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Abstract
Even in scenarios where extensive historical data is available to inform estimates of chemical proper-

ties, rigorous approaches for combining these disparate but related data are unclear. We seek to provide
defensible statistical methods that utilize all available data to inform both the estimate of the quantity of
interest and its uncertainty. We estimate the triple point temperature for a well-studied chemical, naphtha-
lene. Some of the literature provides information on temperature and pressure measurements, which can
be understood using a changepoint model with one model for vapor pressure (liquid phase) and a different
model for sublimation pressure (crystal phase). The changepoint occurs at the triple point temperature.
Other works provide direct estimates and uncertainties for the triple point temperature. We develop a hi-
erarchical Bayesian approach to estimate triple point temperature using both types of data. We implement
model selection to choose between several different vapor pressure and sublimation pressure models from
the literature and arrive at a comprehensive estimate of the uncertainty for the triple point temperature of
naphthalene that incorporates all available information.

Key Words: Thermodynamics, Bayesian, change-point, random effects model, Hamiltonian Monte Carlo,
measurement uncertainty

1. Introduction

In chemical properties research, there exists considerable historical data on quantities of interest
for many chemicals. For example, for the well-studied chemical naphthalene, we have over 1000
measurements of the temperature and pressure of phase equilibrium from many studies, and we
also have 172 independent estimates of the triple point temperature with uncertainties. All of this
data can be used to inform estimates of certain chemical properties of naphthalene. However, it is
not clear what is the best way to combine this information to obtain an estimate and a comprehen-
sive uncertainty evaluation for that estimate.

Current methods for computing chemical properties can be ad hoc and are not well-defined.
Rigorous, defensible statistical methods are needed for computing properties of interest and as-
sociated uncertainties. With an interdisciplinary team of scientists and engineers, we worked to
develop a general statistical methodology and approach to this problem. We focus on the triple
point temperature of naphthalene to describe the general approach. This study is intended to rep-
resent foundational work, where future studies will examine larger sets of related properties, tune
complexity of functional forms, and address data paucity.

We propose a changepoint model for the historical measurements of pressure as a function of
temperature along the phase boundary for naphthalene, with one model for vapor pressure (vapor
in equilibrium with a liquid phase) and one model for sublimation pressure (vapor in equilibrium
with a solid phase). Measurements at lower temperatures are on the boundary between naphtha-
lene in vapor and solid (crystal) form, and these are modeled using sublimation pressure models.
At higher temperatures, the boundary is between naphthalene in vapor and liquid form, and this
boundary is modeled using vapor pressure models. The changepoint is the triple point tempera-
ture, the temperature at which the three phases can coexist. In addition to these measurements, we
also have historical data on triple point measurements, measured in different ways and reported
with uncertainties. The question is, what is the best way to combine data from disparate sources?
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One could take a maximum-likelihood approach, fitting the parameters using a Lagrangian
multiplier to enforce the constraint that the two models must meet at the changepoint. However,
this method requires that the changepoint be estimated first and then fixed, ignoring its uncertainty,
to estimate the rest of the parameters. We prefer to estimate all parameters simultaneously.

Instead, we develop a hierarchical Bayesian approach to incorporate data from these two very
different sources. A hierarchical approach allows us to build up our model using submodels for
the different data sources. We use a changepoint model for the pressure vs. temperature data, and
a random effects model for the triple point temperature estimates and associated uncertainties. For
the changepoint model, we use many different possible vapor pressure and sublimation pressure
models from the literature.

In Section 2, we describe the historical data available for naphthalene and the various vapor
pressure and sublimation models proposed in the literature. The proposed hierarchical Bayesian
model is detailed in Section 3. We provide results in Section 4 for both simulated data and the
historical data. We find that, for the simulated data, we are able to recover the true parameter
values, but are unable to select the combination of models used to simulate the data. We discuss
this in Section 5 and propose possible improvements to our approach.

2. Historical data

2.1 Pressure vs. temperature measurements

From the literature, we have pressure vs. temperature data from many different studies for both
sublimation pressure and vapor pressure measurements. These measurements are shown in Figure
1. It is clear that there are some studies with data that are not consistent with the other points; these
points are orange in the figure. Since the focus of this work is the development of the hierarchical
model, for now we have excluded these points. For a careful analysis of this data, it will be
important to explore these points more in the future.
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Figure 1: Pressure vs. temperature data from many different studies for both sublimation pressure
and vapor pressure measurements. The transition between the type of measurement is the triple
point temperature, which we do not know exactly. However, for the purpose of illustration we
have roughly categorized the measurements. Sublimation pressure measurements correspond to
the crosses, and vapor pressure measurements are denoted by the circles at the higher temperatures.
The orange points (Exclude = 1) where excluded from the analysis.
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2.1.1 Models from literature

Traditionally, a triple point temperature was evaluated independently, after which independent but
consistent models were fit to the vapor pressure data and to the sublimation pressure data. The two
models must meet at the triple point. There are seven candidate models to fit the vapor pressure
data, and five candidate models to fit the sublimation pressure data. All models come from the
literature and are semi-empirical extensions of the Clausius-Clapeyron relation. In this paper, we
consider four from each set of models and will expand the analysis to include other models in
future work.

The following are the vapor pressure models we considered from the literature [Reid et al.,
1977, Diky et al., Yaws, 1977]. We let y = ln(p/po) where po = 1 kPa.

• Antoine

y = A1 +
A2

T+A3

• PV Expansion

y = A1 +A2/T +A3ln(T ) +A4T +A5T
2 +A6/T

2 +A7T
6 +A8/T

4

• DIPPR 115

y = A1 +A2/T +A3ln(T ) +A4T
2 +A5/T

2

• Yaws Vapor Pressure

log10(p/p
o) = A1 +A2/T +A3log10(T ) +A4T +A5T

2

⇔ y = ln(10)A1 + ln(10)A2/T +A3ln(T ) + ln(10)A4T + ln(10)A5T
2

The same four models are used for the sublimation pressure models, with one minor change.
For sublimation pressure, the PV expansion model has one less term, so

• PV Expansion (Sublimation pressure)

y = a1 + a2/T + a3ln(T ) + a4T + a5T
2 + a6/T

2 + a7T
6.

We use uppercase letters to denote coefficients for the vapor pressure models and lowercase
letters for coefficients for the sublimation pressure models. Clearly, all of the linear models are
very similar, sharing many of the exact same terms. Additionally, covariates within a linear model
are highly correlated since they are all functions of temperature, suggesting multicollinearity. To
deal with this, we implement a variable selection preprocessing step. We first split the data roughly
at the triple point, using the mean value of the separate triple point measurements described in
Section 2.2. Based on the measurements before the rough triple point temperature estimate, for
each sublimation pressure model option we implement forward stepwise AIC for variable selection
[Weisberg, 2005]. With the simulated and real datasets we have analyzed, usually one to three
variables are selected for each model. We repeat this for the vapor pressure models and the data
after the triple point. Since these models share many covariates, this usually results in the three
linear models reducing to just one or two unique models.

2.2 Triple point temperature data

We have 172 estimates of triple point temperature, with uncertainties, taken from the literature.
Again we exclude values from the dataset that the thermodynamics domain experts have marked as
unusual, and one additional point with a suspiciously large uncertainty, leaving the 133 estimates
of triple point temperature depicted in Figure 2.
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Figure 2: Estimates of triple point temperature, with uncertainties, taken from the literature. The
red dot denotes the reported value of the triple point temperature. The lower edge of the blue bars
denotes the reported value minus two times the reported uncertainty, and the upper edge marks the
reported value plus two times the reported uncertainty.

3. Hierarchical Bayesian approach

We propose a hierarchical Bayesian approach that allows us to simultaneously incorporate data
from different sources when estimating parameters. With this approach, we write our model in
terms of submodels, one for each source of data, and simultaneously estimate our parameters
while considering all possible sources of uncertainty. We first define the submodels, detailed in
the following sections. With Hamiltonian Monte Carlo (HMC), implemented via Stan using the
R package rstan [Carpenter et al., 2017, Stan Development Team, 2018], we sample from the
posterior distribution of the parameters given the observed data.

3.1 Changepoint model for pressure vs. temperature measurements

We use a Bayesian changepoint analysis to model the pressure vs. temperature measurements. We
assume that for a particular temperature value, Tj ,

f(Tj) =

{
w1(Tj)− w1(γ) + TPP Tj ≥ γ
w2(Tj)− w2(γ) + TPP Tj < γ.

(1)

This model and the relevant parameters are depicted in Figure 3. Here γ is the changepoint in
the model (the triple point temperature) and TPP is the triple point pressure. Note that f(γ) =
TPP , so this parameterization forces the two models to meet at the triple point. The functions
w1(·) and w2(·) are chosen based on the models from the literature, but reparameterized so that
they meet at the triple point rather than have individual intercept terms. For example, one model
we consider for temperature values smaller than γ is w2(T ) = b1/T + b2ln(T ), based on the
reduced PV Expansion model for sublimation pressure. We have removed the intercept term from
the PV expansion model, as defined earlier, and we have reduced the number of covariates using
the variable selection data preprocessing step described in Section 2.1.1. Since this model is
similar to the literature models defined in Section 2.1.1, but not the same, we use b instead of a
to denote the coefficient parameters. We keep the convention of using uppercase letters to denote
coefficients for the vapor pressure models and lowercase letters for coefficients for the sublimation
pressure models. We assume that the observed log pressure values yj have a normal distribution
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centered at f(Tj) and with variance τ2 for j = 1, . . . , J= 1198, where 1198 is the total number of
pressure vs. temperature pairs from the literature.

γ
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Figure 3: Changepoint model depiction. The triple point temperature, γ, is the changepoint, and
the ln(Pressure) value at γ is the triple point pressure (TPP). In the absence of measurement error,
the log pressure value yj equals f(Tj) = w1(Tj)− w1(γ) + TPP for temperatures above γ, and
it equals f(Tj) = w1(Tj)− w1(γ) + TPP for temperatures below γ.

3.2 Random effects model for triple point temperature measurements

In Section 2.2, we described the multiple measurements of triple point temperature, xi for i =
1, . . . n, available from the literature, each with a reported uncertainty, ui. We assume these triple
point temperature measurements follow a random effects model

xi = λi + εi.

We model the study effect as λi ∼ N(γ, τ2g ), where γ is the true triple point temperature and τ2g is
the between study variability. We model the measurement error as εi ∼ N(0, u2i ). The triple point
temperature γ is shared between this random effects model and the changepoint model defined in
(1).

3.3 Prior distributions

The triple point temperature, γ, has a uniform prior distribution between the minimum observed
temperature, 230.034 K, and the maximum temperature, 748.332 K. Thus, a priori we assume
that the changepoint must be in the range of observed data, but make no further assumptions. The
standard deviation terms τg and τ are assigned diffuse prior distributions, using τ ′g ∼ N(0, 1) with
τg = exp(τ ′g) and τ ′ ∼ N(0, 1) with τ = exp(τ ′). We also assume a priori that the triple point
pressure has a standard normal distribution; based on scientific judgement, we think value should
be close to zero.

Prior distributions for the parameters in w1(·) and w2(·) were informed by computational
challenges. For example, fitting our model was very difficult without standardizing the covariates
for the linear models by subtracting the mean and dividing by the standard deviation. With the
standardized covariates, we found that a weakly informative standard normal prior distribution
worked well for all the coefficient parameters in the linear models, and then we use transformations
in post-processing to obtain posterior samples for the parameters of our original models.
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For the nonlinear model, we were not able to define general, weakly informative priors for
all situations, so we used normal prior distributions with parameters informed by another data
preprocessing step. Again we split the data roughly at the triple point, then fit the Antoine model,
y = a1 +

a2
T+a3

, to the data below the triple point using the function nlsLM [Elzhov et al., 2016]
in R [R Core Team, 2018]. Similarly, we fit the model y = A1 + A2

T+A3
to the data above the

triple point. Coefficient values for a2 and A2 were around -5000 and for a3 and A3 were around
-50. Thus for the corresponding parameters {b1, B1} and {b2, B2} in the changepoint model, we
used the values returned by nlsLM as the prior mean for these coefficient parameters, and used
standard deviations of 1000 and 100, respectively. Because of the large standard deviations, we
do not think these priors will have a strong influence on the posterior.

3.4 Simulated data

To test our ability to estimate the parameters of this hierarchical Bayesian model, we simulate data
similar to the data found in the literature. Using simulated data allows us to compare the results of
the Bayesian analysis with the true parameter values.

We first simulate 133 observed triple point temperature measurements according to the ran-
dom effects model described in Section 3.2, with γ = 353.26, τg = 0.055, and the ui equal to
what is observed in the real data. These simulated triple point temperature measurements, with
uncertainties, are shown in Figure 4
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Figure 4: Simulated observed triple point temperature measurements according to the random
effects model. The red dots denote the reported triple point temperature values, xi. The blue bar
marks xi ± 2 · ui, where ui is the reported uncertainty.

We also simulate ln(pressure) data based on the observed temperature values. To generate the
data below the triple point temperature, we assume w2(T ) = b1/T with b1 = −11000. For the
data above the triple point temperature, we assume w1(T ) = B1/T +B2T

2, with B1 = −10000
and B2 = −4 × 10−6. We set the standard deviation, τ , to 0.05. The simulated ln(pressure) vs.
temperature measurements are shown in Figure 5.

4. Results

Analysis for each pair of models proceeds as follows. We first pick a pair of models from the
literature, one for vapor pressure measurements and one for sublimation pressure. For example,
the PV Expansion model for vapor pressure, y = A1 + A2/T + A3ln(T ) + A4T + A5T

2 +
A6/T

2 +A7T
6 +A8/T

4, and the DIPPR 115 model for sublimation pressure, y = a1 + a2/T +
a3ln(T ) + a4T

2 + a5/T
2. We then implement forward stepwise AIC for variable selection. The

selected covariates are then used in the hierarchical Bayesian changepoint analysis. For all pairs
of models we use HMC to sample from the posterior distribution, using three chains, 500 burn-in
iterations, and 500 iterations after burn-in.
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Figure 5: Simulated ln(pressure) vs. temperature measurements.

4.1 Simulated data

We first present results for the data simulated as detailed in Section 3.4. After implementing the
variable selection preprocessing step for the linear models, the unique sublimation pressure models
for data below the changepoint reduce to

• Model A: w2(T ) = b1/T and

• Model B: w2(T ) =
b1

T+b2
.

The unique vapor pressure models for data above the changepoint are

• Model C: w1(T ) = B1/T +B2T
2,

• Model D: w1(T ) = B1/T +B2T +B3ln(T ), and

• Model E: w1(T ) =
B1

T+B2
.

Models B and E are Antoine models without the intercept. There are six models to fit in total,
one for each combination of sublimation and vapor pressure models. Figure 6 shows histograms
of the posterior samples for the parameters when Model A is used for w2(·) and Model C is used
for w1(·). This is the set of models used to simulate the data. In Figure 6, the red line denotes
the true value of the parameter used to simulated the data, the blue solid line denotes the posterior
mean, and the dashed blue lines denote the 95 % credible intervals. For this simulation, the true
value lies within the 95 % credible interval for all parameters. Trace plots are shown in Figure 10
in the Appendix.

To compare these models, we use the deviance information criterion (DIC) [Spiegelhalter
et al., 2002, Gelman et al., 2013], which is defined as

DIC = −2 log p(z|θ̂Bayes) + 2pDIC,

where pDIC is calculated as

pDIC = 2

(
log p(z|θ̂Bayes)−

1

S

S∑
s=1

log p(z|θs)

)
.

For our example, θ = (γ,λ, τg,B, b, τ) is the vector of parameter values and θ̂Bayes denotes the
posterior means of these parameters. The data vector z = (x,u,y,T ) is composed of the triple
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point temperature measurements and uncertainties (x and u), and the temperature and ln(pressure)
measurements (T and y)

In general, the likelihood for this hierarchical Bayesian model can be written as

p(z|θ) = p(x,u,y,T |θ) = p(x,u|θ)p(y,T |θ) =
n∏

i=1

p(xi|λi, ui)
J∏

j=1

p(yj |Tj ,B, b, τ).

The probability p(xi|λi, ui) is defined by a normal distribution with mean λi and variance u2i , and
p(yj |Tj ,B, b, τ) is defined by a normal distribution with mean f(Tj) (as defined in Equation 1)
and variance τ2. Using these distributions, we calculate the DIC values for each pair of models
and display the results in Figure 7. The number in the figure denotes the rank of that DIC value,
so using the Model B for the sublimation pressure (w2(T ) = b1

T+b2
) and Model D for the vapor

pressure measurements (w1(T ) = B1/T + B2T + B3ln(T )) resulted in the lowest DIC value.
Unfortunately, this model comparison approach did not suggest that the model used to simulate the
data was the best model, since it only had the third lowest DIC value. However, the four models
with the lowest DIC have very similar values. We comment more on the use of DIC and other
possible model selection criteria in Section 5.

4.2 Historical data

We repeat the analysis using the historical data shown in Figures 1 and 2, excluding values as sug-
gested by the subject matter experts. With the historical data, the possible models for sublimation
pressure reduce to

• Model F: w2(T ) = b1/T + b2T + b3ln(T ),

• Model G: w2(T ) = b1/T + b2T
2, and

• Model H: w2(T ) =
b1

T+b2
.

The vapor pressure models reduce to

• Model I: w1(T ) = B1/T +B2/T
2 +B3T

2,

• Model J: w1(T ) = B1/T +B2ln(T ) +B3T ,

• Model K: w1(T ) = B1/T +B2ln(T ) +B3T
2, and

• Model L: w1(T ) =
B1

T+B2
.

For this data, there are 12 possible model combinations. We again fit all of these using the
hierarchical Bayesian approach and obtain DIC values for each possible combination, which are
shown in Figure 8. The best model combination, according to DIC, is Model G for the sublimation
pressure (w2(T ) = b1/T + b2T

2) and Model I for the vapor pressure measurements (w1(T ) =
B1/T + B2/T

2 + B3T
2). The posterior distributions for the parameters obtained using these

models are depicted in Figure 9, and trace plots are shown in the Appendix.
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Figure 6: Simulated data results: Posterior distributions for the parameters. The solid blue line
denotes the posterior mean and the dashed blue lines show the 95 % credible interval. The solid
red line shows the true value of the parameter, used to simulate the data, and this value lies within
the 95 % credible interval for all of the parameters.
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Figure 9: Historical data results: Posterior distributions for the parameters. The solid blue line
denotes the posterior mean and the dashed blue lines show the 95 % credible interval.
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5. Conclusions

We have proposed a hierarchical Bayesian approach for estimating chemical properties of interest
for some well-behaved naphthalene data using disparate data sources. The hierarchical model
allows for easy and natural incorporation of data from different sources, and also allows us to
obtain parameter estimates while simultaneously accounting for all sources of uncertainty. The
available naphthalene data consists of pressure vs. temperature measurements and triple point
temperature measurements. We fit our hierarchical Bayesian model using both simulated data and
historical data, and for the simulated data found that the true parameter values were all in their
corresponding 95 % credible intervals.

Chemical properties literature offers many possible models for this data, so we also sought
to select the best combination of models for a given set of data. We chose DIC for model com-
parison, and found that with the simulated data example we could not recover the true models
used to simulate the data. It could be that these models are all so similar that they are practically
indistinguishable, as is evidenced by the very similar DIC values for most model combinations.
However, a better model selection criterion might be able to recover the true models. Vehtari et al.
[2017] argue that DIC is not the best method for model comparison, and that leave-one-out cross-
validation, the widely applicable information criterion, or K-fold cross-validation should be used
instead. Leave-one-out cross-validation and the widely applicable information criterion approxi-
mations [Vehtari et al., 2017] did not work for our simulated data example, as diagnostics indicated
that the approximation was not reliable. In the future we will implement the more computationally
intensive K-fold cross-validation for more accurate model comparison.

Additionally, we will also work to include other nonlinear literature models in the changepoint
analysis. One such model, the DIPPR 101 model, includes the term A4 × TA5 where A4 and A5

are both covariates to be estimated. Due to the multicollinearity issues encountered with the linear
models with a similar form, it seemed ill-advised, using the current approach, to attempt to esti-
mate these parameters in a model that also included other functions of temperature. Input from
domain experts and more informative prior distributions will be necessary to estimate parameters
in this more complicated model. Other models were also excluded from this analysis due to their
more complicated nonlinear form, and future work will include these models in the analysis and
model comparison. Once appropriate procedures have been fully developed for this well-behaved
naphthalene data, we will expand this analysis to compute chemical properties of interest for some
less well-behaved and well-studied chemicals. Finally, we remark that the various models explored
here are not physically motivated; they were chosen at different times by different chemical prop-
erties research teams primarily for their numerical fit to the data collected in each team’s study.
Treating these disparate models collectively and attempting to statistically select among them may
be unsound. The opportunity exists to create a well-defined nested family of models that would
both ease and clarify the selection process and bring subject matter consistency to their usage.
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Appendix

A. Trace plots

Figure 10 shows trace plots for the parameters fit using simulated data, and Figure 11 shows the
same for the historical data analysis. Each plot shows samples drawn from three chains after 500
burn-in iterations. All chains appear to be mixing well.
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Figure 10: Trace plots for the parameters fit using the simulated data.
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