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Abstract

We have applied a newly developed method on scheduling CT screening exam in lung cancer,
based on an asymptomatic individual’s current age, screening history, risk tolerance and other pa-
rameters. The probability of incidence was a function of the next screening time, so that the future
screening time can be found by limiting this risk to a small value α. That is, with probability 1−α,
one will not be a clinical incident case before the next exam. We estimated the lead time distribution
and probability of overdiagnosis if one would be diagnosed with cancer at the next screening, so
that predictive information could be provided to individuals on how early the disease could be de-
tected and the risk of overdiagnosis. We applied the methods to two cohorts (male and female heavy
smokers) in the National Lung Screening Trial using low dose computerized tomography (NLST-
CT), comparing their future screening times, lead time and overdiagnosis by simulations. Under
the same conditions, male heavy smokers need to schedule the next exam earlier than their female
counterparts do; and older people should schedule it earlier than the younger ones. The mean lead
time of female heavy smokers is longer than that of males; the risk of overdiagnosis is small for
both genders, although it is a little bit higher in male than in female heavy smokers.
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1. Introduction

Early detection and effective treatments are vital to increase the cure rate and prolong sur-
vival of cancer patients. The primary technique for implementing early detection is screen-
ing exams, which seems effective in detecting tumors early before symptoms are present.
Although numerous studies have been done in this area, it remains a fundamental challenge
to schedule the upcoming screening exam: for a person who has just being screened with a
negative result, when should he/she take the next exam? Using lung cancer incidence and
screening as an example, we will provide a solution using probability modeling.

Lung cancer is the second most common form of cancer and the leading cause of cancer
deaths for both genders in the US (see SEER Fast Stats Results). It occurs more often in
older people: about 2/3 of people diagnosed with lung cancer are 65 or older, and less
than 2% are younger than 45; the average age at diagnosis is around 70 (American Cancer
Society). There are two major types of lung cancer: small cell (SCLC) and non-small
cell (NSCLC). SCLC often spreads more quickly and accounts for 10-15% of lung cancer;
while NSCLC grows at a slower rate and accounts for 85%. Clinical stage at diagnosis
is a major determinant of survival after therapy (Mountain 1997, Henschke et al 2006);
however, according to SEER Fast Stats Results, the average five-year survival rate for lung
cancer patients is about 17.7%.

Several major randomized controlled lung cancer mass screening studies have been car-
ried out in North America since the 1970s. The National Lung Screening Trial is the most
recently finished study, which is designed to compare two different screening modalities
for early detection: low-dose helical computed tomography (LDCT) and standard X-rays
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among heavy smokers (National Lung Screening Trial Research Team 2010, 2011). Re-
sults from the NLST seem to indicate that smokers screened by spiral low-dose computed
tomography (LDCT) had a 20% lower chance of dying from lung cancer than those who
were screened via chest X-rays. However, due to the complexities of lead time bias and
overdiagnosis, no formal test has been shown to reduce lung cancer mortality. The United
States Preventative Services Task Force (USPSTF) has recommended annual screening ex-
ams using low-dose CT for heavy smokers 55 to 80 years old since December 2013 (Moyer,
VA. on behalf of the U.S. Preventive Services Task Force 2014).

Questions come concerning optimal scheduling with increased effort at early detection.
However, there are limited research in this area. Some research using utility function (or
cost) to find the optimal scheduling for n + 1 exms in a fixed age interval (Zelen 1993,
Lee and Zelen 1998); and some other research focus on cancer risk modeling. These are
valuable, even though the methods cannot be applied to schedule the next exam directly.
Physicians observed that “intervals for screening tests should not be uniform” based on
their daily practice (Lashner et al 1988).

We have developed a different approach to handle the scheduling of upcoming exam
for chronic disease, such as cancer. We will not use weight, cost, nor utility functions;
instead, we will directly calculate the risk of incidence before the next exam, given one’s
age, gender, screening history and other parameters; then the next screening time will be
chosen, such that the incidence risk will be bounded by some (preselected) small value,
such as 10% or less. Hence, with 90% or more possibility, a person at risk will not become
a clinically incident case between two screening exams if s/he would follow this schedule.
We also derive the lead time distribution and the probability of overdiagnosis, if one would
be diagnosed with cancer at the next scheduled exam. This provides individuals predictive
information regarding how early the diagnosis of cancer could be if one would develop
cancer and would follow this schedule. This is a method that could be directly used by
physicians/diagnostic radiologists to schedule a person’s future exam. We have applied the
method to women’s breast cancer using the Health Insurance Plan of Greater New York
data (Wu and Kafadar 2019). Now in this project, we will apply the existing methods to
lung cancer scheduling for male and female heavy smokers, using low-dose CT, based on
the National Lung Screening Trial (NLST) data.

2. Dataset and Methods

We will briefly describe the NLST dataset, and review the method that we have developed
for optimal scheduling, lead time and overdiagnosis estimation.

2.1 The NLST Data

The National Lung Screening Trial (NLST) is the most recently finished study. The purpose
of the project was to compare two different screening modalities for early detection: low-
dose helical computed tomography (or spiral CT) with standard chest X-rays among heavy
smokers (National Lung Screening Trial Research Team 2010, 2011). The spiral CT uses
X-rays to obtain a multiple-image scan of the entire chest, while a standard chest X-ray
produces a single image of the whole chest. Participants were either current or former heavy
smokers, but were without signs, symptoms, or history of lung cancer (i.e. asymptomatic
heavy smokers). There were 54,000 male or female heavy smokers enrolled in the study,
with initial screening age between 55 and 74 in 33 centers across the United States, between
August 2002 and April 2004. All participants were evenly randomized to one of two arms:
chest X-ray arm or the low dose CT arm. Three annual screening exams were provided to
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each participant in each arm. Although five-year survival rates approach 70% with surgical
resection of stage IA lung cancer (NSCLC that is 3cm across or smaller), more than 75%
of patients with locally advanced or metastatic lung cancer have a five-year survival of less
than 5%. The primary endpoint of the NLST is lung cancer mortality, however, no test has
been shown to reduce lung cancer mortality significantly so far.

Table 1. Overview of the NLST Data
Group within Study atotal subj. bScreen-diag. No. cInterval No.

The NLST: Chest X-ray
Overall 26226 279 177
male smokers 15500 165 107
female smokers 10726 114 70

The NLST: Spiral CT
Overall 26452 649 60
male smokers 15621 384 44
female smokers 10831 265 16

aTotal number of people who ever received lung cancer screens.
bTotal number of subjects diagnosed by regular screening.
cTotal number of clinical incident cases between two regular screenings.

We summerized the NLST data in Table 1. It is obvious that more tumors were diag-
nosed in the low-dose CT arm than in the chest X-ray arm, which implies that the sensitivity
of spiral CT may be higher than that of chest X-ray. Two cohorts from the CT arms (male
vs. female heavy smokers) will be used in this project.

2.2 Methods

We briefly review the methods that we have developed regarding scheduling for the next
exam in Wu and Kafadar 2019. The methods were originally developed using the Health
Insurance Plan of Greater New York (HIP) of breast cancer screening as an example. We
will apply the methods to the NLST low-dose CT arm data for male and female heavy
smokers in this project.

A cohort of asymptomatic people are enrolled in a screening program to detect a spe-
cific disease. The disease progressive model S0 → Sp → Sc is exhibited in Figure 1.
S0 refers to the disease-free state or the state in which the disease cannot be detected; Sp
refers to the preclinical state, in which an asymptomatic individual unknowingly has the
disease that a screening exam can detect; and Sc refers to the clinical state at which the
disease manifests itself in clinical symptoms. The progressive model describes the natu-
ral history of tumor growth (Zelen and Feinleib 1969). The goal of screening is to detect
the disease in the preclinical state Sp. The time duration in Sp is called sojourn time. If
one is screened and diagnosed with cancer at time t ∈ (t1, t2) , then (t2 − t) is called the
lead time, the length of time that diagnosis is advanced by screening. Sensitivity is the
probability that a screening result is positive, given that a person is in the preclinical stage
Sp. Another important term is transition density, the probability density function (PDF)
of the time duration in the disease-free state S0. The sensitivity, the sojourn time, and the
transition density are the three key parameters in screening, because all other terms can be
expressed as functions of these three.

Consider an asymptomatic individual who has gone through a series of exams at her
ages t0 < t1 < · · · < tK−1, and got all negative screening results, and her current age is
tK−1. We use βi = β(ti) to represent screening sensitivity at age ti. We let q(x) be the
probability density function (PDF) of sojourn time in Sp; and let Q(y) =

∫∞
y q(x)dx be
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Figure 1: Disease states and the lead time.

the survival function of sojourn time. And we define w(t) as the PDF of time duration in
the disease-free state S0. Suppose she will take the next exam at time tx, that is, at her age
tK−1 + tx, where tx is unknown. See Figure 2 (Wu et al 2018),

-
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Figure 2: Screening history and future events

We define four events HK , IK , DK and AK based on her screening experience and
future events:

HK =

{
one is asymptomatic in [0, tK−1] after
taking K exams at ages t0 < t1 < · · · < tK−1

}
,

IK = { one will be a clinical incident case first time in (tK−1, tK−1 + tx)},
DK = { one will be diagnosed with cancer at (tK−1 + tx) for the first time},
AK = { one will be asymptomatic in (tK−1, tK−1 + tx]}.

The three mutually exclusive events (IK , DK , AK) define what would happen before and
at the next exam; and they include all possible outcomes in (tK−1, tK−1 + tx], i.e., they
form a partition of the sample space

IK ∪DK ∪AK = HK .

Notice that her risk of cancer before the next exam is composed of two events IK or DK ,
and the probability of incidence before the next screening exam is:

P (IK |IK ∪DK , HK) =
P (IK ∩HK)

P (HK)− P (HK+1)
, (1)

where P (HK) and P (IK ∩HK) are (Wu and Kafadara 2019):

P (HK) = 1−
∫ tK−1

0
w(x)dx (2)

+
K−1∑
i=0

(1− βi) · · · (1− βK−1)

∫ ti

ti−1

w(x)Q(tK−1 − x)dx

P (IK ∩HK) =
K−1∑
i=0

(1− βi) · · · (1− βK−1)

∫ ti

ti−1

w(x)[Q(tK−1 − x)−Q(tK − x)]dx

+

∫ tK

tK−1

w(x)[1−Q(tK − x)]dx, (3)
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And P (HK+1) is just changing the index of K to K + 1 in equation (2).
This probability of incidence P (IK |IK ∪DK , HK) is monotonically increasing as the

upcoming screening time interval tx increases. Therefore, for any pre-selected small value
α, there exists a unique numerical solution t∗, that satisfies

P (IK |IK ∪DK , HK) =
P (IK ∩HK)

P (HK)− P (HK+1)
= α. (4)

That is, with probability (1 − α), she will NOT be a clinical cancer case before her next
screening exam at her age (tK−1 + t∗), where tK−1 is her current age. One may choose
α = 0.05 or 0.10, or, any risk level that she is comfortable with.

After t∗ is found, we can calculate the distribution of lead time and probability of
overdiagnosis (and true-early-detection) at tK = tK−1 + t∗, if one were diagnosed with
cancer at tK .

We let L be the lead time, and tK = tK−1 + t∗, then the conditional probability density
function (PDF) of the lead time given the event DK is

fL(z|DK) =
fL(z,DK)

P (DK)
, for z ∈ (0,∞). (5)

Where

P (DK) = βK

{
K−1∑
i=0

(1− βi) · · · (1− βK−1)

∫ ti

ti−1

w(x)Q(tK − x)dx

+

∫ tK

tK−1

w(x)Q(tK − x)dx

}
. (6)

fL(z,DK) = βK

{
K−1∑
i=0

(1− βi) · · · (1− βK−1)

∫ ti

ti−1

w(x)q(tK + z − x)dx

+

∫ tK

tK−1

w(x)q(tK + z − x)dx

}
. (7)

This is a valid PDF since
∫∞

0 fL(z|DK)dz = 1. And fL(z|DK) is a smooth function of
the lead time z.

To calculate the probability of overdiagnosis and true-early-detection at the future time
point t∗, we first let the lifetime T to be a fixed value, then let it to be random. Given one
would be diagnosed at tK = tk−1 + t∗, with a fixed lifetime T = t(> tK), the probability
of overdiagnosis and true-early-detection are:

P (OverD|DK , T = t) =
P (OverD, DK |T = t)

P (DK |T = t)
,

P (TrueED|DK , T = t) =
P (TrueED, DK |T = t)

P (DK |T = t)
.

Where P (DK |T = t) = P (DK) as in equation (6), and

P (OverD, DK |T = t)

= βK

{
K−1∑
i=0

(1− βi) · · · (1− βK−1)

∫ ti

ti−1

w(x)Q(t− x)dx

+

∫ tK

tK−1

w(x)Q(t− x)dx

}
. (8)
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P (TrueED, DK |T = t)

= βK

{
K−1∑
i=0

(1− βi) · · · (1− βK−1)

∫ ti

ti−1

w(x)[Q(tK − x)−Q(t− x)]dx

+

∫ tK

tK−1

w(x)[Q(tK − x)−Q(t− x)]dx

}
. (9)

And it can be verified that

P (TrueED|DK , T = t) + P (OverD|DK , T = t) = 1.

Now we allow human lifetime T to be random, and let fT (t|T > tk) be the conditional PDF
of the lifetime T , derived from the actuarial life table: US Social Security Administration,
http://www.ssa.gov/OACT/STATS/table4c6.html (Wu et al 2012). Then,

P (OverD|DK , T > tK) =

∫ ∞
tK

P (OverD|DK , T = t)fT (t|T > tK)dt,

P (TrueED|DK , T > tK) =

∫ ∞
tK

P (TrueED|DK , T = t)fT (t|T > tK)dt.

Where

fT (t|T ≥ tK) =

{
fT (t)

P (T>tK) = fT (t)
1−FT (tK) , if t ≥ tK ,

0, otherwise.

3. Application to the NLST-CT Data

We now apply the method of scheduling to the NLST low-dose CT arm data for male and female
heavy smokers. After we found the schduling time t∗, we will use it to estimate the lead time and
probability of overdiagnosis and true-early-detection.

From the two cohorts (male and female heavy smokers) in the NLST CT data, we first estimated
the three key parameters: sensitivity β(t), PDF of sojourn time q(x), and transition density w(t).
These three key parameters are critical since the probability of incidence in equation (1) is a function
of these three key parameters. We used a likelihood function and parametric modeling to estimate
these three from the NLST CT arm data (Liu etal 2015), where

β(t|b0, b1) =
1

1 + exp(−b0 − b1 ∗ (t−m))
,

w(t|µ, σ2) =
0.3√
2πσt

exp
{
−(log t− µ)2/(2σ2)

}
,

Q(x|λ, α) = exp(−λxα), x > 0, λ > 0, α > 0.

The unknown parameters in the likelihood is θ = (b0, b1, µ, σ
2, λ, α). Using Markov Chain Monte

Carlo (MCMC) with Gibbs sampler, 130,000 samples were generated; after 30,000 burn-in and
thinning every 200 iterations, we obtained a sample of 500 from each chain. Runing two initially
over-dispersed chains provide 1000 Bayesian posterior samples (θ∗j ) for each gender. For more
details, see Liu et al 2015.

We designed hypothetical cohorts in our simulation: For each gender, we have three big cohorts
according to the initial screening age t0 and current age tK−1: (t0, tK−1) = (56, 62), (62, 68) and
(68, 74). Then within each age cohort, we split it into three smaller groups, by assuming that the
historical screening time interval ∆ from t0 to tK−1 was 1, 2 or 3 years. So, there were 9 cohorts
for each gender in the simulation. Then we used the 1000 posterior samples θ∗j , j = 1, 2, . . . , 1000
from the MCMC for each gender to make Bayesian inference on optimal scheduling.

For each θ∗j , using P (IK |IK ∪ DK , HK , θ
∗
j ) = α, a scheduling time t∗j (j = 1, 2, . . . , 1000)

can be found; We calculated the mean and 95% Confidence Interval (CI) of the future screeing time
interval t∗j (in years) and summerized the results in Table 2.
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Table 2: Estimated posterior mean scheduling time t∗ and 95% CI
t0 = 56, tK−1 = 62

Female Male
α\∆ 1.0 2.0 3.0 1.0 2.0 3.0
0.05 0.91(0.65,1.17) 0.75(0.23,1.08) 0.71(0.16,1.07) 0.62(0.23,0.92) 0.45(0.10,0.83) 0.42(0.10,0.82)
0.10 1.26(1.00,1.55) 1.18(0.86,1.48) 1.16 (0.77,1.46) 0.96(0.61,1.26) 0.84(0.26,1.17) 0.82(0.24,1.16)
0.15 1.52(1.25,1.89) 1.47(1.19,1.81) 1.46(1.17,1.78) 1.21 (0.91,1.52) 1.13(0.59,1.45) 1.12 (0.54,1.44)
0.20 1.75(1.43,2.16) 1.71(1.40,2.11) 1.70(1.40,2.09) 1.43 (1.15,1.76) 1.37(0.95,1.71) 1.36(0.88,1.70)

t0 = 62, tK−1 = 68
Female Male

α\∆ 1.0 2.0 3.0 1.0 2.0 3.0
0.05 0.89(0.50,1.18) 0.71(0.14,1.11) 0.66(0.11,1.10) 0.58(0.13,0.95) 0.43(0.10,0.86) 0.41 (0.10,0.86)
0.10 1.23(0.92,1.55) 1.13(0.55,1.48) 1.11(0.41,1.46) 0.90(0.33,1.28) 0.78(0.16,1.21) 0.75(0.15,1.20)
0.15 1.49(1.19,1.86) 1.43(0.99,1.80) 1.41(0.91,1.78) 1.15(0.58,1.52) 1.05(0.30,1.47) 1.03(0.27,1.46)
0.20 1.71(1.39,2.15) 1.67(1.29,2.10) 1.65(1.25,2.09) 1.36(0.84,1.76) 1.28(0.49,1.72) 1.27 (0.45,1.72)

t0 = 68, tK−1 = 74
Female Male

α\∆ 1.0 2.0 3.0 1.0 2.0 3.0
0.05 0.85(0.29,1.19) 0.68(0.10,1.13) 0.64 (0.10,1.13) 0.55(0.10,0.99) 0.42(0.10,0.91) 0.40(0.10,0.90)
0.10 1.20(0.69,1.55) 1.07(0.29,1.48) 1.04(0.24,1.48) 0.84 (0.18,1.30) 0.73(0.11,1.24) 0.70(0.10,1.22)
0.15 1.45(1.02,1.85) 1.37(0.66,1.80) 1.34(0.52,1.77) 1.08(0.31,2.53) 0.98(0.19,1.48) 0.96(0.17,1.48)
0.20 1.67(1.27,2.13) 1.61(1.01,2.09) 1.59(0.89,2.08) 1.29 (0.47,1.76) 1.20(0.28,1.73) 1.18(0.26,1.73)

This is how to read Table 2: under the big column “Female” and “t0 = 56, tK−1 = 62”, look
at the row when α = 0.10, it shows that if ∆ = 1.0 years (i.e., one had annual exam from 56 to
62 years old), then she should come back after 1.26 years (about 15 months) if she wants to have a
probability of 90% early detection. From Table 2, we can see that the scheduling time t∗ increases
as the incidence risk α increases. i.e., heavy smokers can come back at a later time if they want
to maintain a 80% early detection rather than a 90% early detection. The mean of t∗ decreases as
current age increases, i.e. older smokers should take the next exam earlier than younger ones when
other conditions are the same. Under the same conditions, male heavy smokers should take the next
exam earlier than their female counterparts. Historic screening interval and the future screening time
are negatively correlated: shorter screening interval in the past means larger t∗ for the upcoming
test, and vise versa.

We then estimated the lead time and risk of overdiagnosis if one would be diagnosed with
cancer at the future time point tK = tK−1 + t∗. One lead time PDF can be obtained by using
each pair of (θ∗j , t

∗
j ), with j = 1, 2, . . . , 1000, and the posterior distribution of the lead time is the

average: fL(x|NLST ) = 1
1000

∑1000
j=1 fL(x|θ∗j , t∗j ). We then calculate the mean, median, mode

and standard deviation of the lead time using fL(x|NLST ). The lead time density curves of the
age group (t0, tK−1) = (56, 62) under all combinations of α and ∆ for the two genders are plotted
in Figure 3.

The distribution of lead time changes with gender: male heavy smokers usually have a relatively
shorter mean lead time than their female counterpart, if the t∗ is adopted. If the current age is fixed,
and let other parameters (α,∆) change, the lead time curve would be almost the same for both
genders. That is, one’s current age won’t affect the lead time much. That’s why we only plotted the
case of (t0, tK−1) = (56, 62) in Figure 3. This maybe due to the fact that sensitivity of low-dose
CT barely changes with one’s age. However, there are some differences of the lead time between
the two genders. The mean lead time for female is between 1.00 to 1.24 years, with a standard
deviation (SD) of 0.66 to 0.71 years. The mean lead time for male is between 0.95 to 1.13 years,
with a SD between 0.61 and 0.68 years. The median lead time for female is between 0.90 to 1.17
years; while the median for male is between 0.84 to 1.05 years. The mode of the lead time for
female is between 0.66 and 1.08 years, and it is between 0.61 to 0.95 years for male. In summary,
the mean, the median and the mode of the lead time for male heavy smokers is shorter/smaller than
their female counterparts. And the mode is less than the median, and the median is less than the
mean.

Finally, we used each pair (θ∗j , t
∗
j ), j = 1, 2, . . . , 1000, to estimate the probability of overdiag-

nosis; And of course, the probability of true-early-detection is 1 minus probability of overdiagnosis.
The posterior mean and standard error are listed in Table 3. The probability of overdiagnosis is very
low in the NLST-CT study (< 3.91%). This risk slightly increases with one’s current age for both
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Figure 3: Lead time density curve

genders. And it is slightly higher for male heavy smokers than their female counterparts. It slightly
decreases when α increases. The maximum probability of overdiagnosis is less than 6% for females
and it is less than 7% for males in our simulation. In summary, Overdiagnosis is not a big issue
using low-dose CT in lung cancer screening.

4. Discussion and Conclusion

Wu and Kafadar 2019 developed a probability method to dynamically schedule one’s upcoming
screening exam, based on one’s past screen history, risk tolerance α, screening sensitivity, sojourn
time distribution, etc., and have applied it to women’s breast cancer screening. In this study, we
applied the same method to lung cancer screening using low-dose CT for both males and females
heavy smokers. In fact, the method can be applied to any kinds of screening for chronic disease, and
it can handle any screening history t0 < t1 < ...tK−1, including those not equally-spaced screening
intervals.

Theoretically (and verified by simulations) the incidence risk increases as scheduling time for
next exam increases. That is, for those who can tolerate higher incidence risk or consider themselves
low risk for a specific cancer, they can come back for the next exam at a later date. The scheduling
time decreases as one’s current age increases if other conditions are the same; which means, older
smokers should come back earlier than younger ones if other conditions are the same. And male
heavy smokers should take their next exam earlier than their female counterparts. Simulation also
shows that screening history, especially the length of past screening interval affects the timing of the
next exam. Shorter screening interval in the past means one can come back later for the upcoming
test.

Robbins et al 2019 analyzed participants who had negative CT results in the NLST study, and
using their newly developed Lung Cancer Risk Assessment Tool + CT, they predicted short-term
lung cancer risk following a negative CT screen. Their results support the idea “that many, but not
all, screen-negatives might reasonably lengthen their CT screening interval.” Our result seems to be
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Table 3: Estimated mean probability of overdiagnosis and s.e. (in percentage) at t∗
t0 = 56, tK−1 = 62

Female Male
α\∆ 1.0 2.0 3.0 1.0 2.0 3.0
0.05 1.01(0.20) 1.03(0.20) 1.03(0.20) 1.52(0.28) 1.52(0.27) 1.51(0.26)
0.10 0.96(0.20) 0.96(0.20) 0.97(0.21) 1.44(0.28) 1.45(0.28) 1.45(0.27)
0.15 0.93(0.21) 0.93(0.20) 0.93(0.20) 1.38(0.28) 1.39(0.28) 1.39(0.28)
0.20 0.92(0.21) 0.92(0.21) 0.92(0.21) 1.35(0.28) 1.36(0.28) 1.36(0.28)

t0 = 62, tK−1 = 68

Female Male
α\∆ 1.0 2.0 3.0 1.0 2.0 3.0
0.05 1.75(0.35) 1.76(0.34) 1.75(0.34) 2.36(0.43) 2.32(0.43) 2.30(0.43)
0.10 1.65(0.35) 1.67(0.35) 1.67(0.35) 2.25(0.44) 2.25(0.43) 2.24(0.43)
0.15 1.60(0.35) 1.61(0.35) 1.61(0.35) 2.18(0.44) 2.18(0.44) 2.18(0.43)
0.20 1.57(0.36) 1.58(0.35) 1.58(0.35) 2.13(0.45) 2.13(0.44) 2.13(0.44)

t0 = 68, tK−1 = 74

Female Male
α\∆ 1.0 2.0 3.0 1.0 2.0 3.0
0.05 3.12(0.63) 3.09(0.63) 3.07(0.62) 3.91(0.74) 3.80(0.76) 3.77(0.74)
0.10 2.96(0.63) 2.98(0.62) 2.97(0.62) 3.77(0.73) 3.72(0.74) 3.71(0.73)
0.15 2.88(0.63) 2.89(0.63) 2.89(0.63) 3.66(0.74) 3.65(0.73) 3.64(0.73)
0.20 2.83(0.64) 2.84(0.64) 2.84(0.64) 3.59(0.74) 3.59(0.73) 3.58(0.73)

compatible with their findings.
Our approach also provides predictive information on the lead time and overdiagnosis if one

were diagnosed with cancer at the future exam. This will provide predictive information for potential
patients, regarding how early their diagnosis could be and the risk of overdiagnosis. From the NLST
CT arm data, the average lead time is longer for female heavy smokers than males, while the risk
of overdiagnosis for females is slightly lower than males; Overall, overdiagnosis is a very low
percentage for both genders. Therefore, it is not a big concern using low-dose CT in lung caner
screening.

Finally, we want to remind our readers that our modeling approach is just one way of thinking
about the problem. Other models and approaches are possible. We have to consider other financial
and emotional issues involved in screening too. Too many screening, especially screening with a
false positive result not only hurts people emotionally, but may also causes unnecessary financial
stress. The important point is to recognize that screening has outcomes and consequences that one
should consider, especially for policy purposes. However, our method maybe the first step towards
a personalized screening schedule in the near future.
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