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Abstract
In ordinary least-squares regression, independent variables are assumed to be known without error.
However, in many real-life situations this assumption is not valid. Both orthogonal distance regres-
sion and Bayesian errors-in-variables regression can be used to estimate model parameters when
there are errors in the dependent and independent variables.

To illustrate the use of the maximum-likelihood and Bayesian approaches, we use both methods
to estimate the parameters of a circle. The data used for circle fitting were taken from the cross
section of an optical fiber. The shape of optical fibers is important when joining two fibers, so
accurate dimensional measurements are critical to minimizing coupling loss. We then compare the
results of the two techniques when fitting an ellipse to simulated data.

Circle and ellipse fitting using maximum-likelihood methods have been well documented; how-
ever, Bayesian methods for these tasks are less developed. As expected, we found that the Bayesian
approach for circle fitting is more intuitive and easier to implement than the maximum-likelihood
approach, but generalizing the Bayesian approach to ellipse fitting was surprisingly difficult.

Key Words: Bayesian statistics, errors-in-variables regression, orthogonal distance regression,
circle fitting, ellipse fitting

1. Introduction

In many real-life regression problems, errors are present in both the independent and de-
pendent variables. Circles and ellipses are classic examples of data that have errors in both
the x and y variables.

We examine two methods of fitting circle and ellipse data. The first method is or-
thogonal distance regression (ODR). In ODR, maximum-likelihood estimates are obtained
by minimizing distances between data points and the fitted curve. The second method is
Bayesian errors-in-variables regression (EIV). In general, the Bayesian technique allows
for easy and intuitive explicit modeling of errors in both the x and y variables for sim-
ple models. In this paper, we seek to extend the Bayesian EIV method for the purpose
of estimating the parameters of circles and ellipses. While maximum-likelihood based ap-
proaches to the circle-fitting problem are well documented (Boggs et al. [1992], Chernov
[2011]), very little has been written about a Bayesian approach to this classic errors-in-
variables problem.

Data representing the cross section of an optical fiber (Wang et al. [1997], Mamileti
et al. [1992]) are used to demonstrate the ODR and EIV methods for estimating the param-
eters of a circle. We then use both methods to fit an ellipse to simulated data.

Sections 2 and 3 describe the data being fit and detail our circle fitting and ellipse fitting
techniques. Results are provided in Section 4, and Section 5 summarizes our findings.
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2. Circle Fitting

2.1 Optical Fiber Data

Dimensional measurements of an optical fiber cross section are obtained by circle fitting.
Accurate dimensional measurements are critical to providing the best possible transmission
of light through the fiber; as much as 1 µm offset in joining two fibers will result in about
5 % loss of signal (Wang et al. [1997]).

The data were obtained by first generating a gray-scale image of a fiber cross section
(Figure 1). Next, an edge-detection algorithm was applied to the image to define the outside
edge of the fiber, producing the (x, y) coordinate pairs required for the analysis.

Figure 1: Gray-scale image of an optical-fiber cross section. Data and figure from Wang
et al. [1997].

For reasons discussed in 2.2.1, two different representations of a circle are used to
perform model fitting. For ODR, we use the general equation of a circle, r2 = (xi−xc)2 +
(yi− yc)2. The parameters of interest are the radius (r), the x-coordinate of the center (xc),
and the y-coordinate of the center (yc).

For EIV, we define a general circle in terms of (x, y) coordinates. Consider a unit
circle, centered at (0, 0) with radius r = 1. We denote points on the unit circle as (x̃i, ỹi),
where x̃i = cos(θi), ỹi = sin(θi), and θi ∈ (−π, π]. From the unit circle, we can obtain
points on a standard circle (x′i, y

′
i) by multiplying by a constant r, so x′i = rcos(θi) and

y′i = rsin(θi). This standard circle is centered at zero and has radius r. We can move this
circle to a new center (xc, yc), which gives us the general form for points on a circle

(Xi = xc + rcos(θi), Yi = yc + rsin(θi)) . (1)
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2.2 Bayesian Estimates

2.2.1 The model

To obtain parameter estimates in the frequentist framework, the sum-of-squared residuals is
minimized subject to the constraint from the general equation of a circle; creating a similar
framework for Bayesian EIV regression is not obvious. Keksel et al. [2018] modeled a cir-
cle using Bayesian methods by defining their likelihood using (xi−xc)2 + (yi− yc)2− r2,
assigning this a normal distribution with zero mean and some variance, but the approach
does not allow the errors in the x and y variables to be modeled separately. The method
used by Werman and Keren [2001] also has this limitation. Since the ODR circle param-
eterization makes it difficult to determine the likelihood for the Bayesian EIV regression
approach, we propose a more intuitive parameterization, rewriting the model in terms of x
and y coordinates.

We use the general form of a circle (1) to model our observed data. First, for notational
and computational convenience, we roughly center our observed circle by subtracting the
means, so our new data are represented as xi,new = xi − x̄ and yi,new = yi − ȳ, where
x̄ = 1

n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi. The center of the new circle is then x0 = xc − x̄ and

y0 = yc − ȳ, where (xc, yc) is the center of the observed circle data as defined in Section
2.1. Thus for the EIV model, (1) becomes

(X∗i = x0 + rcos(θi), Y ∗i = y0 + rsin(θi)) . (2)

We assume xi,new and yi,new are normally distributed about the points of some true
circle defined by (2) with variances σ2x and σ2y , so

xi,new ∼ N(X∗i , σ
2
x) yi,new ∼ N(Y ∗i , σ

2
y). (3)

Now we must assign prior distributions to all of the parameters in our model. We know
that the deviations of the points about the circle are small, encouraging us to use relatively
concentrated prior distributions for σx and σy. We assume tight gamma prior distributions
for σx and σy,

σx ∼ Gamma(shape = 2, rate = 50) σy ∼ Gamma(shape = 2, rate = 50).

Since we center our data, x0 and y0 should be close to zero, so we assume a priori

x0 ∼ N(0, 1) y0 ∼ N(0, 1).

The radius is required to be positive, and we assume a priori

r ∼ N(60, 102)Ir≥0.

This prior distribution is centered about a realistic value of r, but has large variance.
We use a von Mises prior distribution for the θi, bounded between −π and π, with

location equal to zero and concentration, κ, equal to 0.1. This distribution is plotted for
various concentration values in Figure 2. The concentration determines how concentrated
the distribution is about the location. The distribution becomes uniform over the interval
as κ goes to zero. However, in practice the concentration is restricted to be greater than
zero for computational reasons, so we give κ a small value. The von Mises distribution is
a common circular distribution that has desirable inferential properties (Mardia and Jupp
[2000]).
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Figure 2: Probability density functions for von Mises distributions on θ, bounded between
−π and π, with different values for the concentration. As the concentration approaches
zero, the distribution becomes more uniform.

2.2.2 MCMC

Now that a model, a set of priors, and the observed data have been defined, we turn our
attention to estimating the parameters. To accomplish this, we use Hamiltonian Monte
Carlo (HMC), implemented via Stan using the R package rstan [Carpenter et al., 2017,
Stan Development Team, 2018], to sample from the posterior distribution of the parameters
given the observed data. In particular, we run three chains, each with a burn in of 500
samples and a total of 1000 iterations.

The large number of parameters make this model difficult to fit without reasonable
initial values for HMC. We initialize all three chains as follows. The initial radius value is
rinit = 60, the standard deviations (σx, σy) are both initialized at 0.01, and the center is
(x0,init, y0,init) = (0, 0). To initialize the θi, we relate them to the data (xi,new, yi,new) and
the other initial values, so

θi,init = arctan
(
ỹi
x̃i

)
= arctan

(
(yi,new − y0,init)/rinit
(xi,new − x0,init)/rinit

)
,

which reduces to θi,init = arctan
(
yi,new

xi,new

)
.
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2.3 Maximum-Likelihood Estimates

We obtain maximum-likelihood estimates of the parameters for the circle model using the
Fortran package, ODRPACK (Boggs et al. [1992]). The model for circle fitting,

0 = (xi − xc)2 + (yi − yc)2 − r2, (4)

is an implicit model because there is no explicit independent variable. For implicit mul-
tivariate orthogonal distance regression using ODRPACK, define zi = (xi, yi) and δi =
(δxi , δyi), where δxi and δyi represent the errors in xi and yi, respectively. Parameters are
estimated using

min
β,δ

n∑
i=1

wδiδi
2 (5)

subject to the constraint

fi(zi + δi;β) = ((xi − δxi)− xc)
2 + ((yi − δyi)− yc)

2 − r2 = 0, i = 1, . . . , n,

where wδi are weights and β = (xc, yc, r). For our problem, wδi = 1 for all i.

3. Ellipse Fitting

3.1 Simulated Data

To understand the models for fitting the ellipse, we review some geometry. An ellipse can
be defined in terms of two circles with radii rx and ry, with rx > ry. This is depicted in Fig-
ure 3. As with the circle model, we first consider the unit circle (green circle in the figure).
In the figure, A denotes a point on the unit circle, and A = (x̃i, ỹi) = (cos(θi), sin(θi)),
where θi ∈ [0, 2π). Using points on the unit circle, we obtain points on the red circle
by multiplying by ry, so point B in the figure equals (rycos(θi), rysin(θi)). Similarly,
we obtain points on the blue circle by multiplying by rx, so point C in the figure equals
(rxcos(θi), rxsin(θi)). Using these two circles, we obtain a point (D) on the standard el-
lipse as (x′i, y

′
i) = (rxcos(θi), rysin(θi)). The standard ellipse is centered at zero, has major

axis rx, and has minor axis ry.
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Figure 3: Geometric interpretation of an ellipse based on two circles with different radii.

The standard ellipse can be rotated by angle α and moved to a new center (xc, yc),
which gives us the general form for points on an ellipse

Xi = xc + rx · cos(θi) · cos(α)− ry · sin(θi) · sin(α)

(6)

Yi = yc + ry · sin(θi) · cos(α) + rx · cos(θi) · sin(α).

For ellipse fitting, we simulate 1000 noisy data pairs as xi ∼ N(Xi, σ
2
x) and yi ∼

N(Yi, σ
2
y) using the values shown in Table 1. The θ1, . . . , θ1000 are an evenly spaced se-

quence from −π + ε to π − ε, with ε = 0.00001. Figure 4 displays the data points used in
the analysis.

Table 1: Parameters used to generate simulated ellipse data.
Parameter Value

xc 71
yc 74
rx 62
ry 50
α -0.55 rad
σx 0.05
σy 0.07
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Figure 4: Simulated ellipse data (n=1000) generated using (6) and the parameters listed in
Table 1.

3.2 Bayesian Estimates

3.2.1 The Model

As before, we use the general form of the ellipse (6) to model our observed data. We
again roughly center our observed ellipse by subtracting the means, so our new data are
represented as xi,new = xi − x̄ and yi,new = yi − ȳ, and the center of the new ellipse is
x0 = xc − x̄ and y0 = yc − ȳ, where (xc, yc) is the center of the observed ellipse data as
defined in Section 3.1. Thus for the EIV model, (6) becomes

X∗i = x0 + rx · cos(θi) · cos(α)− ry · sin(θi) · sin(α)

(7)

Y ∗i = y0 + ry · sin(θi) · cos(α) + rx · cos(θi) · sin(α).

As with the circle model, we assume xi,new and yi,new are normally distributed about the
points of some true ellipse defined by X∗i and Y ∗i , so

xi,new ∼ N(X∗i , σ
2
x) yi,new ∼ N(Y ∗i , σ

2
y). (8)

We use many of the same prior distributions assumed in Section 2.2. Since we center
our data, we assume a priori that the center of our ellipse should be close to (0,0), so

x0 ∼ N(0, 1) y0 ∼ N(0, 1).

The standard deviations of xi and yi, both of which are positive, are defined by

σx ∼ Gamma(shape = 2, rate = 50) σy ∼ Gamma(shape = 2, rate = 50).

 
2140



Both the x radius (rx) and y radius (ry) must be positive. We assume

rx ∼ N(60, 102)I[rx>0] ry ∼ N(60, 102)I[ry>0].

Again, this prior distribution expresses a lot of uncertainty about these parameter values,
even though we think they should be around 60. The larger of the rx and rx values corre-
sponds to the major axis (M ) and the smaller value corresponds to the minor axis (m).

The rotation of the ellipse, α, is constrained to cover a 90 degree range to ensure a
unique solution for the parameter estimates. This restriction on α allows us to avoid im-
posing a restriction on the relative sizes of rx and ry due to the fact that the major axis
must be greater than the minor axis. If α covered an entire 180 degree range, then two
different values of α could be used to describe the same ellipse if the major and minor axes
are switched. A priori we assume α has a uniform distribution between −π/2 and zero.

Finally, we again use a von Mises prior distribution for the θi, bounded between −π
and π, with location equal to zero and concentration equal to 0.1.

3.2.2 MCMC

Our results are very sensitive to initial values, particularly for the angle of rotation. Thus,
we use the data to estimate a rough angle of rotation to initialize the model. Using the
roughly centered data (xi,new, yi,new), we calculate ri =

√
x2i,new + y2i,new. The maximum

ri should correspond to a point close to the major axis, so the angle that corresponds to that
point, constrained to be between−π and zero, is a good initial value for the angle of rotation
of our ellipse. Specifically, αinit = arctan

(
yj,new

xj,new

)
, where j is the index for the maximum

value of the ri. If this is not between −π/2 and zero, we find the corresponding angle that
is in this range.

For the center, we use (x0,init, y0,init) = (0, 0). Given (xi,new, yi,new), we obtain a
standard ellipse roughly centered at (0, 0) and rotated by angle, −αinit, using

x′i = (xi,new − x0,init) · cos(−αinit)− (yi,new − y0,init) · sin(−αinit)
(9)

y′i = (yi,new − y0,init) · cos(−αinit) + (xi,new − x0,init) · sin(−αinit).

From the standard ellipse (9), we can initialize rx and ry as

rx,init =
|min(x′i)|+ |max(x′i)|

2

ry,init =
|min(y′i)|+ |max(y′i)|

2
.

To initialize the θi, we set

θi,init = arctan
(
y′i/ry,init
x′i/rx,init

)
.

The standard deviations σx and σy are both initialized at 0.01. We use these values to
initialize three chains, each with a burn in of 300 and a total of 600 iterations, again using
HMC to sample from the posterior distribution.
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3.3 Maximum-Likelihood Estimates

A general formula for an ellipse that is translated and rotated in the x, y plane (Fuller
[1987]) is

β1(yi − yc)2 + 2β2(yi − yc)(xi − xc) + β3(xi − xc)2 − 1 = 0. (10)

The center of the ellipse is (xc, yc); however, the remaining parameters, (β1, β2, β3), have
no geometric interpretation. Thus, we compute the angle of rotation, the major axis, and
minor axis, (α, M, m), from the estimated model parameters (x̂c, ŷc, β̂1, β̂2, β̂3).

We use ODRPACK to obtain the maximum-likelihood estimates of the ellipse model
parameters by the same procedure described in Section 2.3. As in circle fitting for an
implicit model (10), ODRPACK minimizes (5) subject to

gi(zi + δi;β) = β1((yi − δyi)− yc)2 + 2β2((yi − δyi)− yc)((xi − δxi)− xc)
+ β3((xi − δxi)− xc)2 − 1 = 0, i = 1, . . . , n,

where zi = (xi, yi) and β = (xc, yc, β1, β2, β3).
The standard errors of (x̂c, ŷc) are obtained directly from ODRPACK. However, the

standard errors of the additional parameters of interest, (α̂, M̂ , m̂), are computed from
Monte Carlo simulations (Lafarge and Possolo [2015]) based on β̂ and the estimated variance-
covariance matrix of β̂.

4. Results

Parameter and interval estimates determined by maximum-likelihood and Bayesian meth-
ods are shown in Tables 2 and 3 for the circle and ellipse models, respectively. There is
very little difference between estimated parameters for maximum-likelihood and Bayesian
methods for both circle and ellipse models. Plots of the parameter estimates and their 95 %
confidence intervals and 95 % credible intervals are shown in Figures 5 and 6.

Table 2: Circle parameters estimated by ODR and Bayesian EIV.

Parameter
ODR Estimate
(95 % Confidence Interval)

Bayesian EIV Estimate
(95 % Credible Interval)

x0, µm 71.89 (71.89, 71.90) 71.90 (71.89, 71.90)
y0, µm 74.26 (74.26, 74.27) 74.27 (74.26, 74.27)
r, µm 62.47 (62.47, 62.47) 62.48 (62.47, 62.48)
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Figure 5: Bayesian and maximum-likelihood interval estimates for circle parameters.

Table 3: Ellipse parameters estimated by ODR and Bayesian EIV.

Parameter
ODR Estimate
(95 % Confidence Interval)

Bayesian EIV Estimate
(95 % Credible Interval)

x0 70.9991 (70.9935, 71.0047) 70.9977 (70.9922, 71.0028)
y0 74.0005 (73.9952, 74.0058) 73.9986 (73.9921, 74.0049)
α, rad -0.5499 (-0.5505, -0.5496) -0.5487 (-0.5491, -0.5483)
M 61.9993 (61.9924, 62.0062) 61.9966 (61.9891, 62.0031)
m 50.0037 (49.9973, 50.0102) 50.0018 (49.9943, 50.0093)

(a) (b)

Figure 6: Bayesian and maximum-likelihood interval estimates for ellipse parameters. The
horizontal gray reference lines indicate the true parameter values.
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Figure 7 displays a portion of the measurement data and the circle fitting results for both
methods. Plotted on the scale of the raw data, the two methods produce nearly identical
circles. The plot shows how the raw data deviates from a circle due to imperfections in the
optical fiber.

Figure 7: Maximum likelihood and Bayesian circle fitting results.

5. Discussion

We fit a circle model to a real data set and an ellipse model to a simulated data set using
both maximum-likelihood and Bayesian approaches. The two methods produced similar
parameter and interval estimates. The Bayesian approach is more intuitive for the error-
in-variables problem than the maximum-likelihood method. Although we expected the
Bayesian approach to be easier to implement than the maximum-likelihood method, we
encountered many issues in practice when fitting an ellipse model to the simulated data
using Bayesian EIV regression. For instance, the credible interval for the angle of rotation,
α, does not cover the true value.

The two methods were further tested when we fit an ellipse to the optical fiber data. The
maximum-likelihood method was able to produce parameter estimates, but the Bayesian
EIV regression approach could not due to lack of convergence of the chains sampled using
HMC. However, parameter estimates were obtained using Bayesian EIV regression when
the angle of rotation was fixed at -0.55 rad. The failure of the Bayesian method stems
from an inability to estimate α given the current model framework. The angle of rotation
and the angles θi that correspond to each data point are likely not separable in this model
formulation, especially when the data are very circular as is the case for the optical fiber
data. Thus, a different model formulation is likely required. The maximum-likelihood
method proceeds in a different fashion, minimizing the objective function subject to the
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constraint of the circle model. Imposing a constraint in an intuitive way, while maintaining
the error-in-variables structure of the problem, seems much more difficult in a Bayesian
framework. More work is needed to develop new models for Bayesian EIV regression.

Another assumption that should be examined in future Bayesian models is the indepen-
dence of the errors in the x and y values. For most Bayesian EIV regression problems, this
assumption makes sense, but for optical fiber data these errors are likely correlated. It is
plausible that a large error in the x coordinate suggests a deformation in the fiber at that
point, and would likely have a corresponding y value with a large error as well. The model
for the data will depend on how the data are acquired. Future work will include formulat-
ing a more accurate model of the error structure for our data. Additionally, in the future we
will try using more prior distributions that do not assume independence between the center,
radius, and angles.

A. Code

A.1 Circle

A.1.1 R code

library(rstan)

df = read.table("J1-1E.DAT")

niters=1000
n.chains = 3
in.dat = list(

N=dim(df)[1],
x=df$V1-mean(df$V1),
y=df$V2-mean(df$V2)

)

x0init=0
y0init=0
truexinit = (in.dat$x-x0init)
trueyinit = (in.dat$y-y0init)

angle = atan2(trueyinit,truexinit)

inits = list(
list(
r = 60,
x0 = x0init,
y0 = y0init,
sdy = .01,
sdx = .01,
theta = atan2(trueyinit,truexinit)

),
list(
r = 60,
x0 = x0init,
y0 = y0init,
sdy = .01,
sdx = .01,
theta = atan2(trueyinit,truexinit)

),
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list(
r = 60,
x0 = x0init,
y0 = y0init,
sdy = .01,
sdx = .01,
theta = atan2(trueyinit,truexinit)

)
)

fit = stan(
file = "circle.stan",
data = in.dat,
init = inits,
iter = niters,
warmup = floor(niters/2),
chains = n.chains,
control = list(adapt_delta = .8)

)

A.1.2 Stan code

data {
int<lower=0> N;
vector[N] x;
vector[N] y;

}

parameters {
real<lower=0> sdy;
real<lower=0> sdx;

real x0;
real y0;

real<lower = 0> r;

vector<lower=-pi(), upper = pi()>[N] theta;
}

transformed parameters {
vector[N] x_tran;
vector[N] y_tran;

for(i in 1:N){
x_tran[i] = x0 + r * cos(theta[i]);
y_tran[i] = y0 + r * sin(theta[i]);

}
}

model {
r ˜ normal(60, 10);

x0 ˜ normal(0,1);
y0 ˜ normal(0,1);
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sdy ˜ gamma(2,50);
sdx ˜ gamma(2,50);

theta ˜ von_mises(0,0.1);

x˜normal(x_tran,sdx);
y˜normal(y_tran,sdy);

}

A.2 Ellipse

A.2.1 R code

library(rstan)

######################## Simulate the data
set.seed(4)

n=1000

x0 = 71
y0 = 74
alphasim = -.55 #couterclockwise rotation
rx= 62
ry = 50

theta = seq(-pi+.00001,pi-.00001,length.out = n)

Xi = x0 + rx*cos(theta)*cos(alphasim) - ry*sin(theta)*sin(alphasim)

Yi = y0 + ry*sin(theta)*cos(alphasim) + rx*cos(theta)*sin(alphasim)

df=data.frame(V1=numeric(n))

sdx_true = .05
sdy_true = .07
df$V1=rnorm(length(Xi),Xi,sdx_true)
df$V2=rnorm(length(Yi),Yi,sdy_true)

######################## Stan settings
niters=600
n.chains = 3
in.dat = list(

N=dim(df)[1],
x=df$V1-mean(df$V1),
y=df$V2-mean(df$V2)

)

# Initial values
r=sqrt(in.dat$xˆ2+in.dat$yˆ2)
alphainit=atan2(in.dat$y[which.max(r)],in.dat$x[which.max(r)])
possibleAlphas=c(alphainit,alphainit+pi/2,alphainit+pi,

alphainit-pi/2,alphainit-pi)

myAlphaInit=possibleAlphas[possibleAlphas<0 & possibleAlphas>-pi/2 ]
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truexinit = (in.dat$x-0)*cos(-myAlphaInit)-(in.dat$y-0)*sin(-myAlphaInit)
trueyinit = (in.dat$y-0)*cos(-myAlphaInit)+(in.dat$x-0)*sin(-myAlphaInit)

rxinit=sum(abs(range(truexinit)))/2
ryinit=sum(abs(range(trueyinit)))/2

angle=atan2(rxinit*trueyinit,ryinit*truexinit)

inits = list(
list(
rx = rxinit,
ry = ryinit,
x0 = 0,
y0 = 0,
sdy =.01,
sdx =.01,
alpha = myAlphaInit,
theta = angle

),
list(
rx = rxinit,
ry = ryinit,
x0 = 0,
y0 = 0,
sdy =.01,
sdx =.01,
alpha = myAlphaInit,
theta = angle

),
list(
rx = rxinit,
ry = ryinit,
x0 = 0,
y0 = 0,
sdy =.01,
sdx =.01,
alpha = myAlphaInit,
theta = angle

)
)

fit = stan(
file = "ellipse_VM.stan",
data = in.dat,
init = inits,
iter = niters,
warmup = floor(niters/2),
chains = n.chains,
control = list(adapt_delta = .85,max_treedepth=11)

)

A.2.2 Stan code

data {
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int<lower=0> N;
vector[N] x;
vector[N] y;

}

parameters {
real<lower=-pi()/2, upper = 0> alpha;
real<lower=0> sdy;
real<lower=0> sdx;

real x0;
real y0;

real<lower = 0> rx;
real<lower = 0> ry;

vector<lower=-pi(), upper = pi()>[N] theta;
}

transformed parameters {
vector[N] x_temp;
vector[N] y_temp;

vector[N] x_tran;
vector[N] y_tran;

for(i in 1:N){
x_temp[i] = rx * cos(theta[i]);
y_temp[i] = ry * sin(theta[i]);

x_tran[i] = x0 + x_temp[i] * cos(alpha) - y_temp[i] * sin(alpha);
y_tran[i] = y0 + y_temp[i] * cos(alpha) + x_temp[i] * sin(alpha);

}
}

model {
rx ˜ normal(60, 10);
ry ˜ normal(60, 10);

x0 ˜ normal(0,1);
y0 ˜ normal(0,1);

sdy ˜ gamma(2,50);
sdx ˜ gamma(2,50);

alpha ˜ uniform(-pi()/2,0);

theta ˜ von_mises(0,0.1);

x ˜ normal(x_tran,sdx);
y ˜ normal(y_tran,sdy);

}
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