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Abstract 

Language modeling is to predict next word in a given sentence. Language models are 
widely used for improving performance in many areas such as automatic speech 
recognition and machine translation. Prediction of next word is a sequential data prediction 
problem. 
In this paper, we present two approaches for the task of language modeling. First, n-gram 
models are designed to statistically estimate the probability of next word given a sequence 
of previous words. This one is supported by SAS language model functionality, called 
language model action set. This action set is designed to efficiently train n-gram models on 
cloud platforms when a training data set consists of a large number of documents. 
Second, we explore neural network for building language models using SAS deep learning 
functionality, called deep learning action set. This action set enables us to build LSTM-
based models. We choose LSTM-based models because it is known that Long Short-Term 
Memory networks (LSTM) have advantages over recurrent neural networks in terms of 
handling exploding and vanishing gradient problems. 
We conduct user studies and our user studies demonstrate the effectiveness of our language 
models. 
 

Key Words: N-gram Models, Long Short-Term Memory network, Recurrent Neural 
Network, Deep Learning, Perplexity, Word Prediction 

 

 
1. Introduction 

 
Language models (LMs) [1, 2, 6, 7, 8] are used to predict next word in a given sentence. 
In other words, these models are designed to assign the probability of the last word of an 
n-gram given the previous words. These models are applied to a wide range of applications 
and domains with great success. Example applications include automatic speech 
recognition, machine translation, and spelling correction. The performance of these 
applications is greatly impacted by the quality of language models. For example, word 
error rate of automatic speech recognition is decreased by 18% by adopting language 
models [2] for experiments with Wall Street Journal data set. 

Building language models of high performance is an important task. The performance 
of language models depends on several factors: methods for training, the amount of training 
data, and the quality of the training data. These factors are important to accommodate large 
amounts of training data into language models with high performance. Recently, large scale 
corpora that can be collected from the Web [1, 2] is used as training data. 

In this paper, we focus on two approaches. First approach is n-gram models. N-grams 
represent a sequence of n words. N-gram models [6, 7, 8] are widely adopted methods by 
statistically estimating the probability of next word given a sequence of previous words. In 
particular, the size of the language model increases rapidly with growing number of n. In 
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consideration of the size, relatively low order, such as 1, 2, 3, or 4-grams are commonly 
used in practice. In addition, as these models are based on n-grams observed in the training 
data set, explicit probabilities of n-grams that are not observed in the training data set 
cannot be returned. In such cases, techniques such as stupid backoff [7] are used to yield 
better language models using empirically pre-computed probabilities with regards to n-1 
grams. 

Second approach is Long Short-Term Memory network (LSTM) [3] based models. 
LSTM is a family of recurrent neural networks. Recently recurrent neural networks have 
become increasingly popular for the task of language modeling. Similar to n-gram models, 
recurrent neural network language models estimate probability of next word. While n-gram 
models are based on n-grams observed in the training data set, this approach is based on 
the full history of text in the training data set. However, training recurrent neural networks 
using backpropagation is not trivial due to the well-known vanishing gradient problem [3]. 
The problem is that the gradient is not propagated properly and becomes to be vanishing 
or growing exponentially. To address this issue, Long Short-Term Memory (LSTM) [3] is 
proposed. In this network, the explicit gradient problem is prevented. 

In this paper, we introduce how to build two types of language models using SAS.  
 

• N-gram models are supported by SAS language model functionality, called 
language model action set. This action set enables users to build their own n-gram 
language models based on n-grams identified from input documents. 
 

• LSTM models [3, 9, 10, 11] are supported by SAS deep learning functionality, 
called deep learning action set. We leverage LSTM models to predict next word in 
a sentence for language models 

 
Moreover, our two approaches allow for processing a huge number of documents in a 

distributed computing resources on cloud. We conduct user studies and our user studies 
demonstrate the effectiveness of our language models. 

 
 

2. N-Gram Model 

 
This section introduces n-gram models for language modeling. We first describe approach, 
and then, details of each step to build n-gram language models. We next provide example 
code in Python. 
 
2.1 Approach 

 
We developed a language model action set that enables users to build their own n-gram 
language models based on n-grams identified from input documents. Note that action set 
is a collection of CAS actions. Each action performs analytics tasks on SAS Cloud Analytic 
Services (CAS) supported by SAS Viya platform. An action is designed to perform a task 
efficiently and effectively because this can work in parallel such as loading data and 
distributing the collection of n-grams statistics over several nodes in Cloud. 

The language model action set, called langModel includes three actions to build n-
gram language models in a pipeline: textToNGram, nGramCount, and nGramCountToLM 
actions. Figure 1 illustrates three actions. We describe these actions in Section 2.2. 
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Figure 1. Overview of three actions that help build n-gram language models. 
 

These three actions are dependent on each other in a pipeline. The first action takes 
input text as an input. Then, based on the output of the first action, the second action finds 
frequency of distinct n-gram. Then, third action, named nGramCountToLM analyzes 
frequency information and generates a language model where corresponding log 
probability and weight for each n-gram is stored. The language model is stored as binary 
SAS Cloud Analytics Service (CAS) tables. The model could be used for variety of 
purposes such as generating transcripts for speech-to-text applications. When this is used 
for the speech-to-text applications, the application’s performance is improved in terms of 
accuracy. 
 
2.2 Build N-Gram Language Models 

 
This section presents each step. The first step is to use the textToNgram action, which 
converts raw text data into n-gram output table. N-gram output table contains 1-grams, 2-
grams, …, and n-grams. An n-gram is a sequence of N words, w1, w2, w3, …, wn. Consider 
that an example sentence is “I like my car.”  For example, 2-gram (i.e., bigram) is a 
sequence of two words such as “I like”, “like my”, or “my car.” 3-gram (i.e., trigram) is a 
sequence of three words such as “I like my”, or “like my car.”  

The second step is to feed the n-gram table generated from the textToNgram action to 
the nGramCount action. Note that n-gram models are built based on the collection of n-
grams and their frequency counts. In this step, the action identifies distinct n-gram and 
calculates frequency count of an n-gram. 

The third step is to generate an n-gram language model using the nGramCountToLM 
action. The nGramCountToLm action takes frequency counts data for each n-gram and 
calculates probabilities and generates the language model. In this step, infrequent n-grams 
are pruned by setting a value for the minCount parameter within the action. This parameter 
specifies a minimum number of times that the n-gram must occur in the input data set. The 
action prunes any n-gram that does not appear as many times or more than this value. The 
language model output table includes probabilities and weights of n-grams: 

 
• Probability represents conditional probability of the last word of an n-gram 

given the previous words. Let P (wn | w1, w2, w3, …, wn-1) is conditional 
probability for a sequence of N words. 

P (wn | w1, w2, w3, … , wn − 1) = ln  (
C (w1, w2, w3, … , wn)

C (w1, w2, w3, … , wn − 1)
) 

where C (w1, w2, w3, … , wn) denotes frequency counts of n-grams, w1, w2, 
w3, …, wn. 

 

textToNGram

•Process documents 
and create n-gram 
data.

nGramCount

• Take n-gram data as 
an input and 
calculate frequency 
of each n-gram.

nGramCountToLM

• Take the frequency 
of each n-gram as an 
input and calculate 
log probability and 
weight for each n-
gram.
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• Explicit probabilities of n-grams that are not observed in the training data set 
cannot be calculated. We use stupid backoff [7] to yield better language 
models using empirically pre-computed probabilities with regards to n-1 
grams. We use 0.89 as a default value. Weights are calculated by 10 based log 
function on it. 

 
2.3 Example Use Case 

 
This example illustrates how to build n-gram language models. To perform tasks on CAS 
server, users submit code using CAS clients that are supported by several languages such 
as CASL [12], Python, Lua, or Java. Client-side source code in this example was written 
in Python. 

 
Figure 2: Code written in Python. 

 
Figure 2 illustrates example code. In the example code, the SAS Scripting Wrapper for 

Analytics Transfer (SWAT) package [5] is used to interface with the CAS server at Line 
1. Note that s is the session returned by SWAT. Next, train data set, named “train” is loaded 
into a CAS table at Lines 3-4. Table 1 presents all the data set in “train” data set. In the 
data set, “Text” column contained text data for processing. 

 
Next, langModel action set is loaded for using three actions for building language 

model at Line 5. To process “train” data set, three actions are called in a sequence: 

  

Line # 
 

1 import swat 

2 s=swat.CAS("cloud.example.com", 5570) 

3 r=s.table.loadTable(path=" train.sashdat", 

4              casOut={"name":"train", "replace":True}) 

5  s.loadactionset('langModel') 

6  s.textToNgram(table = {"name": "train"},  

7              casInVarList = ["Text"],  

8              nGrams = 4,  

9              casOut = {"name": "nGrams", "replace":True}) 

10  s.nGramCount (table = {"name": "nGrams"},  

11              casOut = {"name": "nGramsCnt", "replace":True}) 

12  s.nGramCountToLM (nGramTable = {"name": "nGramsCnt"}, 

13                 minCount= 0, 

14                 casOut = {"name": "LMTable", "replace":True}) 

 

Table 1: Example text table that is used as an input. 
 

DocID Text 

1 I like my car 

2 I like my house 

3 I love my family 

 

 
2088



textToNgram (Lines 6-9), nGramCount (Lines 10-11), and nGramCountToLM (Lines 12-
14) actions. 

Each action includes own parameters. For example, casInVarList and nGram 
parameters in the textToNGram action specify list of columns in the input table for 
processing and the maximum number of words that output table can contain. As we specify 
nGrams as 4 and casInVarList as “Text”, output table, named “nGrams” includes only 1-4 
grams collected from “train” data set in Figure 2. 

Next, the nGramCountToLM action processes “nGrams” table and generates 
frequency count table, named “nGramCnt” at Lines 10-11. Finally, the nGramCountToLM 
action processes “nGramCnt” and generates an output table named “LMTable” that 
contains corresponding language model. In this step, minCount parameter specifies a 
minimum number of occurrences of a n-gram in the input table. To include all of n-grams, 
we set minCount as 0. Finally, Table 2 presents part of “LMTable.” Table 2 shows an 
example output table after training a model. This table includes 1-4 grams and their 
corresponding log probability over terms and weight. 
 

3. LSTM-Based Model 

 
This section introduces LSTM based models for language modeling. We first describe 
approach, and then, details of each step to build LSTM based language models. We next 
provide example code in Python. 
 
3.1 Approach 

 
LSTM models [3, 9, 10, 11] are supported by SAS deep learning functionality, called deep 
learning action set. We leverage the deep learning action set to predict next word in a 
sentence for language models. The deep learning action set, called deepLearn includes 
several actions to help build and train LSTM language models in a pipeline: buildModel, 
addLayer, and dlTrain actions. When the models are built, dlScore action is used to score 
an input table against the models. Figure 3 illustrates four actions. We describe these 
actions in Section 3.2. 
 

 

Table 2: Example output table of n-gram language model. 
 

# _NGRAM_1_ _NGRAM_2_ _NGRAM_3_ _NGRAM_4_ PROB WEIGHT 

1 I love my family 0 NaN 

2 I like my car -0.30103 NaN 

3 I like my house -0.30103 NaN 

4 love my family 
 

0 -0.05061 

5 like my car 
 

-0.30103 -0.05061 

6 like my house 
 

-0.30103 -0.05061 

  * Actual column names of PROB and WEIGHT in the output table are _LOG_PROBABILITY_ 
and _LM_WEIGHT_. 
  * NaN represents a missing number. 
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Figure 3. Overview of four actions that help build LSTM based language models 

 
Figure 4 illustrates an overview of single LSTM layer. X(1), X(2), …, X(n) is a 

sequence of input words. As LSTM uses forget gate [3], LSTM splits each of cell state into 
two sequences. C(t) represents the current cell state at the time of t. H(t) is the current cell 
activation. The output y is the probability distribution of possible next word and this value 
is calculated by a sigmoid function based on the final cell state, H(3). 
 

 
Figure 4: An overview of single LSTM layer 

 
 
3.2 Build LSTM-Based Language Models 

 
Figure 5 illustrates an example LSTM model. The model has an input layer X, two hidden 
layers s1 and s2, and output layer y. Input to the network in time t denotes as x(t), output 
is denoted as y. Input vector X(t) is formed by concatenating vector w representing word 
in X(t). 
 

buildModel

•Creates an empty deep learning 
model.

addLayer

• Adds a layer to a deep learning 
model. For each layer, layer type, 
model table, and layer name are 
specified. .

dlTrain

• Trains a deep learning model.

dlScore

• Scores a table using a deep 
learning model.

 

   

A

X(1): I

H(0)

C(0)

A

X(2): Iike

H(1)

C(1)

A

X(3): my

H(2)

C(2)

y
H(3)
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Figure 5: An example LSTM model. 

 
When we build LSTM-based language models, we consider followings: 

• At the input layer, the input words are mapped with corresponding vectors 
provided by a word embedding table. 

• At the output layer, a softmax activation function is used to produce 
normalized probability values for candidate words. 

• At the output layer, cross entropy loss function is used for training. This is 
equivalent to maximum likelihood. 

 
 
3.3 Example Use Case 

 
This example illustrates how to build LSTM-based models. Figure 6 illustrates 

example code. In the example code, s is the session returned by SWAT. Next, deepLearn 
action set is loaded for using actions for building LSTM language model at Line 1. 

 
Figure 6. LSTM models written in Python. 

 
The buildModel action in the deep learning action set creates an empty “RNN” model 

at Line 2. The addLayer action adds an input layer (Line 3), two hidden LSTM layers 

 
 

LSTM Layer

LSTM Layer

Output Layer

Input Layer

   

Line # 
 

1 s.loadactionset('deepLearn') 

2 s.buildmodel(model=dict(name='model', replace=True), type='RNN') 

3 s.addlayer(model='model', name='data', layer=dict(type='input')) 

4 s.addlayer(model='model', name='rnn1', srclayers=['data'], 

5         layer=dict(type='recurrent', init='XAVIER', n=100,  

6         rnnType='LSTM', outputType='samelength')) 

7 s.addlayer(model='model', name='rnn2', srclayers=['rnn1'], 

8         layer=dict(type='recurrent', init='XAVIER', n=100,  

9         rnnType='LSTM', act='TANH')) 

10 s.addlayer(model='model', name='outlayer', srclayers=['rnn2'], 

11         layer=dict(type='output', init='XAVIER',  

12         act='softmax', error='ENTROPY')) 
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(Lines 4-9) with 100 neurons, and output layer (Line 12). For each layer, information such 
as layer type, model table, or layer name is specified. Details about each parameter are 
found in [4]. In particular, as noted in Section 3.2., at output layer, act='softmax' and 
error='ENTROPY' are specified for a softmax activation function and cross entropy error. 

Next, Figure 7 illustrates example code to train an input model. Train and valid data 
sets, named “train” and “valid” are loaded into a CAS tables at Lines 1-4. These tables are 
created based on an output of the textToNgram action where 1, 2, 3, 4-grams are collected. 
We use only 4-grams in “train” table. Word embedding data set, named “glove100d” is 
loaded into a CAS table at Lines 5-6. The input words are mapped with corresponding 
vectors provided by the word embedding table. In particular, we set X(1), X(2), X(3) as an 
input variables and y as a target variable. The choice of the optimizer is important in the 
context of regularized models. In the example, we use Adam which is a variant of 
Stochastic gradient descent (SGD) with dropout as 0.5. We could use other deep learning 
parameters [4] that are supported in the deep learning action set. 

 
Figure 7. Training code written in Python. 

 
Next, Figure 8 illustrates example code to score an input test data set against the 

models. Test data set, named “test” is loaded into a CAS table at Lines 1-2. This table 
should be in the same format with “train” table. The dlscore action scores “test” data set 
and creates an output table, named “score”. 

 

Line # 
 

1 r=s.table.loadTable(path="train.sashdat", 

2              casOut={"name":"train ", "replace":True}) 

3 r=s.table.loadTable(path="valid.sashdat", 

4              casOut={"name":"valid ", "replace":True}) 

5 r=s.table.loadTable(path="glove100d.sashdat", 

6              casOut={"name":"glove100d", "replace":True}) 

7 r = s.dlTrain(model='model', 

8     table=dict(name= 'train'), validTable=dict(name= 'valid'), 

9     inputs=["_NGRAM_1_", "_NGRAM_2_", "_NGRAM_3_"], 

10     target='_NGRAM_4_', 

11     texts=["_NGRAM_1_", "_NGRAM_2_", "_NGRAM_3_"],  

12     nominals=["_NGRAM_4_"], 

13     modelWeights=dict(name='model_weight', replace=True), 

14     textParms=dict(initEmbeddings='glove100d',  

15     modelOutputEmbeddings=dict(name='trainedGlove', replace=True)), 

16     optimizer=dict(dropout= 0.5, algorithm=dict(method = 'ADAM',  

17     learningrate = 0.005)), 

16     seed=1234) 
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Figure 8. Scoring code written in Python. 

 

4. User Study 

 

We have applied n-gram models on wiki data set. The wiki data set was used as a case 
study to explore how language model works. Table 3 lists training and testing data sets. # 
Obs column indicates the number of observations in the data set. Each observation 
represents a single sentence.  
 

Table 3: Data set distribution. 

 
N-gram models are created based on tri-grams. Tri-grams uses only up to 3 sequential 

terms in the sentence. To perform this task, we used three actions, textToNGram, 
nGramCount, and nGramCountToLM actions. As generated language model can be 
extremely large, we reduce the number of rows by setting minCount parameter. 
 

 
Table 4 lists 4 language models that we created with minCount=0, 5, 10, and 15. # Obs 

column indicates the number of rows in the language model. Perplexity [2, 8] is measured 
against the testing data set. Lower perplexity shows better performance. From Table 4, we 
showed that, when minCount is 0, the perplexity is the lowest. 

We trained wiki data set against LSTM based models that we built. The models were 
trained in several epochs [2, 4], in which all n-grams from the training data are sequentially 
used. After each epoch, we stored best models. We observed that perplexity continues to 
decrease after each epoch. We observed that perplexity is measured as 401.56 for the first 
epoch and dropped down as 278.11 within a few epochs. Approximately, this measure was 
reduced by more than 30%. However, the measure of the LSTM based models is still higher 

 

Line # 
 

1 r=s.table.loadTable(path="test.sashdat", 

2              casOut={"name":"test", "replace":True}) 

1 r2 = s.dlscore(model='model', 

2     table='test', 

3     initEmbeddings='glove100d', 

4     initWeights= 'model_weight', 

5     copyVars=['_NGRAM_1_','_NGRAM_2_','_NGRAM_3_', '_NGRAM_4_'], 

6     casout=dict(name='score', replace=True)) 

 

Data Set # Obs 

Training dataset 86,892 

Testing dataset 10,691 

 

Table 4: Results measured for each training model 
 

Model Name minCount # Obs Perplexity 

Arpar_model_0 0 1695056 125.74 

Arpar_model_5 5 70843 201.93 

Arpar_model_10 10 35159 216.86 

Arpar_model_15 15 23195 222.17 
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than that of the n-gram models. We consider future improvements especially for LSTM 
based models. For example, to reduce this measure further, we plan to explore and train 
LSTM models using longer n-grams and sequence to sequence modeling. We also plan to 
investigate hyper-parameters of models and find the best configuration for these parameters 
to handle a large number of documents efficiently and effectively. 
 

4. Conclusions and Future Work 

 
In this paper, we presented two approaches that can be explored using SAS. We aim to 
predict next word in a sentence using CAS actions. First, we used SAS language model 
action set to build statistical n-gram language models. These models can be used to train 
and score a large number of documents efficiently. We also explored neural networks for 
building language models. Especially, we used LSTM-based models supported by SAS 
deep learning action set. 
In Future, we would like to build language models with large-scale corpora. For this task, 
alternative training methods for LSTM models such as longer n-grams and sequence to 
sequence modeling need to be investigated for better performance. We also would like to 
apply our LSTM based models for various applications such as automatic speech 
recognition and machine translation. In addition, we would also like to investigate and find 
the best configuration for hyper-parameters of the models. 
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