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Abstract: In this simulation study, simple linear regression and logistic regression were 
studied under measurement error of the predictor variables. Measurement errors often 
occur in data of scientific experiments as well as survey data in health and social sciences 
especially in self- reported surveys. For example, to study the effect of dietary fiber intake 
on coronary heart disease, researches have to rely on the self-reported data which are prone 
to have measurement error. Many attempts have been made over the years to study the 
effect of measurement errors and their effect on parameter estimates. In this study we 
modeled with known predictor variables. Using R, R2OpenBUGS, and OpenBUGS, we 
simulated data sets and added random errors and studied the parameter estimates. Overall, 
the introduction of small errors to predictor variables did not have a large effect on 
parameter estimates for linear regression but parameters were consistently over-estimated 
in logistic regression. Simulation results and simulation codes will be presented in this 
paper.  
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1. Introduction 

Linear regression and logistic regression are popular statistical methods used to analyze 
data from studies in many fields.  Often one or more predictors are measured with error.  
Measurement error in the explanatory variables could result in biased estimates of 
parameters which could lead to incorrect conclusions in hypotheses testing and loss of 
power in testing. Several methods have been proposed to correct this problem in literature. 
Fuller (1987) provides a summary of methods used for linear regression and Carrol, Rupert, 
and Stefanski (1995) have given a summary of such methods in non-linear models.  Schmid 
and Rosner (1993) reports a study of Bayesian analysis of logistic regression for predictors 
with systematic measurement errors. They apply their method to study the risk of alcohol 
consumption on breast cancer using the Nurses’ Health Study data and report that the 
resulting risk estimates differ sharply from those computed by standard logistic regression 
that ignores measurement error. Thorensen and Laake (2000) reports a simulation study of 
comparison of four estimation methods: regression calibration method, probit maximum 
likelihood as an approximation to the logistic maximum likelihood, the exact maximum 
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likelihood method based on a logistic model, and the naive estimator, which is the result 
of simply ignoring the fact that some of the explanatory variables are measured with error.   
Rabe-Hesketh, Pickles, and Skrondal (2003) reports a study in which they relaxed the 
assumption that covariates and errors are normally distributed.  They have developed a 
nonparametric maximum likelihood estimation method.  To demonstrate their method, they 
have used the method in estimating the effect of dietary fiber intake on coronary heart 
disease. Buonaccorsi, Romeo, and Thoresen (2018) have developed new methods for 
model based bootstrapping when correcting for measurement error in logistic regression 
with replicate measures.  They used the methods to estimate the occurrence of heart disease 
as a function of true mean cholesterol using subset of individuals from Framingham Heart 
Study.   

 

2. Problem 

In linear regression, measurement error in the explanatory variables could result in biased 
estimates of parameters which could lead to incorrect hypotheses testing results and loss 
of power in testing. One, well known example of measurement error is self-reported 
nutrient intake. The objective of this study is to find out the effect of measurement error on 
simple linear regression and logistic regression models with one explanatory variable.   

 

2.1 Classical and Berkson Measurement Error Models 

We denote the response variable by 𝑌, the true covariate subject to measurement error by 
𝑋, and covariates measured exactly by 𝑍, and proxy for 𝑋 by 𝑊. There are two well-known 
measurement error models. Classical measurement error model is given by 𝑊𝑖𝑗 = 𝑋𝑖 +

𝑈𝑖𝑗; 𝑖 = 1,2, … , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑘 with 𝐸(𝑈𝑖𝑗|𝑋𝑖) = 0 and 𝑈𝑖𝑗|𝑋𝑖~𝑁(0, 𝜎𝑈
2).  Berkson 

measurement error model is given as 𝑋𝑖 = 𝑊𝑖 + 𝑈𝑖; 𝑖 = 1,2, … , 𝑛 with 𝐸(𝑈𝑖|𝑋𝑖) = 0.   

 

2.1.1 Model for the Simple Linear Regression Model 

We used the model 𝑋𝑖 = 𝛼0𝑖 + 𝛼1𝑖𝑍𝑖, 𝑈𝑖|𝑋𝑖~𝑁(0, 𝜎𝑈
2), 𝑊𝑖 = 𝑋𝑖 + 𝑈𝑖, 𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝜀𝑖 

and 𝜀𝑖~𝑖. 𝑖. 𝑑. 𝑁(0, 𝜎𝑌
2) for 𝑖 = 1,2, … , 𝑛. In almost all the studies in literature, authors 

assume a normal distribution for 𝑍𝑖 and therefore 𝑋𝑖 have a normal distribution with some 
variance 𝜎𝑋

2 determined by the transformation from 𝑍 to 𝑋. We assumed the distribution of 
𝑋 is discrete uniform (1,𝑛) and also we did not include 𝑍 in our models for linear regression 
as well as logistic regression.    

  

2.1.2 Model for the Logistic Regression Model with One Covariate  

We used the model 𝑋𝑖 = 𝛼0𝑖 + 𝛼1𝑖𝑍𝑖, 𝑈𝑖|𝑋𝑖~𝑁(0, 𝜎𝑈
2), 𝑊𝑖 = 𝑋𝑖 + 𝑈𝑖, 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) =

𝑒𝑥𝑝(𝛼 + 𝛽𝑋𝑖), and 𝑌𝑖 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑖) for 𝑖 = 1,2, … , 𝑛.     
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2.2 Bayesian Approach  

Bayesian logistic regression using Markov Chain Monte Carlo (MCMC) methods were 
used to estimate the unknown parameters 𝛼 and 𝛽.  OpenBUGS which is an open source 
Bayesian software and R which is another open source software were used for the 
simulation study. R2OpenBUGS package was used to communicate between R and 
OpenBUGS programs. 

 

2.3 Model Formulation and Simulation Study 

For the simple linear regression, we chose 𝑍 = {1,2,3, … , 𝑛} and 𝑋 = 𝑍. Parameters 𝛼 and 
𝛽 were chosen arbitrarily (only 𝛼 = 50, 𝑎𝑛𝑑 𝛽 = 2 are reported). Using R software, we 
generated the values for 𝑋𝑖  𝑎𝑛𝑑 𝑌𝑖, then generated 𝑈𝑖 using several different values of 𝜎𝑈; 
(only 𝑛 = 20, 𝜎𝑌 = 5, 10, 𝑎𝑛𝑑 20 𝑎𝑛𝑑 𝜎𝑈 = 0.10, 0.20, 0.30, 0.50, and 0.70 are reported).     

For the logistic regression, we chose 𝑍 = {1,2,3, … , 𝑛} and 𝑋 = 𝑍. Parameters 𝛼 and 𝛽 
were chosen so that 0.03 < 𝜋𝑖 < 0.98 (only 𝛼 = −3.5 and 𝛽 = 0.05 are reported).  Using 
R software, we generated the values for 𝑋𝑖 , 𝜋𝑖, 𝑎𝑛𝑑 𝑌𝑖, then generated 𝑈𝑖 using several 
different values of 𝜎𝑖𝑗, where 𝑗 = 1.  (only 𝑛 = 150 𝑎𝑛𝑑 𝜎𝑖𝑗 = 0.10, 0.15, 0.20, 0.25, and 
0.30 are reported).  

In both simulations, using R2OpenBUGS software, we used OpenBUGS to estimate the 
parameters 𝛼 𝑎𝑛𝑑 𝛽 using 𝑌𝑖 𝑎𝑛𝑑 𝑊𝑖 This process was repeated several thousand times 
and the averages of the estimates with standard deviations are reported in Appendices A 
for linear regression and in appendix B for logistic regression. For simple linear regression 
case we repeated 20,000 times with selecting every 10th one.  First selected 1000 were used 
as burn-in and the remaining 1000 were used for calculations.  For the logistic regression 
case we generated 2000 times and selected all of them with the first 1000 as burn-in leaving 
the last 1000 for estimation. Simulation codes for linear regression are in Appendices C 
and D and those for logistic regression are in Appendices E and F.  

 

3. Results and Discussion 

 

3.1 Simple Linear Regression 

In all the simulations, the reliability ratio was kept close to one because the study was a 
preliminary step for studying the logistic regression under the influence of measurement 
error. Time for simulation was about 2 hours even with 20000 iterations.  If the sample size 
was increased the time to complete a simulation increased proportionately. As for the priors 
for the slope and intercept parameters, any symmetric distribution with large variance 
worked equally well, convergence achieved quickly and all the estimates were stable. 
Relatively small measurement errors did not significantly affect the parameter estimates. 
Study of the behavior of measurement error on linear regression was not the primary 
interest of this study.  
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3.2 Logistic Regression 

Simulation for logistic regression had issues with time for simulations and therefore we 
limited the sample sizes to 150.  Thoresen and Laake (2000) use sample sizes 1500 and 
150 for their simulations. Hsieh, F.Y. (1989) provides tables of required sample sizes for a 
given probabilities of type one and type two errors and effect size. In most cases, sample 
size of 150 is not enough to have accurate estimates for logistic regression and we had 
issues with the accuracy of estimates. Both parameters were consistently over estimated. 
Range of the prior distributions had to be kept relatively smaller compared to that for linear 
regression.      

      
4. Future Research 

In the future, most of the study will focus on logistic regression.  We plan to use (1,2, . . , 𝑛) 
as 𝑍 and also generate 𝑍 from a normal distribution in order to decrease the reliability ratio.  
We also plan to use 𝑍 as a covariate in the study. Studying the influence of a non-symmetric 
distribution for, 𝑈𝑖|𝑋𝑖is also of our future interest. A simulation study to replicate the work 
by Thoresen and Laake (2000) using Bayesian methods is also a future research plan.  

Acknowledgements: My gratitude to graduate students Zack Brown and Georgette Searan 
for doing the simulations.       
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Appendix A (Tables for Simple Linear Regression) 

 

Table A.1 

𝜎𝑦 = 5, 𝛼 = 50, 𝛽 = 2, N=20 , N1=1000 
𝜎𝑢 𝐸[𝛼̂] 𝑆𝐷[𝛼̂] 𝐸[𝛽̂] 𝑆𝐷[𝛽̂] 
0.1 50.0541225 1.0953882 1.9967334 0.1957655 
0.2 50.0382497 1.1156248 1.9929306 0.1959311 
0.3 50.0438327 1.1238185 2.0018266 0.1976062 
0.5 50.0301194 1.1295914 1.9928369 0.2024708 
0.7 49.9459320 1.1316196 1.9818123 0.1989929 

 

Table A.2 

𝜎𝑦 = 10, 𝛼 = 50, 𝛽 = 2, N=20, N1=1000 
𝜎𝑢 𝐸[𝛼̂] 𝑆𝐷[𝛼̂] 𝐸[𝛽̂] 𝑆𝐷[𝛽̂] 
0.1 50.0342771 2.2214075 2.0113456 0.3875044 
0.2 50.0134045 2.2506454 1.9978172 0.3854915 
0.3 50.0902936 2.2278426 1.9987244 0.3937031 
0.5 49.9892244 2.1215323 1.9806764 0.3753549 
0.7 50.0940331 2.2735200 1.9898190 0.3886036 

 

Table A.3 

𝜎𝑦 = 20, 𝛼 = 50, 𝛽 = 2, N=20, N1=1000 
𝜎𝑢 𝐸[𝛼̂] 𝑆𝐷[𝛼̂] 𝐸[𝛽̂] 𝑆𝐷[𝛽̂] 
0.1 49.9575208 4.2533572 2.0054092 0.7925665 
0.2 50.0542355 4.4443817 1.9972732 0.7851895 
0.3 50.0738992 4.4365553 1.9717651 0.7640332 
0.5 50.0546040 4.5639699 1.9833693 0.8018115 
0.7 50.0005470 4.4606495 1.9706471 0.7834251 

 

 

Appendix B: Tables for Logistic Regression 

 

Table B.1 

 𝛼 = −3.5, 𝛽 = 0.05, N=100 and N1=1000 
𝜎𝑢 𝐸[𝛼̂] 𝑆𝐷[𝛼̂] 𝐸[𝛽̂] 𝑆𝐷[𝛽̂] 

0.10 -3.2161054 0.6956845 0.0536951 0.0115529 
0.15 -3.2547677 0.7483852 0.0544228 0.0125121 
0.20 -3.2751110 0.7456072 0.0546138 0.0123580 
0.25 -3.2784620 0.7380119 0.0544429 0.0119445 
0.30 -3.2225224 0.7124775 0.0536497 0.0116106 
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Table B.2 

 𝛼 = −3.5, 𝛽 = 0.05, N=100 and N1=2000 
𝜎𝑢 𝐸[𝛼̂] 𝑆𝐷[𝛼̂] 𝐸[𝛽̂] 𝑆𝐷[𝛽̂] 

0.10 -3.2509305 0.7204770 0.0540973 0.0118141 
0.15 -3.2169980 0.7081743 0.0538145 0.0114513 
0.20 -3.2646208 0.7242866 0.0545563 0.0118418 
0.25 -3.2390438 0.7321297 0.0539766 0.0118669 
0.30 -3.2317304 0.7045236 0.0540024 0.0114318 

 

Table B.3 

 𝛼 = −3.5, 𝛽 = 0.05, N=100 and N1=5000 
𝜎𝑢 𝐸[𝛼̂] 𝑆𝐷[𝛼̂] 𝐸[𝛽̂] 𝑆𝐷[𝛽̂] 

0.10 -3.2258412 0.7234108 0.0539446 0.0118702 
0.15 -3.2317478 0.7305132 0.0539156 0.0118576 
0.20 -3.2325650 0.7052436 0.0540029 0.0115394 
0.25 -3.2172087 0.7248877 0.0538975 0.0119682 
0.30 -3.2290343 0.7137271 0.0539039 0.0117994 

 

Table B.4 

 𝛼 = −3.5, 𝛽 = 0.05, N=250 and N1=1000 
𝜎𝑢 𝐸[𝛼̂] 𝑆𝐷[𝛼̂] 𝐸[𝛽̂] 𝑆𝐷[𝛽̂] 

0.10 -3.2025737 0.5978319 0.0534613 0.0084868 
0.15 -3.2165633 0.5956177 0.0534902 0.0084055 
0.20 -3.2242839 0.5703349 0.0537021 0.0081923 
0.25 -3.2166228 0.5836107 0.0534794 0.0082667 
0.30 -3.2080868 0.5745295 0.0534932 0.0082192 

 

Table B.5 

 𝛼 = −3.5, 𝛽 = 0.05, N=250 and N1=2000 
𝜎𝑢 𝐸[𝛼̂] 𝑆𝐷[𝛼̂] 𝐸[𝛽̂] 𝑆𝐷[𝛽̂] 

0.10 -3.1975542 0.5762091 0.0532885 0.0082521 
0.15 -3.2336066 0.5951746 0.0538218 0.0086623 
0.20 -3.2189772 0.5759791 0.0535340 0.0083252 
0.25 -3.2250801 0.6018651 0.0538481 0.0086991 
0.30 -3.2118393 0.5710256 0.0536916 0.0083346 

 

Table B.6 

 𝛼 = −3.5, 𝛽 = 0.05, N=250 and N1=5000 
𝜎𝑢 𝐸[𝛼̂] 𝑆𝐷[𝛼̂] 𝐸[𝛽̂] 𝑆𝐷[𝛽̂] 

0.10 -3.2188177 0.5918984 0.0535958 0.0084495 
0.15 -3.1998554 0.5930697 0.0533744 0.0084044 
0.20 -3.2160638 0.5815679 0.0536290 0.0084085 
0.25 -3.2052228 0.5989366 0.0534411 0.0085442 
0.30 -3.2102761 0.5821838 0.0534326 0.0083428 
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Appendix C: R Program for Simple Linear Regression 

N1<-2000   

N<-20    

output<-matrix(NA,nrow=N1,ncol=2)   

for (k in 1:N1) {   

xmatrix<-matrix(NA,nrow=N,ncol=1)   

a<-matrix(NA,nrow=N,ncol=1)  

c<-matrix(NA,nrow=N,ncol=1)   

ymatrix<-matrix(NA,nrow=N,ncol=1)  

alpha<-50  

beta<-2  

for (i in 1:N) {  

xmatrix[i]<- c[i]<-rnorm(1,0,Y.ERROR.SD) } 

for (i in 1:N) {  

ymatrix[i]<-alpha+beta*(xmatrix[i]-mean(xmatrix[]))+c[i]  

a[i]<-rnorm(1,0,X.ERROR.SD)  

xmatrix[i]<-i+a[i] } 

x<-as.vector(xmatrix-mean(xmatrix[]))  

y<-as.vector(ymatrix)  

 gadata<-list(y=y,x=x,N=N)  

parameters<-c("alphahat","betahat")  

inits01<-
function(){list(alphahat=ALPHA.INITIAL.VALUE,betahat=BETA.INITIAL.VALUE,ta
u=2)}  

model.file.errordata<-"BUGS.CODE.DIRECTORY 

errordata.sim<-
bugs(data=gadata,inits=inits01,parameters,n.iter=20000,n.thin=10,n.burnin=10000,model
.file=model.file.errordata,debug=FALSE)  

output[k,]<-errordata.sim$summary[c(1,2)]   

} 
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A<-mean(output[,1])  

B<-sd(output[,1])  

C<-mean(output[,2])  

D<-sd(output[,2])  

print(c(A,B,C,D))  

 

 

Appendix D: OpenBUGS Program for Simple Linear Regression 

model { 

for (i in 1:N) {  

y[i] ~ dnorm(mu[i], tau)  

mu[i] <- alphahat + betahat*x[i]  

} 

alphahat ~ dunif(-100000,100000)  

betahat ~ dunif(-100000,100000)  

tau ~ dgamma(1,1)  

}  
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Appendix E: R Program for Logistic Regression 

N1<-1000  #N1 is the number of iterations to be 
run 
N<-150  #N is the designated sample size 
output<-matrix(NA,nrow=N1,ncol=2) #Matrices were created for storing 

specified values 
for (k in 1:N1) { 
xmatrix<-matrix(NA,nrow=N,ncol=1) 
a<-matrix(NA,nrow=N,ncol=1) 
ybinary<-matrix(NA,nrow=N,ncol=1) 
alpha<- α  #α is the numerical value used to 
create the data 
beta<- β  #β  is the numerical value used to 
create the data 
for (i in 1:N) { 
xmatrix[i]<-i  #Assigning 𝑋𝑖 values to create 𝑌𝑖 
} 
for (i in 1:N) { 
pi<-((exp(alpha+beta*(xmatrix[i])))/(1+(exp(alpha+beta*(xmatrix[i]))))) #Calculating 𝜋𝑖 
ybinary[i]<-rbern(1,pi)  #Random variable from Bern(𝜋𝑖) 
a[i]<-rnorm(1,0,𝜎𝑢)  #Generating 𝑋𝑖 error randomly 
  #𝜎𝑢 is an assigned numerical value  
xmatrix[i]<-i+a[i]  #Infusing 𝑋𝑖 with the error 
} 
x<-as.vector(xmatrix)  #Converting from matrices to 
vectors 
y<-as.vector(ybinary) 
gadata<-list(y=y,x=x,N=N)  #Sending data and N value to 
OpenBUGS 
parameters<-c("alphahat","betahat")  #Naming the parameters 
inits01<-function(){list(alphahat= IVα,betahat= 
IVβ)}  #IV is the initial value usually close 
to α and β 
model.file.errordata<-"Location of OpenBUGS code as txt file"  
 
errordata.sim<-  #Allows for OpenBUGS to be run 
with the given 
bugs(data=gadata,inits=inits01,parameters,n.iter=2000,n.thin=1,n.burnin=1000,model.file
=model.file.errordata,debug=FALSE)  #debug=TRUE would open 
OpenBUGS each loop 
output[k,]<-errordata.sim$summary[c(1,2)]  #Collects and stores 𝛼̂ and 𝛽̂ 
} 
A<-mean(output[,1])  #Finds the average and standard 
deviation 
B<-sd(output[,1])  #of 𝛼̂ and 𝛽̂ over all the iterations 
C<-mean(output[,2]) 
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D<-sd(output[,2]) 
print(c(A,B,C,D))  #Displays these values 
 

 
 
 
 
 
 
 

Appendix F: OpenBUGS Program for Logistic Regression 

 

OpenBugs Program 

model {                                                       #Inside the for loop is the likelihood function 
for 𝑌𝑖 

for (i in 1:N){  #N is the sample size specified in 
the R code 

y[i] ~ dbern(pi[i])  #y[i] is the 𝑖th 𝑌 value R created 

pi[i] <- ilogit(alphahat + betahat*x[i])  #x[i] is calculated directly in R 

} 

alphahat ~ dunif(-100,100)  #These are the selected prior 
distributions 

betahat ~ dunif(-100,100) 

} 
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