11 − 𝑝ℎ21)}

2 ∑𝑣ℎ11⁄  ,              (4.12) 
where 
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                               𝑣ℎ11 = 𝑉{𝑛ℎ11 | 𝐻0 } =
𝑛ℎ1+ 𝑛ℎ2+ 𝑛ℎ+1 𝑛ℎ+2

𝑛ℎ
2(𝑛ℎ−1)

   ,  
 
and 𝑝ℎ11, 𝑝ℎ21 are the observed proportions of favorable response. The summation on the 
right-hand-side of QMH is extended over all strata.   
 
Radhakrishna (1965) writes: “Cochran’s method consists of calculating a weighted 
average of the difference in efficacy between the two treatments in the various 2×2 
tables, the weights being based on some consideration of optimality”. It may be pointed 
out that the optimality is obtained under the null hypothesis of no treatment difference.  
 
Nam (1992) derived a sample size formula for Cochran’s statistic with continuity 
correction which guarantees that the actual Type I error rate of the test does not exceed 
the nominal level. Cochran considers the following null and alternative hypotheses (Nam, 
1992): 

  𝐻0′  : The common odds ratio is 1 (ψ = 1) 
                             𝐻1 ′ : The common odds ratio is greater than 1 (ψ > 1) 

 
We point out that 𝐻0′  states that there is no treatment difference.  Cochran’s test statistic 
is based on the sum of the weighted difference   
 
                        𝑈 =  ∑𝑤𝑖(�̂�𝐸,𝑖 − �̂�𝐶,𝑖), where  𝑤𝑖 = 𝑛𝐶,𝑖 × 𝑛𝐸,𝑖 𝑁𝑖⁄                       (4.13) 
 
The test statistic, as shown in Nam (1992), is 
  

𝑧𝑐 =  (𝑈 − 𝛥′ 2⁄ ) {𝑣𝑎𝑟𝑒𝑠𝑡(𝑈)0}1/2 ⁄ , 
 
where 𝑣𝑎𝑟𝑒𝑠𝑡(𝑈)0 = ∑𝑤𝑖 𝑃𝑖(1 − 𝑃𝑖) with 𝑃𝑖 = (𝑥𝐸,𝑖 + 𝑥𝐶,𝑖) 𝑁𝑖⁄ , and 𝛥′ = 1 or 0 . Nam 
(1992) quotes Radhakrishna (1965), “The test is optimal under a logistic model and 
nearly efficient under a wide range of other models.”  
 
What is the difference between ∆̂𝑀𝐻 of (4.1) and 𝑈 of (4.13)? If you divide 𝑈 by the sum 
of weights, ∑𝑤𝑖, you get the estimator ∆̂𝑀𝐻 .  That is how the qualifier “average” comes 
from. However, as explained earlier, these weights become irrelevant in the non-
inferiority setting. 
 
The weight 𝑤𝑖 =  (𝑛𝐶,𝑖 × 𝑛𝐸,𝑖) 𝑁𝑖⁄  mentioned in Rothmann et al. (2012) on page 301 
does appear in the numerator of the Mantel-Haenszel statistic of (4.8) above. The 
expression   

(𝑛ℎ1+𝑛ℎ2+ 𝑛ℎ⁄ )(𝑝ℎ11 − 𝑝ℎ21) 
 
shown in (4.12) is legitimately derived under the null hypothesis of no treatment 
difference. Rothmann et al. have expressed a null hypothesis in terms of an odds ratio on 
page 290. They don’t state a null hypothesis in terms of the MHARD. If the null 
hypothesis of no treatment difference is not true,    
   
                             𝐸( 𝑥𝐸,𝑖  | 𝐻0 : 𝑝𝑖1 − 𝑝𝑖2  ≠ 0)  ≠  𝑛𝐶,𝑖 × 𝑛𝐸,𝑖 𝑁𝑖⁄  .         
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Then the equation (4.12) is not true. Then the adjective “Mantel-Haenszel” in the phrase 
MHARD is meaningless and irrelevant in the non-inferiority setting. It happens to be just 
a gimmick. 
 
Yanagawa et al. (1994) proposed Mantel-Haenszel-type statistics for testing whether a 
new treatment is at least as effective as the standard treatment in comparative binomial 
trials. They considered the following hypotheses (superscript Y stands for Yanagawa) 
 

𝐻0
𝑌:  𝜋𝑖1 − 𝜋𝑖2 = −𝛿𝑖,   𝑖 = 1, 2, . . , 𝐾                                   (4.14) 

𝐻𝐴
𝑌:  𝜋𝑖1 − 𝜋𝑖2 > −𝛿𝑖,   𝑖 = 1, 2, . . , 𝐾 ;   

 
0 ≤ 𝛿𝑖 < 1. Note that the hypotheses in (4.14) accommodate non-uniform non-inferiority 
margins. In fact, Miettinen and Nurminen (1985) and Yanagawa et al. (1994) have 
indicated that there is no need to introduce a common risk difference in the CMH 
setting. Rothmann et al. have proposed to compute a confidence interval on ∆𝑀𝐻  to 
demonstrate non-inferiority. We have seen their null and alternative hypotheses- stated in 
equation (11.23) on page 290.  We imagine that they want to use the CI on ∆𝑀𝐻  to test 
the following null and alternative hypotheses (superscript R stands for Rothmann)  
 
                                          𝐾0

𝑅:  ∆𝑀𝐻   ≤  ∆0  vs.  𝐾𝐴
𝑅  :  ∆𝑀𝐻   >  ∆0 .                              (4.15) 

 
We write the hypotheses that are stated in (4.15) in expanded form: 
 
    𝐾0𝑅:  

∑  (𝑛𝐸,𝑖×𝑛𝐶,𝑖 𝑁𝑖⁄ )(𝑝𝐸,𝑖−𝑝𝐶,𝑖 )

∑  (𝑛𝐸,𝑖×𝑛𝐶,𝑖 𝑁𝑖⁄ )
 ≤  ∆0  and  𝐾𝐴𝑅:  

∑  (𝑛𝐸,𝑖×𝑛𝐶,𝑖 𝑁𝑖⁄ )(𝑝𝐸,𝑖−𝑝𝐶,𝑖 )

∑  (𝑛𝐸,𝑖×𝑛𝐶,𝑖 𝑁𝑖⁄ )
>  ∆0      (4.16) 

 
The null and alternative hypotheses of (4.16) are unconventional and not easily 
interpretable. It is difficult to implement the design and analysis of the non-inferiority 
trial. Rothmann et al. (2012) did not elaborate on how they calculate the CI on ∆𝑀𝐻 . 
Farrington and Manning (1990) discussed the analysis of binary data from a non-
inferiority trial. They state that when it is required to establish a materially significant 
difference between two treatments, or, alternatively, to show that two treatments are 
equivalent, standard test statistics and sample size formulae based on a null hypothesis of 
no difference no longer apply. The Wald-type tests do not conform to the first principle, 
which requires using the variance estimate constrained by the null hypothesis (Miettinen 
and Nurminen, 1985). Yanagawa (1994) used the restricted maximum likelihood variance 
estimate to test the null hypothesis in (4.14). This makes their (Yanagawa et al.)  non-
inferiority analysis statistically rigorous and acceptable. Rothmann et al. confidence 
interval approach to test  𝐾0𝑅 in (4.15) lacks rigor and clarity. Longford and Nelder (1999) 
wrote: “Even though much statistical practice has its origins in sound scientific concepts 
and principles, it is all too easily reduced to conventions and prescriptions (procedures). “ 
This is very true in this (MHARD) case. 
 
 

5. The W-square test 
 
Recently, Koti (2017) proposed a new Mantel-Haenszel (MH) type test to demonstrate 
non-inferiority in terms of the differences in success proportions and when the non-
inferiority margin is not necessarily uniform in all strata. Derivation of this new test 
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originates from Wittes and Wallenstein (1987), who have derived asymptotic 
unconditional power and sample size for the MH test in the comparative binomial (CB) 
design setting. The new test is called the W-square test.  
 
The Table 2 below represents a typical 2×2 contingency table that contains the basic 
notations. Let 𝜋𝑖𝑗  denote the proportion of responders in the ith stratum and receiving 
treatment 𝑗 (= 1, 2). Assume that 𝛿𝑖 to be known constants and that 0 ≤ 𝛿𝑖 < 1; 𝑖 = 1, 2,
∙ ∙ , 𝑇, where  𝑇  is the number of strata (2×2 tables). The {𝛿𝑖} represent the strata non-
inferiority margins. Let  𝑁 = ∑𝑛𝑖∙∙ , 𝜌𝑖 =  𝑛𝑖1∙ 𝑛𝑖∙∙⁄ , 𝜆𝑖 = 𝑛𝑖∙∙ 𝑁⁄ , and �̅�𝑖 = 𝜌𝑖 𝜋𝑖1 + (1 −
𝜌𝑖)𝜋𝑖2 .The summation is extended over all strata.   
 
 

Table 2: The ith 2×2 contingency table in Koti (2017) 
 

 
Treatment 

Outcome:  
Total       Success Failure 

1 𝑛𝑖11 𝑛𝑖12 𝑛𝑖1∙ 
2 𝑛𝑖21 𝑛𝑖22 𝑛𝑖2∙ 

Total 𝑛𝑖∙1 𝑛𝑖∙2 𝑛𝑖∙∙ 
   
 
Koti (2017) considered the following null and alternative hypotheses 𝐾0 and 𝐾𝐴 . 
 

𝐾0: 𝜋𝑖1 − 𝜋𝑖2 ≤ −𝛿𝑖, for all 𝑖 = 1, 2, . . , 𝑇                                         (5.1) 
𝐾𝐴: 𝜋𝑖1 − 𝜋𝑖2 ≥ −𝛿𝑖, for all 𝑖, and 𝜋𝑖1 − 𝜋𝑖2 > −𝛿𝑖, for some 𝑖,  

                                 where 𝛿𝑖 > 0 for all 𝑖 = 1, 2, . . , 𝑇.                                             (5.2) 
 
Let 𝑀𝑈  denote the standard uncorrected Mantel Haenszel test statistic given by 
 
                                               𝑀𝑈 =   ∑𝑔𝑖 (∑𝑉𝑖)1/2⁄  ,                                                 (5.3)        
where 
                    𝑔𝑖 = 𝑛𝑖11 − 𝑛𝑖1∙ 𝑛𝑖∙1 𝑛𝑖∙∙⁄   and  𝑉𝑖 = 𝑛𝑖1∙ 𝑛𝑖∙1𝑛𝑖2∙ 𝑛𝑖∙2 {𝑛𝑖∙∙2 (𝑛𝑖∙∙ − 1)}⁄  
      
The W-square test rejects 𝐾0 of (5.1) in favor of  𝐾𝐴  in (5.2) at α level of significance if 
𝑀𝑈 > 𝑐α , where 𝑀𝑈 is given by (5.3) and 
 
                                           𝑐α = (𝑧1−α𝜎𝐶𝐵 + 𝜇𝐶𝐵) √𝑊𝐶𝐵⁄         
with  

𝜇𝐶𝐵 = −√𝑁 ∑𝜆𝑖𝜌𝑖(1 − 𝜌𝑖)𝛿𝑖 , 
 

          𝜎𝐶𝐵2 = ∑𝜆𝑖 𝜌𝑖(1 − 𝜌𝑖)[(1 − 𝜌𝑖)𝜋𝑖1(1 − 𝜋𝑖1) + 𝜌𝑖𝜋𝑖2(1−𝜋𝑖2)] ,                   (5.4) 
 

𝑊𝐶𝐵 = ∑𝜆𝑖 𝜌𝑖(1 − 𝜌𝑖) [�̅�𝑖(1 − �̅�𝑖) + 𝛿𝑖
2 𝜌𝑖(1 − 𝜌𝑖)/(𝑁𝜆𝑖 − 1)]. 

 
The 𝜋𝑖2s in 𝜎𝐶𝐵2  of (5.4) are supposed to be reliably known from previous studies. Note 
that, under 𝐾0 , 𝜋𝑖1 = 𝜋𝑖2 − 𝛿𝑖 .  The power, p-value and sample size calculation are 
discussed in Koti (2017). The test described above assumes that 𝑇 is large so that 𝑁 → ∞. 
Similar test is provided when 𝑇 is fixed, and 𝑛𝑖∙∙ → ∞. See Koti (2017) for a SAS code 
and for other details. A referee from Statistics in Biopharmaceutical Research stated 
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that in general, setting 2 (fixed T, and with relatively large  {𝑛𝑖∙∙} ) is more 
reasonable in practice. W-square test can be applied even when the non-inferiority 
margin is identical for all strata. 
 

6. Concluding remarks 
 

The delta-method approach contradicts theoretical results. It is unsophisticated, irrational, 
awkward, and inappropriate to use in practice. Koti’s (2007) Fieller-Hinkley distribution 
based analysis is a better one in that there are no major technical flaws. 
 
The phrase “Mantel-Haenszel average risk difference” is meaningless in the non-
inferiority setting. The associated confidence interval method is unscientific and 
irrelevant to the objective of proving the non-inferiority of an experimental treatment. 
Koti’s (2017) W-square test is a better alternative. One of the reasons is that the W-
square test approach provides asymptotic unconditional inference. 
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