
A Bayesian Approach to the Measurement Error Problem in Regression

Ananda Jayawardhana, PhD

Pittsburg State University

Pittsburg, KS 66762

Abstract: In this simulation study, simple linear regression and logistic regression were
studied under measurement error of the predictor variables. Measurement errors often
occur in data of scientific experiments as well as survey data in health and social sciences
especially in self- reported surveys. For example, to study the effect of dietary fiber intake
on coronary heart disease, researches have to rely on the self-reported data which are prone
to have measurement error. Many attempts have been made over the years to study the
effect of measurement errors and their effect on parameter estimates. In this study we
modeled with known predictor variables. Using R, R2OpenBUGS, and OpenBUGS, we
simulated data sets and added random errors and studied the parameter estimates. Overall,
the introduction of small errors to predictor variables did not have a large effect on
parameter estimates for linear regression but parameters were consistently over-estimated
in logistic regression. Simulation results and simulation codes will be presented in this
paper.

Key Words: Measurement Error, Bayesian, Regression, Logistic Regression

1. Introduction

Linear regression and logistic regression are popular statistical methods used to analyze
data from studies in many fields. Often one or more predictors are measured with error.
Measurement error in the explanatory variables could result in biased estimates of
parameters which could lead to incorrect conclusions in hypotheses testing and loss of
power in testing. Several methods have been proposed to correct this problem in literature.
Fuller (1987) provides a summary of methods used for linear regression and Carrol, Rupert,
and Stefanski (1995) have given a summary of such methods in non-linear models. Schmid
and Rosner (1993) reports a study of Bayesian analysis of logistic regression for predictors
with systematic measurement errors. They apply their method to study the risk of alcohol
consumption on breast cancer using the Nurses’ Health Study data and report that the
resulting risk estimates differ sharply from those computed by standard logistic regression
that ignores measurement error. Thorensen and Laake (2000) reports a simulation study of
comparison of four estimation methods: regression calibration method, probit maximum
likelihood as an approximation to the logistic maximum likelihood, the exact maximum

2095

likelihood method based on a logistic model, and the naive estimator, which is the result
of simply ignoring the fact that some of the explanatory variables are measured with error.
Rabe-Hesketh, Pickles, and Skrondal (2003) reports a study in which they relaxed the
assumption that covariates and errors are normally distributed. They have developed a
nonparametric maximum likelihood estimation method. To demonstrate their method, they
have used the method in estimating the effect of dietary fiber intake on coronary heart
disease. Buonaccorsi, Romeo, and Thoresen (2018) have developed new methods for
model based bootstrapping when correcting for measurement error in logistic regression
with replicate measures. They used the methods to estimate the occurrence of heart disease
as a function of true mean cholesterol using subset of individuals from Framingham Heart
Study.

2. Problem

In linear regression, measurement error in the explanatory variables could result in biased
estimates of parameters which could lead to incorrect hypotheses testing results and loss
of power in testing. One, well known example of measurement error is self-reported
nutrient intake. The objective of this study is to find out the effect of measurement error on
simple linear regression and logistic regression models with one explanatory variable.

2.1 Classical and Berkson Measurement Error Models

We denote the response variable by 𝑌, the true covariate subject to measurement error by
𝑋, and covariates measured exactly by 𝑍, and proxy for 𝑋 by 𝑊. There are two well-known
measurement error models. Classical measurement error model is given by 𝑊𝑖𝑗 = 𝑋𝑖 +

𝑈𝑖𝑗; 𝑖 = 1,2, … , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑘 with 𝐸(𝑈𝑖𝑗|𝑋𝑖) = 0 and 𝑈𝑖𝑗|𝑋𝑖~𝑁(0, 𝜎𝑈
2). Berkson

measurement error model is given as 𝑋𝑖 = 𝑊𝑖 + 𝑈𝑖; 𝑖 = 1,2, … , 𝑛 with 𝐸(𝑈𝑖|𝑋𝑖) = 0.

2.1.1 Model for the Simple Linear Regression Model

We used the model 𝑋𝑖 = 𝛼0𝑖 + 𝛼1𝑖𝑍𝑖, 𝑈𝑖|𝑋𝑖~𝑁(0, 𝜎𝑈
2), 𝑊𝑖 = 𝑋𝑖 + 𝑈𝑖, 𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝜀𝑖

and 𝜀𝑖~𝑖. 𝑖. 𝑑. 𝑁(0, 𝜎𝑌
2) for 𝑖 = 1,2, … , 𝑛. In almost all the studies in literature, authors

assume a normal distribution for 𝑍𝑖 and therefore 𝑋𝑖 have a normal distribution with some
variance 𝜎𝑋

2 determined by the transformation from 𝑍 to 𝑋. We assumed the distribution of
𝑋 is discrete uniform (1,𝑛) and also we did not include 𝑍 in our models for linear regression
as well as logistic regression.

2.1.2 Model for the Logistic Regression Model with One Covariate

We used the model 𝑋𝑖 = 𝛼0𝑖 + 𝛼1𝑖𝑍𝑖, 𝑈𝑖|𝑋𝑖~𝑁(0, 𝜎𝑈
2), 𝑊𝑖 = 𝑋𝑖 + 𝑈𝑖, 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) =

𝑒𝑥𝑝(𝛼 + 𝛽𝑋𝑖), and 𝑌𝑖 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑖) for 𝑖 = 1,2, … , 𝑛.

2096

2.2 Bayesian Approach

Bayesian logistic regression using Markov Chain Monte Carlo (MCMC) methods were
used to estimate the unknown parameters 𝛼 and 𝛽. OpenBUGS which is an open source
Bayesian software and R which is another open source software were used for the
simulation study. R2OpenBUGS package was used to communicate between R and
OpenBUGS programs.

2.3 Model Formulation and Simulation Study

For the simple linear regression, we chose 𝑍 = {1,2,3, … , 𝑛} and 𝑋 = 𝑍. Parameters 𝛼 and
𝛽 were chosen arbitrarily (only 𝛼 = 50, 𝑎𝑛𝑑 𝛽 = 2 are reported). Using R software, we
generated the values for 𝑋𝑖 𝑎𝑛𝑑 𝑌𝑖, then generated 𝑈𝑖 using several different values of 𝜎𝑈;
(only 𝑛 = 20, 𝜎𝑌 = 5, 10, 𝑎𝑛𝑑 20 𝑎𝑛𝑑 𝜎𝑈 = 0.10, 0.20, 0.30, 0.50, and 0.70 are reported).

For the logistic regression, we chose 𝑍 = {1,2,3, … , 𝑛} and 𝑋 = 𝑍. Parameters 𝛼 and 𝛽
were chosen so that 0.03 < 𝜋𝑖 < 0.98 (only 𝛼 = −3.5 and 𝛽 = 0.05 are reported). Using
R software, we generated the values for 𝑋𝑖 , 𝜋𝑖, 𝑎𝑛𝑑 𝑌𝑖, then generated 𝑈𝑖 using several
different values of 𝜎𝑖𝑗, where 𝑗 = 1. (only 𝑛 = 150 𝑎𝑛𝑑 𝜎𝑖𝑗 = 0.10, 0.15, 0.20, 0.25, and
0.30 are reported).

In both simulations, using R2OpenBUGS software, we used OpenBUGS to estimate the
parameters 𝛼 𝑎𝑛𝑑 𝛽 using 𝑌𝑖 𝑎𝑛𝑑 𝑊𝑖 This process was repeated several thousand times
and the averages of the estimates with standard deviations are reported in Appendices A
for linear regression and in appendix B for logistic regression. For simple linear regression
case we repeated 20,000 times with selecting every 10th one. First selected 1000 were used
as burn-in and the remaining 1000 were used for calculations. For the logistic regression
case we generated 2000 times and selected all of them with the first 1000 as burn-in leaving
the last 1000 for estimation. Simulation codes for linear regression are in Appendices C
and D and those for logistic regression are in Appendices E and F.

3. Results and Discussion

3.1 Simple Linear Regression

In all the simulations, the reliability ratio was kept close to one because the study was a
preliminary step for studying the logistic regression under the influence of measurement
error. Time for simulation was about 2 hours even with 20000 iterations. If the sample size
was increased the time to complete a simulation increased proportionately. As for the priors
for the slope and intercept parameters, any symmetric distribution with large variance
worked equally well, convergence achieved quickly and all the estimates were stable.
Relatively small measurement errors did not significantly affect the parameter estimates.
Study of the behavior of measurement error on linear regression was not the primary
interest of this study.

2097

3.2 Logistic Regression

Simulation for logistic regression had issues with time for simulations and therefore we
limited the sample sizes to 150. Thoresen and Laake (2000) use sample sizes 1500 and
150 for their simulations. Hsieh, F.Y. (1989) provides tables of required sample sizes for a
given probabilities of type one and type two errors and effect size. In most cases, sample
size of 150 is not enough to have accurate estimates for logistic regression and we had
issues with the accuracy of estimates. Both parameters were consistently over estimated.
Range of the prior distributions had to be kept relatively smaller compared to that for linear
regression.

4. Future Research

In the future, most of the study will focus on logistic regression. We plan to use (1,2, . . , 𝑛)
as 𝑍 and also generate 𝑍 from a normal distribution in order to decrease the reliability ratio.
We also plan to use 𝑍 as a covariate in the study. Studying the influence of a non-symmetric
distribution for, 𝑈𝑖|𝑋𝑖is also of our future interest. A simulation study to replicate the work
by Thoresen and Laake (2000) using Bayesian methods is also a future research plan.

Acknowledgements: My gratitude to graduate students Zack Brown and Georgette Searan
for doing the simulations.

References:

Buonaccorsi, Romeo, and Thoresen (2018). “Model based bootstrapping when correcting
for measurement error with application to logistic regression”, Biometrics, 71(1), pp 135-
144.

Carol, R. J., Ruppert, D., and Stefanski, L.A. (1995). Measurement Error in Nonlinear

Models. London, Chapman and Hall.

Fuller, W. A. (1987). Measurement Error Models. New York, Wiley.

Hsieh, F. Y. (1989) “Sample size tables for logistic regression”, Statistics in Medicine, 8,
pp 795-802.

Rabe-Hesketh, S., Pickles, A., and Skrondal, A (2003), “Correcting for covariate
measurement error in logistic regression using nonparametric maximum likelihood
estimation”, Statistical Modeling, 3, pp 215-232.

Schmid, C. H. and Rosner, B (1993). “A Bayesian Approach to Logistic Regression
Models Having Measurement Error Following a Mixture Distribution”, Statistics in
Medicine, 12, pp 1141-1153.

Thorensen, M. and Laake, P (2000). “A Simulation Study od Measurement Error
Correction Methods in Logistic Regression”, Biometrics, 56, pp 868-872.

2098

Appendix A (Tables for Simple Linear Regression)

Table A.1

𝜎𝑦 = 5, 𝛼 = 50, 𝛽 = 2, N=20 , N1=1000
𝜎𝑢 𝐸[�̂�] 𝑆𝐷[�̂�] 𝐸[�̂�] 𝑆𝐷[�̂�]
0.1 50.0541225 1.0953882 1.9967334 0.1957655
0.2 50.0382497 1.1156248 1.9929306 0.1959311
0.3 50.0438327 1.1238185 2.0018266 0.1976062
0.5 50.0301194 1.1295914 1.9928369 0.2024708
0.7 49.9459320 1.1316196 1.9818123 0.1989929

Table A.2

𝜎𝑦 = 10, 𝛼 = 50, 𝛽 = 2, N=20, N1=1000
𝜎𝑢 𝐸[�̂�] 𝑆𝐷[�̂�] 𝐸[�̂�] 𝑆𝐷[�̂�]
0.1 50.0342771 2.2214075 2.0113456 0.3875044
0.2 50.0134045 2.2506454 1.9978172 0.3854915
0.3 50.0902936 2.2278426 1.9987244 0.3937031
0.5 49.9892244 2.1215323 1.9806764 0.3753549
0.7 50.0940331 2.2735200 1.9898190 0.3886036

Table A.3

𝜎𝑦 = 20, 𝛼 = 50, 𝛽 = 2, N=20, N1=1000
𝜎𝑢 𝐸[�̂�] 𝑆𝐷[�̂�] 𝐸[�̂�] 𝑆𝐷[�̂�]
0.1 49.9575208 4.2533572 2.0054092 0.7925665
0.2 50.0542355 4.4443817 1.9972732 0.7851895
0.3 50.0738992 4.4365553 1.9717651 0.7640332
0.5 50.0546040 4.5639699 1.9833693 0.8018115
0.7 50.0005470 4.4606495 1.9706471 0.7834251

Appendix B: Tables for Logistic Regression

Table B.1

 𝛼 = −3.5, 𝛽 = 0.05, N=100 and N1=1000
𝜎𝑢 𝐸[�̂�] 𝑆𝐷[�̂�] 𝐸[�̂�] 𝑆𝐷[�̂�]

0.10 -3.2161054 0.6956845 0.0536951 0.0115529
0.15 -3.2547677 0.7483852 0.0544228 0.0125121
0.20 -3.2751110 0.7456072 0.0546138 0.0123580
0.25 -3.2784620 0.7380119 0.0544429 0.0119445
0.30 -3.2225224 0.7124775 0.0536497 0.0116106

2099

Table B.2

 𝛼 = −3.5, 𝛽 = 0.05, N=100 and N1=2000
𝜎𝑢 𝐸[�̂�] 𝑆𝐷[�̂�] 𝐸[�̂�] 𝑆𝐷[�̂�]

0.10 -3.2509305 0.7204770 0.0540973 0.0118141
0.15 -3.2169980 0.7081743 0.0538145 0.0114513
0.20 -3.2646208 0.7242866 0.0545563 0.0118418
0.25 -3.2390438 0.7321297 0.0539766 0.0118669
0.30 -3.2317304 0.7045236 0.0540024 0.0114318

Table B.3

 𝛼 = −3.5, 𝛽 = 0.05, N=100 and N1=5000
𝜎𝑢 𝐸[�̂�] 𝑆𝐷[�̂�] 𝐸[�̂�] 𝑆𝐷[�̂�]

0.10 -3.2258412 0.7234108 0.0539446 0.0118702
0.15 -3.2317478 0.7305132 0.0539156 0.0118576
0.20 -3.2325650 0.7052436 0.0540029 0.0115394
0.25 -3.2172087 0.7248877 0.0538975 0.0119682
0.30 -3.2290343 0.7137271 0.0539039 0.0117994

Table B.4

 𝛼 = −3.5, 𝛽 = 0.05, N=250 and N1=1000
𝜎𝑢 𝐸[�̂�] 𝑆𝐷[�̂�] 𝐸[�̂�] 𝑆𝐷[�̂�]

0.10 -3.2025737 0.5978319 0.0534613 0.0084868
0.15 -3.2165633 0.5956177 0.0534902 0.0084055
0.20 -3.2242839 0.5703349 0.0537021 0.0081923
0.25 -3.2166228 0.5836107 0.0534794 0.0082667
0.30 -3.2080868 0.5745295 0.0534932 0.0082192

Table B.5

 𝛼 = −3.5, 𝛽 = 0.05, N=250 and N1=2000
𝜎𝑢 𝐸[�̂�] 𝑆𝐷[�̂�] 𝐸[�̂�] 𝑆𝐷[�̂�]

0.10 -3.1975542 0.5762091 0.0532885 0.0082521
0.15 -3.2336066 0.5951746 0.0538218 0.0086623
0.20 -3.2189772 0.5759791 0.0535340 0.0083252
0.25 -3.2250801 0.6018651 0.0538481 0.0086991
0.30 -3.2118393 0.5710256 0.0536916 0.0083346

Table B.6

 𝛼 = −3.5, 𝛽 = 0.05, N=250 and N1=5000
𝜎𝑢 𝐸[�̂�] 𝑆𝐷[�̂�] 𝐸[�̂�] 𝑆𝐷[�̂�]

0.10 -3.2188177 0.5918984 0.0535958 0.0084495
0.15 -3.1998554 0.5930697 0.0533744 0.0084044
0.20 -3.2160638 0.5815679 0.0536290 0.0084085
0.25 -3.2052228 0.5989366 0.0534411 0.0085442
0.30 -3.2102761 0.5821838 0.0534326 0.0083428

2100

Appendix C: R Program for Simple Linear Regression

N1<-2000

N<-20

output<-matrix(NA,nrow=N1,ncol=2)

for (k in 1:N1) {

xmatrix<-matrix(NA,nrow=N,ncol=1)

a<-matrix(NA,nrow=N,ncol=1)

c<-matrix(NA,nrow=N,ncol=1)

ymatrix<-matrix(NA,nrow=N,ncol=1)

alpha<-50

beta<-2

for (i in 1:N) {

xmatrix[i]<- c[i]<-rnorm(1,0,Y.ERROR.SD) }

for (i in 1:N) {

ymatrix[i]<-alpha+beta*(xmatrix[i]-mean(xmatrix[]))+c[i]

a[i]<-rnorm(1,0,X.ERROR.SD)

xmatrix[i]<-i+a[i] }

x<-as.vector(xmatrix-mean(xmatrix[]))

y<-as.vector(ymatrix)

 gadata<-list(y=y,x=x,N=N)

parameters<-c("alphahat","betahat")

inits01<-
function(){list(alphahat=ALPHA.INITIAL.VALUE,betahat=BETA.INITIAL.VALUE,ta
u=2)}

model.file.errordata<-"BUGS.CODE.DIRECTORY

errordata.sim<-
bugs(data=gadata,inits=inits01,parameters,n.iter=20000,n.thin=10,n.burnin=10000,model
.file=model.file.errordata,debug=FALSE)

output[k,]<-errordata.sim$summary[c(1,2)]

}

2101

A<-mean(output[,1])

B<-sd(output[,1])

C<-mean(output[,2])

D<-sd(output[,2])

print(c(A,B,C,D))

Appendix D: OpenBUGS Program for Simple Linear Regression

model {

for (i in 1:N) {

y[i] ~ dnorm(mu[i], tau)

mu[i] <- alphahat + betahat*x[i]

}

alphahat ~ dunif(-100000,100000)

betahat ~ dunif(-100000,100000)

tau ~ dgamma(1,1)

}

2102

Appendix E: R Program for Logistic Regression

N1<-1000 #N1 is the number of iterations to be
run
N<-150 #N is the designated sample size
output<-matrix(NA,nrow=N1,ncol=2) #Matrices were created for storing

specified values
for (k in 1:N1) {
xmatrix<-matrix(NA,nrow=N,ncol=1)
a<-matrix(NA,nrow=N,ncol=1)
ybinary<-matrix(NA,nrow=N,ncol=1)
alpha<- α #α is the numerical value used to
create the data
beta<- β #β is the numerical value used to
create the data
for (i in 1:N) {
xmatrix[i]<-i #Assigning 𝑋𝑖 values to create 𝑌𝑖
}
for (i in 1:N) {
pi<-((exp(alpha+beta*(xmatrix[i])))/(1+(exp(alpha+beta*(xmatrix[i]))))) #Calculating 𝜋𝑖
ybinary[i]<-rbern(1,pi) #Random variable from Bern(𝜋𝑖)
a[i]<-rnorm(1,0,𝜎𝑢) #Generating 𝑋𝑖 error randomly
 #𝜎𝑢 is an assigned numerical value
xmatrix[i]<-i+a[i] #Infusing 𝑋𝑖 with the error
}
x<-as.vector(xmatrix) #Converting from matrices to
vectors
y<-as.vector(ybinary)
gadata<-list(y=y,x=x,N=N) #Sending data and N value to
OpenBUGS
parameters<-c("alphahat","betahat") #Naming the parameters
inits01<-function(){list(alphahat= IVα,betahat=
IVβ)} #IV is the initial value usually close
to α and β
model.file.errordata<-"Location of OpenBUGS code as txt file"

errordata.sim<- #Allows for OpenBUGS to be run
with the given
bugs(data=gadata,inits=inits01,parameters,n.iter=2000,n.thin=1,n.burnin=1000,model.file
=model.file.errordata,debug=FALSE) #debug=TRUE would open
OpenBUGS each loop
output[k,]<-errordata.sim$summary[c(1,2)] #Collects and stores �̂� and �̂�
}
A<-mean(output[,1]) #Finds the average and standard
deviation
B<-sd(output[,1]) #of �̂� and �̂� over all the iterations
C<-mean(output[,2])

2103

D<-sd(output[,2])
print(c(A,B,C,D)) #Displays these values

Appendix F: OpenBUGS Program for Logistic Regression

OpenBugs Program

model { #Inside the for loop is the likelihood function
for 𝑌𝑖

for (i in 1:N){ #N is the sample size specified in
the R code

y[i] ~ dbern(pi[i]) #y[i] is the 𝑖th 𝑌 value R created

pi[i] <- ilogit(alphahat + betahat*x[i]) #x[i] is calculated directly in R

}

alphahat ~ dunif(-100,100) #These are the selected prior
distributions

betahat ~ dunif(-100,100)

}

2104

