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Abstract

Many clinical trials are negative or inconclusive. Thomas Burns estimates to 42 % the proportion
of Phase III trials which fails to meet the primary objective in the period 2006-2015 . The
causes of such failure are numerous. Obviously, there is the lack of effect of the treatment under
study, a cause which cannot be anticipated. But there are other causes related to trial design and
trial operation that can be avoided or at least challenged by means of simulation studies. The aim of
In Silico Clinial Trials (ISCT) is to test the feasibility of an experimental design and to evaluate its
sensitivity to a modification of the design parameters. By this way, one can optimize the trial design
by anticipating what can happen during the trial. The purpose of this paper is to outline what an
ISCT may be and to focus on the methodological pillars of this approach. Issues on the development
of ISCT will also be discussed.

Key Words: Clinical trials, Simulation, Methodology, Agent-based model

1. Introduction

Clinical trial is a major component of medical research and drugs development. It is nev-
ertheless a particularly challenging process essentially for scientific and economic reasons.
Scientific because clinical trial is a long process strictly supervised by a research protocol
during which science goes on. Economic because clinical trial is an expensive process.
This economic issue is of paramount importance for pharmaceutical Companies. Focusing
on phase III trials, the Pharmaceutical Research and Manufacturers of America estimated
the cost at $42,000 per patient in 2013 [|a]. Much attention is (most of the time) paid to
the management of these clinical trials, however a large proportion of the clinical trials fail.
This leads to ethical issues regarding patient involvement [29].

Despite the regulation requiring dissemination of trial results, it is difficult to find infor-
mation on non-conclusive trials. An explanation can be found in the poor proportion of trial
following that regulation (68% of trials sponsored by pharmaceutical companies reported
results within 12 months, for trials sponsored by universities, hospitals, government, and
charities the proportion was 11% [E]). In the literacy, there are not so many studies deal-
ing with the clinical trials failures especially evoking quantitative results. One of the more
complete one is [@] from which is extracted Figure [Il This study shows that that around
70% of trial failures are due to efficacy and safety, around 5% are due to organization and
the rest is due to commercial and strategic reasons. Only half of all drugs that are rejected
during the process fail due to a lack of efficacy [|a].
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Figure 1: Reasons for failure in Phase II on the left and Phase III on the right clinical trials
(from [IE]).

Explanations of the causes of clinical trials failure are discussed in [B] and in various
blogs (for instance [m, @, IE]). Conclusions are more or less the same and yield to the
following clusterization of the reasons of trial failure:

e Failure due to molecule activity issues,
e Failure due to design issues,

e Failure due to rational issues,

e Failure due to logistic issues.

Whatever the reason of the failure, those results have to be nuanced. Indeed, some causes
can be studied or anticipated while others are not preventable.

Failure due to molecule activity issues comes from the lack of efficacy or lack of safety.
In terms of efficacy, situations where a molecule does not have sufficient biological activity
to make the difference between arms significant cannot be improved whereas a situation
where the molecule has a a biological activity but that activity is not observed because it is
not the expected one can be improved. In terms of safety, situation where there is severe
and generalized toxicity, severe and unpredictable toxicity and severe and predictable tox-
icity (Exple: toxicity after a certain cumulative dose) are different, the first one cannot be
improve while the third one can.

Failure due to design issues are common. One uses to say that a good design is based
on the statement “The right endpoint - The right dosing - The right patients”. That is
closely linked with the timing of the trial, the placebo effect and disease progression and
with patients recruitment. These points may be challenge in order to assess the impact of
trial’s parameters to the endpoint. For instance patients recruitment which is of paramount
importance in clinical trial confronted with the balance between the will to expand the
targeted population to facilitate the recruitment and the necessity to shorten the targeted
population to get a homogeneous population and to facilitate the highlighting of a treatment
effect.

Failure due to rational issues means the reason of trial failure comes from weakness in
the assessment of the current standard of care or weakness in the knowledge of disease area
landscape.
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Finally failure due to logistic issues comes from operations problems and flawed data
collection/analysis [E, ].

It is thus clear that many clinical trial failure may be avoided by an improvement of
the clinical protocol (rational, design) or an improvement of operational activities of the
trial. Let us quote Dr. Roger M. Mills who summarize the setting in ] by ”Good trial
design cannot turn a poor drug into a good one. However, attention to good trial design
does mean that a potential therapy will undergo a meticulous evaluation that clarifies its
risks and benefits in the targeted disease state.” The consequences of such an improvement
might be huge: ethically (less patients included in vain), scientifically (less negative stud-
ies) and economically. Dr. Amar Thyagarajan says in [28]: ”According to the FDA, drug
developers could save $100 million in development costs per drug with a 10% improvement
in predicting failures before clinical trials”.

That is well known fact but the question of how to reach such an improvement is still of
interest. A solution may comes from the introduction of simulation techniques in clinical
research. For about thirty years, the use of simulation techniques have been introduced in
drug development. The main idea is to use the huge amount of information available on the
patients, on the drug of interest and on the design of the trial in order to build a stochastic
model mimicking the course of the clinical trial. The strategy is to identify, in silico, design
weaknesses, to measure the performance of a trial in a predefined setting while reducing
the number of logistical barriers. The purpose being to make the most rational decisions
possible regarding clinical development (see [Iﬁ] and references). As early as 2009, the
use of simulation techniques proved their benefits. In [B] Brindley and Dunn shown that
simulations studies increase the probability of achieving objectives of the study, increase
patient safety, reduce the duration of the study and the risk of protocol deviations and avoid
inconclusive situations.

The introduction of simulation in clinical research seems natural but the literature does
not confirm this idea. Indeed, the state of the art [Iﬂ] relating to the period prior to 2000
and confirmed by the reviews [@] over the period 2000-2010 and [23] over the period
2010-2015 show little impact and use. Explanations of this paradox may be found in re-
porting bias, as such investigation may be conducted by pharmaceutical companies and not
necessarily published for confidentiality reasons.

It is important to emphasize that the regulation agencies are boosting the use of sim-
ulation in drug development [@]. As an example, in 2011, the FDA released its strategic
plan on Advancing Regulatory Science (https://www.fda.gov/media/81109/d
ownload). Four of the eight science priority areas evoked specifically call out model-
ing and simulation as important aspects of FDAs strategy. In the FDA Grand Rounds
presentation of Dr. Tina Morriso given on August 9, 2018 an overview of some cur-
rent modeling and simulation methodologies were provided and the potential of in silico
clinical trials were discussed (https://collaboration. fda.gov/pdr7g3gweu
v/). Another example, during the last 10 years the European Medicines Agency (EMA)
organized a number of workshops on modeling and simulation, working towards greater
integration of modeling and simulation (M&S) in the development and regulatory assess-
ment of medicines. In the 2011 EMA - EFPIAE Workshop on Modelling and Simulation,
European regulators agreed to harmonize on good M&S practices and for continuing dialog
across all parties. To do so, the EMA Modelling and Simulation Working Group (MSWG)

'Chair of FDAs Agency-wide Modeling and Simulation Working Group and Regulatory Advisor of Com-
putational Modeling for FDAs Office of Device Evaluation
*European Federation of Pharmaceutical Industries and Associations
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has been established and the MID3 (Model-Informed Drug Discovery and Development)
good practices paper publisehd in 2016 [@, ].

Most of the simulation approaches are based on a compartmental definition of the vir-
tual patients. By compartmental definition one means topdown model of human from sub-
models of whole organs to individual molecules. For example the HumMod project (http
: //hummod. org/) involves more than 1,500 equations and 6,500 variables (body fluids,
circulation, electrolytes, hormones, metabolism, and skin temperature,...). Such complex
models are very hard to handle and - even with such a large number of variables involved
- often too simple essentially. Indeed, the strong dependence structure between variables,
pillar of life diversity, is too difficult to take into account.

In contrast, a virtual patient is defined, in this paper, as a set of covariates essentially the
ones involve in the clinical design (essentially inclusion / exclusion criteria) and the ones
known to be linked with clinical outcomes of interest. This set is small enough to consider
the dependence structure between covariates involved and to run properly the associated
agent-based approach. The aim is sligtly different of the compartmental approach which
aims to investigate, by silico, the behaviour of a patient exposed to a drug. Here, In Silico
Clinical Trial (ISCT) is an agent-based model which the behaviour of a virtual patient in a
virtual clinical trial. The aim is to challenge trial’s design parameters in terms of feasibility
and probability of success of the trial. In Silico Clinical Trial may be a relevant tool to
challenge the trial in terms of risk of failure by investigating scenarios of trials according
with the failure issues developed above.

The paper is organized as follows: Section [2] is devoted to the main steps of the con-
struction of an In Silico Clinical Trial. Section [3are some elements of discussion on what
an ISCT may bring in drug development. Section [ are some elements of discussion on
the technical locks identified from our skill in this setting. Finally, paper closes with a
concluding Section 3

2. A General Schema of an ISCT

2.1 Generalities

As specified below, we define an In Silico Clinical Trials as the use of Virtual patients to
mimic their behavior in a virtual clinical trial in order to challenge trials design in terms of
feasibility and probability of success of the trial. An In Silico Clinical Trials can be thus be
conceptualized involving various models:

e The Virtual Patients’ Generator. This model aims to generate a dataset of virtual
patients covariates stochastically. This dataset can be seen as the baseline data of a
virtual patient included in ISCT. The constraints on this model can be summarized
in two points: to be consistent with the protocol we aim to investigate, to be well
balanced between complexity of the model and realism of the virtual patient.

e The execution models. Execution models are input/output models which aim to
complete or to modify the virtual clinical dataset. Various execution models can be
considered. On Figure Pl an example is given involving an execution model which
complete the dataset with virtual outcomes at different times and an example of exe-
cution model which modifies the dataset introducing adverse events.

Figure [2 is an example of what may be the simulation’s schema of an ISCT. Details and
much more sophisticated ISCT involving other execution models are discussed in the two
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following subsections.

Virtual Patients Generator
- virtual data of patients at baseline

Execution Models Execution Models
« Virtual Outcome » « Side effect »

~. Virtual outcomes of each patient ~ Side effects of each patient (if so)
_. Modelling of the trial’s course - Modelling of the trial's course

Virtual ITT population Virtual Safety population

Analysis of the Virtual populations
Assessment of the preformances of the trial (efficacy / safety) for the specified scenario

Figure 2: Example of the simulation designs schema of an ISCT.

2.2 Virtual Patients Generator

This first step of an In Silico Clinical Trial consists in the generation of baseline data of
virtual patients involved in the virtual trial. Virtual Patients Generator involves essentially
Monte Carlo generation of a vector of covariates (see, for instance, [lﬂ, Iﬁ] for details).
The two constraints on the model are:

e The marginal distributions are consistent with the ones of the population of interest.

e The correlation structure between covariates is consistent with the one of the popu-
lation of interest.

The constraints on the marginals is not a big deal but things are much more difficult
to achieve the second constraint. When the parameters of the distributions are known,
the, usually named, Discrete method is exact. But most of the time these parameters are
estimated from data and Discrete method is less effcient especially when there is a large
number of covariates mixing continuous and categorical ones. The so-called Continuous
method introduced in [@] to generate database directly from the population parameters,
may be a good alternative but most of the time it is a too simple model especially when
there is a multi-modal distribution. Copula’s method is probably a good alternative as
specified in [Iﬁ].

The main advantages to consider virtual patients are: first, a virtual patient is a “good

guy”, perfectly adherent to what one wants him to do, no ethical problem, no problem with
”General Data Protection Regulation”, second, a virtual patient is able to follow various
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treatment arms at the same.

The main disadvantages to consider virtual patients are: first, a virtual patient will
always be much more simple as a real patient, second, many covariates have to be included
to get a realistic patient and accounting for correlation is rapidly a strong problem to deal
with. This question will be discussed in much details in Section .11

2.3 Execution Models

An execution model is an Input / Output model which aims to simulate the course of the
virtual clinical trial (see Figure [2.3|for schema of a general execution model).

l

Dats ol a Execution Model

Modified or extended

i — e
) ) Predicted value for that patient Data of that Patient
Virtual Patient +

Simulated value of prediction error

Figure 3: General schema of an execution model.

Many execution models can be considered making the ISCT more complex but prob-
ably closer to reality. It is important to notice that execution models are dependent in the
sense that the input of a model may refer to the output of another model. The hierarchy of
the models has to be thought properly. Here are some example of execution models that
can be involved:

e Baseline’s parameters evolution in time (an example is given in ]),

Virtual outcome generator,

Disease progression model [B],

Side effect model, drop-out model,

Recruitment model [IE, @].

To insure the versatility of the construction of an ISCT, each model may be improved
separately. This property is known as the modularity and is a property of major importance
for ISCT building and improvement.

There is a wide variety of models available as candidate for execution model: paramet-
ric models such as Markov Process, Cox process, regression model, Bayesian network,...
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and non-parametric models such as machine learning techniques (Random forest, XG-
Boost, Decision trees, SVM, deep learning,...).

Those models depend on parameters that can be split in three categories: parameters
linked to the patients, parameters linked to the model (tuning parameters) and parameters
linked to the design. Those parameters can be considered as punctual (deterministic) values
or as distributions (random) in a Bayesian’s paradigm. Parameters can be fixed by the user
or estimated from databases. Parameters fixed by the user, by means of a Human Machine
Interface, state a scenario which define the conditions under which the trial is followed.
Parameters estimated from databases are calibration parameters which are fixed during the
simulation.

The output of an execution model comes from a Monte Carlo simulation accounting
for the model chosen and for the values of whole the parameters involved. It is important
to keep in mind that the aim of an execution model is to simulate an outcome and not to
predict an outcome. That is an important point because it is stronger, it necessitates a model
not only with good predictive performances but also a modeling of the error of prediction.
Figure [ is an illustration of the error made by considering only predictive properties. On
the first row are plotted the histograms of XA and YA together with the plot of (XA, YA)
those data are considered as a historical database (n = 80). From (XA, YA) is constructed
a predictor which is a simple regression model. On the second row data XP are 1000
generated values from a Gaussian fitting of the XA’s. YP are the predicted values given
by the linear predictor. The plot (XP,YP) is a straight line which is not consistent with
the reality. On the third line, an error term has been considered by adding to the predicted
value a Gaussian residual whom standard deviation is estimated from the historical data. It
is easily seen that the plot (XP,YS) is much more realistic that (XP, YP).
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Figure 4: Illustration of the error made by considering only predictive performances. On
the top the learning data, in the middle simulated abscissa and predicted ordinates, on the
bottom simulated abscissa and simulated ordinates.
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Notice that the confusion between prediction and simulation yields to an under estima-
tion of the error and thus it is easier for a factor effect to be significant.

3. What an In Silico Clinical Trial may bring to drug development?

3.1 Perform sensitivity analyses of Clinical Trial endpoints

In Silico Clinical Trials allows to perform sensitivity analyses of clinical trial endpoints.
To do so, it is possible to assess the performance of the trials as a function of parameters
by varying the feature of the patients, the parameters of the design and parameters of the
execution models. Indeed, it is possible to:

e Modify the feature of the patients, this means to challenge the inclusion / exclusion
criteria of a trial, by modifying the marginal distributions of the baseline covariates
in the virtual patients generator,

e To specify design parameters (for example duration of patients’ follow-up, number
of centers involved,...) by specifying various scenarios, this means various set of
parameters in execution models, and by assessing the related trial performances.

e To assess the impact on the trial performances of small changes in the values of
the parameters of the execution models (for instance quantify the impact of a given
variation of patients’ recruitment rate on the trial duration).

e To explore the trial performances for untested values of the parameters of the execu-
tion models (for instance what would be the consequences on the performances of a
trial in which a patient is followed one year if it is reduced to six months).

It is important to point that these two last strategies are much more easy to investigate with
parametric models for execution models than non-parametric models.

3.2 Perform performances analyses of a predefined trial.

In order to demonstrate that the difference observed between treated and untreated patients
is due to the intervention (the treatment), an usual way is to assess the Average Treatment
Effect (ATE) defined as:

ATE=E[Y(1) - Y(0)]. (1)

where for patient 4, Y;(1) is the outcome for patient 7 treated and Y;(0) is the outcome for
patient ¢ untreated. Y;(1) and Y;(0) are known as potential outcomes (23] and in prac-
tice, both these values cannot be observed simultaneously and ATE cannot be estimated
properly. The Average Treatment Effect is usually estimated by

AE= —SvA- — Sy,
[ B3

where (Y/A,i = 1,...,n4) (resp. (Y;®,i = 1,...,np)) is a sample of patients treated
(resp. untreated). In the setting of a randomized trial, the quality of this estimation is rather
good up to unmeasured confounded factors.

In the context of an ISCT, virtual patients can explore both treatment arms and the
performances of this predefined trial can be assessed since ATE can be estimated directly

from (D) by:
ATE = =) "(Yi(1) - Yi(0)).
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4. Main issues in ISCT building

4.1 Issues in Virtual Patients Generating

The issues linked to Virtual Patients Generation are the usual ones of Monte Carlo gener-
ation for multivariate distributions (see ]). The constraints are listed in Section 2.2 and
the problem is to found a balanced between details of the virtual patients and complexity
of the model involved to generate such patients. The problem is magnified by the type of
distributions involved which can a mix of categorical and quantitative variables.

The complexity of the model depends on the number of covariates. It is therefore im-
portant to have a clear approach to selecting variables including data and expert knowledge.
Once data selected, the issue is to to calibrate properly the model. Many problems arise:
First, in this context of multi-dimensionality, the dimension of the database used to make
the inferences is of major importance. That is linked with the curse of dimensionality
which indicates that the number of samples needed to estimate an arbitrary parameter with
a given level of accuracy grows exponentially with respect to the number of input variables.
Second, the origin of the data is of importance too because the data do not have the same
quality depending on whether they are derived in randomized trial or real life data. Third,
if there is no (or not enough) data available for inferring the Virtual Patients Generator, it
is always possible to fixed the values of the parameter and to perform sensitivity analyses.
In this case, it is important to clearly specify the assumptions made on the model.

4.2 Issues in execution models calibrating

A huge diversity of models may be considered for the execution models: parametric models
(Markov, Cox, linear, logistics,...) and non-parametric models (Machine learning). The
main difference between those two approaches is parametric models calibrate by means
of data and assumptions while non-parametric models are completely data-driven. Many
sources of data may be used: completed clinical trials, on-going clinical trials, real-word
database with really different levels of quality and levels of accuracy. The quality of the
execution model may be very different according to the database used for calibration.

For parametric models, the main issue comes from the data used for parameters esti-
mation. The results are better with large databases since inference is better but if there is
no (or not enough) data available it is still possible to make stronger assumptions on the
model to simplify it. The other advantage of parametric model is the possibility to use data
from literacy, from expert knowledge or fixing a value and perform sensitivity analysis.

For non-parametric models, the main issue comes from the fact that there is no alter-
native to the data-driven approach. Without data it is not possible to consider a model
and with data, the model is much more sensitive to it quantity and to the structure of the
database. Indeed, the quality of the prediction is linked with the structure of the database,
the model learn from the data explored, if the database do not explore certain values, the
prediction associated with such value will be poor or not available. For instance if there
is no information in the learning database on young people (< 30 years old), the predictor
will not predict anything for young people.

Whatever the nature of the model a recurring question is the portability of the data.
Indeed, is it realistic to learn a model (parametric or not) from a dataset involving patients
completely different of the patients to include in the ISCT (for instance learn from Amer-
ican people for an European study). To overpass this problem, various algorithm such as
OT-algorithm [B] may be of interest.

Finally, the most important point to catch is that execution models aim to simulate an
outcome and, as pointed in Section it necessitates to model the error of prediction to
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properly simulate the outcomes.

5. Conclusion

In Silico Clinical Trials will never replace clinical trials with real patients. Indeed, virtual
patients will always be too simplistic for giving values to an outcome under experimental
treatment but enough specific to compare scenarios. Thus, In Silico Clinical Trials sug-
gests, first, by challenging trials’ designs, an increase of the probability for a trial to be
conclusive and, second, by considering simulated values under placebo, the possibility to
develop the design of new trials much more ethic (digital twins).

This paper has pointed that most of the tools are now available, the methodology has
been properly thought and rests on four pilars [E]:

e Clarity: The report of the simulation should be understandable in terms of scope and
conclusions by intended users.

e Completeness: Assumptions, methods and results have to be described with enough
details in order to be reproduced by an independent team.

e Parsimony: Complexity of the model and simulations procedure have to be no more
numerous that necessary.

e Modularity: Each sub-model can be improved independently of the others.

However many challenges remains especially methodological ones: how to generate rel-
evant virtual patients? how to build relevant execution models? how to calibrate or train
those models? and technical ones: how to identify the right data? how to access the right
databases? how to exploit properly those databases?

To conclude, In Silico Clinical Trials is a fantastic opportunity and is probably the
future of drug development. There is still a lot of work to make the ISCT operational but
the revolution is under way.
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