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Abstract
Considerable progress has been made in recent years in the asymptotic properties
of procedures for covariate control in randomized studies. This paper focuses on
the special challenges in small randomized studies. Simulation studies
demonstrate that a cross-validated LASSO is an excellent choice. No selection at
all results in power loss compared to no covariate adjustment at all. Stepwise
procedures yield lower variances but also result in underestimated variances and
excess type I error.
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1. Background

It is well known that covariance adjustment is optional for the analysis of randomized
studies. One can use non-parametric tests due to Fisher for the strong null hypothesis of no
effect of treatment at all, or a simple t-test for the difference in means for the weak null
hypothesis of no mean shift due to treatment (Deaton and Cartwright, 2018). Despite this
superfluity, covariance adjustment is the norm in the analysis of randomized evaluations
of social interventions. Motivations vary among researchers. Some use it in the hope that
it will boost power. Other use it in the hope that it will enhance the face validity of results
by “controlling” for random imbalances in baseline covariates. It is also well known that
while covariance adjustment has the potential to increase power (sometimes substantially),
it can also thwart the first of these hopes by increasing variances on estimated effects rather
than decreasing them (Freedman, 2008a, 2008b) and that the second goal is a hopeless
endeavor given the infinite number of ways that a randomized sample can be “out of
balance” (Tukey, 1991). Moreover, regression adjustment can compromise true validity by
causing underestimation of variances on estimated effects (Freedman, 2008a, 2008b) and
enabling researcher misbehaviour in which effects are manufactured by open-blind
decisions about covariate selections, where researchers hunt (consciously or
subconsciously) for the set of covariates that best supports the impacts expected or desired
by the researcher. Lastly, the burden of explaining complex adjustment techniques may
actually reduce face validity by clouding the transparency of methods. Nonetheless, I am
unaware of any important randomized studies of social interventions where regression
adjustment was not employed.

There is a rich literature on asymptotically optimal procedures for regression adjustment,
whereby variances are both reduced and consistently estimated. Lin (2013) rehabilitated
the regression adjustment given infinite sample sizes and a fixed set of regressors. Tsiatis
et al. (2008) proved the asymptotic equivalence of several popular methods of choosing
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regressor and suggested a novel method that has the potential to reduce the risk of tainted
results due to researcher misconduct. However, there is still a lack of guidance for
practitioners in the analysis of small randomized studies. This is a gap that this paper aims
to fill. It examines the properties of several popular methods for regression adjustment in
the context of small studies with many useless covariates.

In section 2, I describe the alternate methods. Section 3 sets up a simulation study. Section
4 presents results from it, and section 5 closes with discussion.

2. Alternative Methods

This paper considers four methods for covariate selection. The first alternative is to make

no selection at all, but to use every available covariate as in (2.1), where
i

Y is the

outcome,
i

T is a 0/1 dummy variable indicating treatment group membership,
i

X is a row

vector of baseline covariates, β is the vector of parameters indicating the influence of each

covariate on the outcome, δ is the effect of treatment, and
i

e is an error term.

i i i i
Y X T e    , (2.1)

Obviously, there are settings where this alternative will not be feasible, but if p, the rank
of the design matrix, is say less than n/5 for interval-valued outcomes (or perhaps n/30 for
rare binary outcomes) and n, the sample size, is large, this method should produce
consistent variance estimates, but is unlikely to achieve the lower bound on variance. The
second method is to use backward selection with a p-value to retain of 0.20. It will also run
into problems as p approaches n, but it is feasible for many problems.

The third method is a modification I suggested to Koch’s method. Koch, et al. (1998)
referred to their method as nonparametric ANCOVA, but since then, most authors have
referred to it as Koch’s estimator. With Koch’s method, a working model (2.2) is fit for the
outcome on interest in terms of the full set of covariates but omitting the treatment
indicator, and then the effect of treatment is estimated as the mean difference in residuals
across treatment and control, as is equations (2.3) and (2.4). My suggested modification to
Koch’s method is to fit 2.2 just on the control sample instead of on the full sample as
originally suggested by Koch and co-authors.

My motivation for this suggestion was the demonstration by Lesaffre and Senn (2003) that
Koch’s estimator can produce overly-liberal significance tests (i.e., tests with type I error
rates higher than the claimed nominal rate), because of negative bias in the variance
estimator shown in equation 2.5. My hope was that only using half the sample to estimate
residuals would lessen this negative bias in the variance estimates. An additional thought
that 2.4 would be easier to explain to non-technical audiences when the null hypothesis is
rejected. With my modification to Koch’s estimator, the point estimate is the difference
between the population-wide average outcome under universal treatment and the
population-wide average outcome under the status quo. The point estimator with the
original procedure does not admit such a simple explanation.

i i iY X e  , (2.2)
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The fourth method is the 10-fold cross-validated LASSO.1 A step-by-step description of
the procedure is given below. Briefly with the ordinary LASSO, the sum of absolute values
of the estimated regression coefficients in Equation A.2 is constrained to be less than a
tuning parameter, . If the value for  is small enough, many coefficients in Equation A.2
will be forced to zero in order to fit within the cap on the sum of absolute coefficient values
and thus can be removed from the list of baseline covariates. The 10-fold cross-validation
is used to optimize the value of , rather than just relying on an arbitrary choice.

Details of the procedure are as follows:

1. With 10-fold cross-validation, the sample (both treatment and control group
members) is divided into 10 equal and mutually exclusive random subsamples.

2. For each of a range of candidate values of , the LASSO procedure is run to select
covariates on a sample in which one of the 10 subsamples has been dropped.

3. The model in Equation A.2 is fit on the same sample using just the variables

selected in the second step for each of the candidate values of .
4. The model is used to create out-of-sample predictions of the outcome for everyone

in the excluded piece of the sample, and the prediction error ˆ
i iY Y is measured

for each of the candidate values of .

5. Steps 2 through 4 are repeated 10 times for each candidate value of . On each
iteration, a different one of the 10 subsamples is dropped. In this manner, out-of-
sample prediction errors are obtained for the entire sample.

6. Mean squared prediction errors across all 10 replicates are then calculated for each

of the candidate values of .

7. The value of  that minimizes this cross-validated mean squared prediction error
and thus captures most of the variation reduction possible with the available
covariates is selected as the optimal constraint.2 Whichever variables have nonzero
coefficients in the model for that optimal constraint are used as covariates in the
impact regressions. All other baseline characteristics are discarded. All of this is
done automatically in SAS®/GLMSELECT with the “CHOOSE” parameter set
to CVPRESS.

1 “Least absolute shrinkage and selection operator.” See Bühlmann and van de Geer (2011)
for a full explanation.
2 One could simply use the LASSO to select covariates with a pre-specified value of the
constraint, but the 10-fold cross-validation provides a principled method for selecting the
constraint.
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With all methods except the modified Koch method, whichever covariates are selected are
then used in equation 2.1 to estimates the treatment effect. One could use variance
estimates that correct for heteroscedasticity, but for this paper, I used standard OLS
procedures to estimate the effect of treatment and of the associated variance. See Judkins
and Porter (2016) for a discussion of why it is unnecessary to use a logistic regression to
analyze the effect of treatment on a binary outcome.

3. Simulation Study Design

Equation 2.6 shows the basic structure of the superpopulation model used for the
simulations. The outcome in this superpopulation is binary, with a logit propensity that is
a linear function of a single standard normal covariate, x, and binary treatment, T. Different
values of  lead the outcome to be more or less rare. The rather odd looking value for δ
ensures that the simulated experiment has decent power to reject the null hypothesis when
it is false. The two values of β lead to mild or strong value in using x as a regressor. In
addition to x, I simulated either 34 or 100 additional useless covariates, and sample sizes
of 500, 750, 1000, and 2000 (all sizes that were commonly encountered in evaluations of
labor force interventions). In total, this paper is based on the performance of the alternative
covariate selection procedures across 128 scenarios, 64 for the null and 64 for the
alternative. For each scenario, there are 2000 Monte Carlo replications of the
superpopulation, each of which were analysed with each of the four methods for covariate
selection.
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(2.6)

4. Simulation Results

I measured type I error rates, bias in the estimated effect of treatment, and precision gains
from regression adjustment. However, there was no difference in the methods in terms of
bias for the effect of treatment. They were all unbiased under the null and very slightly
biased under the alternative hypothesis. As a result, I only tabulate Type 1 error rates and
precision.

Table 1 shows the error-control properties of the four methods. For reference, it also
includes what one would obtain if one somehow knew which x really belonged in the
model. The findings imply that both backward selection and the modified Koch method
are invalid procedures. They fail to control type I error rates. In contrast, no selection and
the 10-fold cross-validated LASSO control the Type I error rates just as well as if one were
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able to use the single x that matters. Also note that the type I error rate varies more across
scenarios with backward selection and the modified Koch method. Type I error rates are
worse (not shown) for the smaller sample sizes and larger numbers of useless covariates.

Table 2 shows the precision gain due to use of regression adjustment compared to a method
that just compares means. The cross-validated LASSO clearly gives the strongest variance
reduction. In fact, for reasons unclear to me, it slightly edges out knowing the single correct
covariate. Even so, there are some scenarios for which regression adjustment does worsen
precision. Also, the modified Koch method was an unfortunate idea. It consistently gives
less precision improvement than any of the other methods. Backward selection is lightly
better than no selection, but given the lack of control of Type I error rates, one should still
not consider using it.

Table 1. Type I Error Control

Method Type I Error Rate
p-value (for error

rate>0.05)

Standard Deviation
Across 64
Scenarios

No selection 0.0502 0.345 0.004
Backward with p-
value of 0.2 to
retain

0.0601 <0.001 0.010

Modified-Koch 0.0721 <0.001 0.018
10-Fold Cross-
validated LASSO

0.0507 0.109 0.005

Correct model 0.0508 0.104 0.005
Note: Across 64 scenarios, with varying sample sizes, numbers of useless covariates, explanatory power of the
single useful covariate, and event rarity. Simulation error on estimated type I error rate is ±0.0012.

Table 2. Precision Gain due to Regression Adjustment

Method

Ratio of Standard Error to Standard Error of Unadjusted Effect of
Treatment (Across 128 Scenarios)

Mean Min Max

Standard
Deviation

Across 128
Scenarios

No selection 0.921 0.770 1.184 0.087
Backward with
p-value of 0.2 to
retain

0.907 0.765 1.136 0.082

Modified-Koch 0.972 0.779 1.376 0.115
10-Fold Cross-
validated
LASSO

0.880 0.751 1.062 0.077

Correct model 0.881 0.752 1.063 0.077
Note: Smaller is better here. A value of 0.921 means that the standard error is 7.9 percent smaller than would
be obtained without covariance adjustment.
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5. Discussion

The 10-fold cross-validated LASSO appears to be a safe and useful tool for covariate
selection in studies where p is not more than n/5. It may be safe for higher values of p as
well, but I did not study that range. Note that to realize the precision gains estimated here
in an evaluation, the covariate selection must be customized for every outcome. This
appears to run against the instincts and customs of some professional evaluators. At least
some in my acquaintances prefer having a single set of covariates for every outcome in an
evaluation study. Having a single set of covariates improves method transparency and eases
the documentation burden. Taking the union of covariates that are selected for any outcome
would be a possible approach, but if the set of outcomes is large, this may end up
performing more like no selection.

The other issue in application will be whether to add some covariates because they show
strong imbalance at baseline. This will also tend to make the system perform more like no
selection. Adding covariates that are out of balance but unrelated to the outcome is certain
to increase variances on estimated effects.
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