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Abstract
Hidden Markov models (HMM) have been widely used to analyze stock market data in the statistical literature. Due

to hidden market trends, the structure of HMM fits well with stock data. By utilizing historical stock closing values
over a fixed training period, we evaluate stock performances in terms of capital gain using HMM. Stocks are selected
into a yearly portfolio based on the model. We used out-of-sample testing to investigate our portfolio selection method
and showed annual capital gains from 2010 to 2018. The performances of proposed portfolios were compared to the
S&P 500 index.
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1. Introduction

The methodologies for predictions of stock returns have been researched by economists and statisticians for
decades. The complexity of the stock data combined with vulnerability of stock market present a unique
challenge. Economists often evaluate stocks using performance metrics such as price/earnings (P/E) ratios,
assets, dividend payouts, etc (Malkiel, 2019). In this paper, we utilize the statistical model with the historical
stock data to create stock portfolios. On the basic level, data of an individual stock consists of series of daily
prices. Therefore, the conventional analytic tool was time series analysis such as autoregressive moving
average models (ARMA). Financial firms often use machine learning methods, such as artificial neural
networks, to predict stock prices in high frequency trading. This method relies on real time transaction data
and utilizes latest news that might influence stock market. Aldridge (2013); Ganesh and Rakheja (in press).
However, we focus on long term investments in this paper, with the buy-and-hold trading strategy. To obtain
high capital gains, investors would purchase stocks (ideally with high potential to grow), and sell them after
relatively long period of time (e.g. one year). This strategy is attractive to retail investors since it is simple
to execute with low transaction fees and does not invoke short-term capital gains tax.

When investing in stocks, bull and bear are terms used to describe the direction of market movement.
These terms are not precisely defined in mathematical language but, in general, a bull market indicates
overall strong performance of the stock market at present and in the immediate future. The opposite is the
bear market, in which stock prices are largely expected to fall. Economists identify bull-bear switch after
increase/decrease of 20% or more in the multiple stock indices (Kole and Dijk, 2016). Due to the volatile
nature of the stock market, consistent and accurate predictions of bull/bear markets is unattainable; rather
they are recognized and classified after the events. In general, a bull market has relative low variations in
stock prices compared to a bear market. The similar concept can be applied to an individual stock as well.
Financial analysts often describe a stock being in a buy state or a sell state, in which “buy” indicates an
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increasing trend in price and “sell” indicates a decreasing trend. Due to this latent structure, we propose
a hidden Markov model (HMM) for the weekly changes of stock prices. There have been attempts to
predicting stock prices based on HMMs such as Hassan and Nath (2005) and Nguyen (2018). Hamilton
(1989) incorporated HMMs into autoregressive models in order to capture market trend. Elliott and van der
Hoek (1997) and Elliott et al. (2010) further extended the hidden Markov autogressive models by Hamilton
(1989) to include a portfolio selection procedure.

The portfolio selection is the process of assets allocation based on a combination of different investment
opportunities, in attempt to achieve high returns with low risk. In general, a portfolio selection procedure
involves different types of funds and various methods. In this paper, we only considers the investment in
stocks and our portfolio selection is based on historical stock prices. Markowitz (1952) laid the ground
work for many other researches on the portfolio selection problem. It emphasized that the diversification
of investment did not necessarily eliminate the variance of the return. Thus, when constructing a portfolio,
we must consider the expected returns, the variances of the return and the correlations among stocks. We
will also follows the expected returns-variance of returns (E-V) rule proposed in Markowitz (1952) when
selecting stocks.

Under the buy-and-hold trading strategy, our goal is to find a portfolio creation method that balances the
risk and reward. Based on HMM, we estimate the expected return (reward) and variance of the return (risk)
for a given stock in a fixed period of time. Therefore, for a collection of stocks (i.e. portfolio), the total
return in the fixed period and its variance can be estimated. We use these estimates to evaluate the potential
capital gain of a portfolio.

The rest of this paper is structured as follows. Section 2 introduces the HMM and explains the portfolio
creation method in details. In Section 3, we show an example of HMM using the S&P 500 index values,
and validate the portfolio selection method using historical stock data, in addition to the some descriptive
statistics of the data. Finally, Section 4 concludes this paper.

2. Model Specification and Portfolio Selection

A hidden Markov model (HMM) consists of two random processes Y = (Y1, . . . , Yn) and Z = (Z1, . . . , Zn),
where Z is a Markov chain with transition probabilities,

Π =


π11 π12 · · · π1J
π21 π22 · · · π2J

...
...

. . .
...

πJ1 πJ2 · · · πJJ

 ,
and the conditional distribution of Yt given Zt is given by

Yt | Zt = j ∼


f1(y | θθθ1) if j = 1

f2(y | θθθ2) if j = 2
...
fJ(y | θθθJ) if j = J

Note that P (Zt = zt | Z1 = z1, . . . , Zt−1 = zt−1) = P (Zt = zt | Zt−1 = zt−1) by the Markov property, 
and Yt | Zt is conditionally independent of the remaining components of Y and Z. The probability structure 
of HMM is depicted in Figure 1. For each t, Yt is independent of the remaining variables conditioned on the 
variable that is the immediate predecessor in the graph.
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Figure 1: A hidden Markov model structure.

In practice, the stateZt’s are not observed and referred to as latent states. It is also convenient to consider
Z1 as the initial state with an initial distribution P (Z1 = j),j = 1, 2, . . . , J . In this paper, we will assume
that P (Z1 = j) is the stationary distribution of the Markov chain Z, denoted by ηηη = (η1, η2, . . . , ηJ).
Zucchini and MacDonald (2009) states that

ηηη =
(
I−ΠT + 111111T

)−1
111.

Statistical inference of HMM is based on the marginal distribution of the observations yyy = (y1, . . . , yn).
Under the HMM, the marginal distribution of Y is written as follows,

f(yyy | θθθ) =

J∑
z1=1

· · ·
J∑

zn=1

f(yyy | Z = z)P (Z1 = z1, . . . , Zn = zn)

=

J∑
z1=1

· · ·
J∑

zn=1

n∏
t=1

P (Zt = zt | Zt−1 = zt−1)f(yt | Zt = zt), (2.1)

At t = 1, the probability P (Zt = zt | Zt−1 = zt−1) in (2.1) is interpreted as the initial distribution ηz1 .
The information matrix of a hidden Markov model does not have a closed form. Therefore, directly find-

ing the maximum likelihood estimates using the Fisher scoring method or other similar numerical methods
that maximize the likelihood logL(θθθ | yyy) are difficult to implement. Instead, the Baum-Welch algorithm (a
variation of the EM algorithm) is often used to estimate the parameters θθθ of the HMM (Baum and Welch,
1965). For a more comprehensive review of HMMs, the reader can refer to Zucchini and MacDonald (2009).

2.1 Hidden Markov Model for A Single Stock

Suppose a portfolio consists of K stocks and the closing value of each stock follows an HMM. The latent
states will represent the optimal buy or sell recommendation for that stock. As described in the previous
section, these states are unobserved and are postulated to correspond with the behavior patterns of the stock
price leading to its classification (as buy or sell) by financial experts. For the kth stock, k = 1, 2, . . . ,K, let
Xk,t be the closing price at the end of the tth week, t = 1, 2, . . . , n. The price changes in terms of percentage
are given by,

Yk,t =
Xk,t −Xk,t−1

Xk,t−1
.
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Let Zk,t be the binary (1 or 2) latent variables representing the sell/buy state at the end of the tth week. The
HMM for the kth stock is given by,

Yk,t | Zk,t = j ∼

{
N(µk,1, σ

2
k,1) if j = 1

N(µk,2, σ
2
k,2) if j = 2

(2.2)

and (Zk,1, . . . , Zk,n) is a Markov chain with a 2× 2 transition matrix Πk.
Using the buy-and-hold investment strategy, our goal is to create a portfolio of stocks with potential to

achieve high capital returns with low risk in a long term. The return of the kth stock over T weeks is given
by

Rk =
T∏
t=1

(1 + Yk,t). (2.3)

The following result gives the expression for the expected return and the variance of return under the HMM
model for each stock.

Result 1. Let Yk = (Yk,1, Yk,2, . . . , Yk,n) denotes the weekly percent change in price for the kth stock
where t = 1, 2, . . . , n. Suppose Yk follows an HMM given in (2.2). Considering Rk over T weeks as given
in (2.3), the expectation and the variance of Rk is given by,

E(Rk) =
2∑

z1=1

· · ·
2∑

zT=1

{
(1 + µk,1)

∑T
t=1 I(zt=1)(1 + µk,2)

∑T
t=1 I(zt=2)

}
P (Zk = zzz) (2.4)

Var(Rk) =

2∑
z1=1

· · ·
2∑

zT=1

2∏
j=1

{
σ2k,j + (µk,j + 1)2

}∑T
t=1 I(zt=j)

P (Zk = zzz)− [E (Rk)]2 (2.5)

where Zk = (Zk,1, . . . , Zk,T ).

Proof. The proof is essentially by direct calculation of expected value and variance by conditioning on Z.
First, we consider E(Rk),

E(Rk) = E [E (Rk | Zk)]

= E

[
E

{
T∏
t=1

(1 + Yk,t)

∣∣∣∣∣ Zk

}]

=

2∑
z1=1

· · ·
2∑

zT=1

E

{
T∏
t=1

(1 + Yk,t)

∣∣∣∣∣ Zk = zzz

}
P (Zk = zzz).

Using the fact that Yk,t’s are conditionally independent given Zk, the conditional expectation can be obtained
as,

E

{
T∏
t=1

(1 + Yk,t)

∣∣∣∣∣ Zk = zzz

}
= E

{
T∏
t=1

(1 + Yk,t)

∣∣∣∣∣ Zk = zzz

}

=
T∏
t=1

(1 + µk,1)I(zt = 1) + (1 + µk,2)I(zt = 2)

= (1 + µk,1)
∑T

t=1 I(zt=1)(1 + µk,2)
∑T

t=1 I(zt=2).
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Thus,

E(Rk) =

2∑
z1=1

· · ·
2∑

zT=1

(1 + µk,1)
∑T

t=1 I(zt=1)(1 + µk,2)
∑T

t=1 I(zt=2)P (Zk = zzz).

Recall Var(Rk) = E(R2
k)−{E (Rk)}2. So, in order to calculate Var(Rk), we will first derive an expression

for E(R2
k). Conditioning on Zk, we have,

E(R2
k) = E

{
E
(
R2

k | Zk

)}
=

2∑
z1=1

· · ·
2∑

zT=1

E
(
R2

k | Zk = zzz
)
P (Zk = zzz).

Now,

E(R2
k | Zk = zzz) = E

{ T∏
t=1

(1 + Yk,t)

}2
∣∣∣∣∣∣ Zk = zzz


=

T∏
t=1

E
[
(1 + Yk,t)

2
∣∣∣ Zk = zzz

]
.

where we have again used the conditional independence property of HMMs. We can write,

E
(
R2

k | Zk = zzz
)

=
T∏
t=1

{
Var (1 + Yk,t | Zk,t = zt) + [E (1 + Yk,t | Zk,t = zt)]

2
}

=
T∏
t=1

 2∑
j=1

{
σ2k,j + (µk,j + 1)2

}
I (zt = j)


=
{
σ2k,1 + (µk,1 + 1)2

}∑T
t=1 I(zt=1) {

σ2k,2 + (µk,2 + 1)2
}∑T

t=1 I(zt=2)
.

Therefore, we have

E(R2
k) =

2∑
z1=1

· · ·
2∑

zT=1

{
σ2k,1 + (µk,1 + 1)2

}∑T
t=1 I(zt=1) {

σ2k,2 + (µk,2 + 1)2
}∑T

t=1 I(zt=2)
P (Zk = zzz)

and

Var(Rk) =

 2∑
z1=1

· · ·
2∑

zT=1

2∏
j=1

{
σ2k,j + (µk,j + 1)2

}∑T
t=1 I(zt=j)

P (Zk = zzz)

− [E (Rk)]2

The expressions given in Result 1 involve T summations over 2T different terms. For the purpose of 
efficient computation, they can be rewritten in matrix n otations. A similar technique was used in Zucchini 
and MacDonald (2009). These expressions are given below.
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Result 2. Under the same assumption as in Result 1,

E(Rk) = ηηηTk ΠkPk (ΠkPk)(T−1) 111 (2.6)

Var(Rk) = ηηηTkP∗k (ΠkP∗k)(T−1) 111−
[
ηηηTk ΠkPk (ΠkPk)(T−1) 111

]2
(2.7)

where

Pk = diag (1 + µk,1, 1 + µk,2)

P∗k = diag
(
σ2k,1 + (µk,1 + 1)2 , σ2k,2 + (µk,2 + 1)2

)
.

2.2 Portfolio Evaluation

Result 1 and Result 2 enable us to evaluate an individual stock using E(Rk) and Var(Rk). We will now
discuss evaluation of a portfolio given E(Rk)’s and Var(Rk)’s. Let us consider a portfolio with K potential
stocks. Given the returns of the K stocks over T weeks, R1, R2, . . . , RK , the return of a portfolio is given
by,

R(w1, w2, . . . , wK) =
K∑
k=1

wkRk

where the weight wk represents the proportion of the portfolio wealth invested in the kth stock. Thus, the
expected return of a portfolio is given by,

E(R) =
K∑
k=1

wkE(Rk). (2.8)

The variance of return is given by,

V (R) =

K∑
k=1

wkVar(Rk) +

K∑
k=1

K∑
l 6=k

wkwlCov(Rk, Rl) (2.9)

The idea is to find the optimal allocation www = (w1, . . . , wk) with high reward E(R) and low risk V (R)
utilizing the results above.

We need Cov(Rk, Rl) in order to compute the variance of the structure for the portfolio as shown in
(2.9). Under the current HMM structure, Rk’s are independent thus Cov(Rk, Rl) = 0 for any k and l.
Incorporating a covariance structure within HMMs is complicated. However, the covariance term is too
important to be ignored, as pointed out by Markowitz (1952). Therefore, we propose an alternative ad-hoc
estimate of the covariance between any Rk and Rl (k, l = 1, . . . ,m and k 6= l) as follows,

Cov∗(Rk, Rl) = ρkl
√

Var(Rk)Var(Rl)

The term ρkl is the sample correlation coefficient between the observed weekly returns in percentages of the
kth and the lth stocks (yk,t and yl,t respectively) given by,

ρkl =

∑T
t=1(yk,t − ȳk)(yl,t − ȳl)

(T − 1)sksl
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where ȳk and ȳl are the sample averages of the weekly returns, and sk and sl are the sample standard
deviations. Thus, the modified variance of return is given by,

V (R) =
K∑
k=1

wkVar(Rk) +
K∑
k=1

K∑
l 6=k

wkwlCov∗(Rk, Rl) (2.10)

The Baum-Welch algorithm is used to estimated parameters of the HMM in (2.4) and (2.5) for each
stock, thus we can estimated E(Rk) and Var(Rk). Using (2.8) and (2.10), a portfolio can be evaluated
by estimating E(R) and V (R) for the next T weeks based on past weekly prices of stocks. Our portfolio
selection is based on this evaluation method.

2.3 Portfolio Selection

In our selection procedure, we decided to only consider S&P 500 components. The S&P 500 index is a
weighted average price of a diverse collection of stocks that represents various sectors of the economy. This
index is published and updated by Standard & Poor’s. Only publicly traded stocks with large capitalization
and high trading volumes can be considered as candidates for the S&P components. The components and the
number of components vary over time. There are approximately 500 stocks at any given time. In general,
these stocks are relatively stabler compared to others. For this reason, our portfolio selection is confined
within the range of these stocks.

Given K stocks, the amount of each stock to purchase for the portfolio is decided by the weight vector
www = (w1, . . . , wK). The idealwww would maximizes the expected return E(R) while minimizing the variance
of return V (R). However, based on empirical evidence, there exists a trade-off between E(R) and V (R)
(Malkiel, 2019, p. 200). In other words, stocks with high expected return usually have high variance as
well. Therefore, we consider a weight vector www to be optimal if it maximizes E(R) and achieves a certain
threshold for V (R). An optimal weight vector is denoted bywww∗(v) such that,

www∗(v) = argmax
www

E(R), subject to V (R) = v and
K∑
k=1

wk = 1.

Lagrange multiplier method is used to findwww∗(v), for which we used the R package Rsolnp (Ghalanos and
Theussl, 2015). The pairs of E{R (www∗(v))} and v as are referred to as the efficient (R, V ) combinations by
Markowitz (1952). As an example, Figure 2 depicts these combinations calculated using the historical prices
of the S&P components from 2009 to 2014. Due to the trade-off between risk and reward, the variance of
the return of a portfolio, V (R), is a monotonically increasing and concave function of the expected return.
The maximum of the function can be achieved by assigning wk = 1 given that the kth stock has the highest
expected return among the S&P components. The minimum of the function is

E{R(www4)} ∨ 1

where

www4 = argmin
www

V (R), subject to
K∑
k=1

wk = 1.

Note that a return less than 1 indicates a negative capital gain thus we will not investigate any combinations 
with E(R) < 1. The expected return R(www∗(v)) represents the reward and the threshold of variance v 
represents the risk. Each of these pairs (v, R(www∗(v))) corresponds to a vector of weights, www∗(v), which
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guides the allocation of portfolio wealth. An investor has the freedom to select a combination that achieves
the desired reward and/or acceptable risk. For example, in order to find a vector of weightswwwb for a balanced
portfolio, we can use a constant q > 0 to regulate the reward and risk trade-off as follows,

wwwb = argmax
www

E(R)− q
√
V (R), subject to

K∑
k=1

wk = 1.

A similar technique was used by Elliott and van der Hoek (1997). In the next section, we will demonstrate
the performance of the proposed portfolio selection method by showing the results in terms of capital gains
under cross-validation from year 2010 to 2017.

Figure 2: An example of efficient (R, V ) combinations of a portfolio.

3. Examples using historical stock data from 2005 to 2018

In this section, we will first p rovide a n e xample u sing h istorical S &P 5 00 i ndex v alues. T his example 
demonstrates the details on analysis of historical stock data using an HMM. We will also show the results of 
portfolios created using proposed method for every year from 2010 to 2017 under the out-of-sample testing.

3.1 S&P 500 Index between 2007 and 2017

Let us assume that the index values follows an HMM with bull/bear market trends as latent variable. 
The daily closing values of S&P 500 index between 09/03/2007 and 08/28/2017 were obtained from Ya-
hoo!Finance. We converted them to a vector of 521 weekly closing values X = (X1, X2, . . . , X521). 
Figure 3a shows a histogram of all weekly changes of S&P 500 index in percentages. The index changes 
are approximately bell-shaped with long tails, which indicates a possible normal mixture. The general trend 
of the index closing values between 2008 and 2018 is shown in Figure 3b.

 
2112



(a) Histogram of weekly changes in percentage (b) Time series plot of the closing values

Figure 3: Descriptive graphs of the S&P index from 09/03/2007 to 08/28/2017.

The R package depmixS4 (Visser and Speekenbrink, 2010) computes parameters of an HMM using
the EM algorithm. The HMM classified the weekly changes into two groups. Let us define the state with
estimated parameters, µ̂1 = 0.3% and σ̂1 = 1.5%, as the bull market state and the other one with µ̂2 =
−0.4% and σ̂2 = 4.1% as the bear state. The estimated transition matrix is[

0.978 0.022
0.057 0.943

]
.

In addition, depmixS4 also calculates the posterior probabilities P (Zi = 1 | Y) as shown in Figure 4
using the forward-backward algorithm (Rabiner, 1989). These posterior probabilities suggest that the 2008-
2010 period, the middle of 2010, and the end of 2011 suffered from the bear trend. Estimated states can
be obtained with threshold set at 0.5. Figure 5 is the weekly closing values from 09/03/2007 to 08/28/2017
with bull/bear classifications based on this model and Figure 6 displays the weekly percentage changes in
the same period. Figure 6 showed that the average change in the index values is approximately the same
during the bear market and the bull market. The main difference between the two types of the market is the
volatility.
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Figure 4: The estimated posterior probability P (Zi = 1 | Y) for each week i from 09/03/2007 to
08/28/2017.

Figure 5: The S&P index weekly closing values from 09/03/2007 to 08/28/2017 with bull/bear markets
classifications.
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Figure 6: Changes of the S&P index weekly closing values in percentages from 09/03/2007 to 08/28/2017
with bull/bear markets classifications.

3.2 Yearly Portfolios from 2007 to 2017

Results in the previous subsection are based on the HMM which was fitted using a series of the S&P index
values. In order to create a portfolio for a year, we first fitted one HMM to each of the S&P 500 components.
As described in Section 2, the parameters of the HMMs are used to identify the efficient (R, V ) combinations
and the corresponding weights, consequently the portfolios are created using these weights. We implement
the out-of-sample testing to investigate the performances of our portfolios.

For each S&P component and each year s, s = 2010, . . . , 2017, historical data of that stock from year
s − 6 to year s − 1 are used to build an HMM (2.2). Stocks with records less than 5 years are ignored.
Based on the estimated parameters of (2.2), we estimate (2.8) and (2.10) with T = 52 (a year has 52 weeks).
Thus, we obtain the efficient (R,V ) combinations for year s and the corresponding weights of portfolios.
For each year s, on October 1th, we recalculate the weights and update the portfolios for year s+ 1. Let us
use year 2010 as an example to demonstrate the out-of-sample testing process. The portfolios for the period
from 2010-10-01 to 2011-09-30 are built using the data from 2005-10-01 to 2010-09-30. We evaluate the
performances of these portfolios using the actual capital gains from 2010-10-01 to 2011-09-30.

We will demonstrate the proposed portfolio selection method using three different sets of weights and
their corresponding portfolios. There are the weights that maximize E(R) and the weights that minimize
V (R). Additionally, in order to strike a balance between risk and reward, we find a set of weights that
maximizes R (www) − 2

√
V (R). Table 1 shows the performances of the three portfolios and the S&P 500

index changes.
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Table 1: Actual gains in percentages in one-year period from 2010-10-01 to 2017-10-01

Year Max E(R) Balanced Min V (R) S&P 500
2010-11 -0.56 0.07 0.10 0.02
2011-12 0.36 0.40 0.12 0.26
2012-13 0.29 0.34 0.05 0.15
2013-14 0.37 0.36 0.11 0.15
2014-15 0.31 0.41 -0.01 -0.02
2015-16 -0.19 -0.05 0.19 0.11
2016-17 0.85 0.57 0.04 0.18
2017-18 0.84 0.56 0.07 0.14
Average 0.28 0.33 0.08 0.12
Overall 2.84 7.96 0.89 1.48

Figure 7: The actual cumulative returns from 2010 to 2018.

As expected, the yearly portfolios that maximize E(R) generates some highest profits in percentages in 
several years but also have some great losses. These portfolios carry higher risks compared to the portfolios 
that minimize V (R) which generated low but relatively stable gains. Between 2010 and 2018, the balanced 
portfolios generate highest the overall gain. As shown in Figure 7, the balanced strategy grow the wealth to 
about 9 times of the original size over 8 years, which is substantially higher than the others.

4. Conclusion and Future Works

We proposed a portfolio selection method based on HHMs that utilizes historical weekly returns in per-
centages. The yearly capital gains of a stock was predicted using an HMM. The portfolio selection was 
developed from the E-V rule by Markowitz (1952). This portfolio selection quantified the trade-off between 
risk and reward, thus it gives investors the freedom to choose portfolios with the desired rewards and accept-
able risks. Over the period from 2010 to 2018, the out-of-sample tests showed that our portfolio selection 
method could generate much higher returns compared to the S&P index. For comparison, Matras (2011) 
provided several portfolio selection procedures that were professionally designed by the industry. Its proce-
dures generated average annual gains from 15% to 50% under out-of-sample testing. But these procedures
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depended on the proprietary knowledge of the firm and were implemented with a 4-week holding period.
Our proposed procedure only requires historical stock prices and has a holding period of 1 year, thus it is
easier to implement in practice. Moreover, our procedure can be easily adapted to a 4-week holding period
by modifying T .

As mentioned in Section 2, our data was obtained from Yahoo!Finance, which did not provide historical
price information on stocks that were no longer publicly traded. Current or former S&P 500 components are
large corporations and rarely went bankrupt. However, some of them were no longer traded after mergers
or acquisitions, and we could not find detailed historical data on these stocks. As we looked further into the
past, this problem worsened. For example, we could only find historical prices on 428 stocks out of 500
S&P 500 components in 2010. Hence there were the possible survivor bias that might affect our analysis.
We need better data source to further validate and test our method.

In addition, for any particular year, we used its past 5 years (or n = 260 weeks) data to build the HMMs.
This decision is arbitrary but certainly deserves more attention. Optimally, we want to include all past data
that are relevant to the year for which portfolios are built, but it is hard to determine the amount of data
that is applicable to a particular year. Including irrelevant data would create bias in our estimates R’s. On
the other hand, excluding relevant data would bring additional variability into our estimates. We also are
developing a new model-based method to add the correlation structure among stocks, rather than using the
current ad-hoc method. Ideally, by building a Multivariate Markov chain into the HMM, we can estimate
correlations along with rest of parameters of the model. We used two latent states for the HMMs based on
the buy vs. sell concept (or bull vs. bear). However, the latent states could represent the psychology of the
market broadly. For example, Nguyen (2018) used four-state HMM. By including more states, we introduce
more parameters into the models. The extra complexity could help better the portfolio selection procedure.
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