
Language Modeling using SAS

JeeHyun Hwang1, Haipeng Liu2, Yang Xu3

123SAS Institute Inc., 100 SAS Campus Dr, Cary, NC 27513

Abstract

Language modeling is to predict next word in a given sentence. Language models are
widely used for improving performance in many areas such as automatic speech
recognition and machine translation. Prediction of next word is a sequential data prediction
problem.
In this paper, we present two approaches for the task of language modeling. First, n-gram
models are designed to statistically estimate the probability of next word given a sequence
of previous words. This one is supported by SAS language model functionality, called
language model action set. This action set is designed to efficiently train n-gram models on
cloud platforms when a training data set consists of a large number of documents.
Second, we explore neural network for building language models using SAS deep learning
functionality, called deep learning action set. This action set enables us to build LSTM-
based models. We choose LSTM-based models because it is known that Long Short-Term
Memory networks (LSTM) have advantages over recurrent neural networks in terms of
handling exploding and vanishing gradient problems.
We conduct user studies and our user studies demonstrate the effectiveness of our language
models.

Key Words: N-gram Models, Long Short-Term Memory network, Recurrent Neural
Network, Deep Learning, Perplexity, Word Prediction

1. Introduction

Language models (LMs) [1, 2, 6, 7, 8] are used to predict next word in a given sentence.
In other words, these models are designed to assign the probability of the last word of an
n-gram given the previous words. These models are applied to a wide range of applications
and domains with great success. Example applications include automatic speech
recognition, machine translation, and spelling correction. The performance of these
applications is greatly impacted by the quality of language models. For example, word
error rate of automatic speech recognition is decreased by 18% by adopting language
models [2] for experiments with Wall Street Journal data set.

Building language models of high performance is an important task. The performance
of language models depends on several factors: methods for training, the amount of training
data, and the quality of the training data. These factors are important to accommodate large
amounts of training data into language models with high performance. Recently, large scale
corpora that can be collected from the Web [1, 2] is used as training data.

In this paper, we focus on two approaches. First approach is n-gram models. N-grams
represent a sequence of n words. N-gram models [6, 7, 8] are widely adopted methods by
statistically estimating the probability of next word given a sequence of previous words. In
particular, the size of the language model increases rapidly with growing number of n. In

2085

consideration of the size, relatively low order, such as 1, 2, 3, or 4-grams are commonly
used in practice. In addition, as these models are based on n-grams observed in the training
data set, explicit probabilities of n-grams that are not observed in the training data set
cannot be returned. In such cases, techniques such as stupid backoff [7] are used to yield
better language models using empirically pre-computed probabilities with regards to n-1
grams.

Second approach is Long Short-Term Memory network (LSTM) [3] based models.
LSTM is a family of recurrent neural networks. Recently recurrent neural networks have
become increasingly popular for the task of language modeling. Similar to n-gram models,
recurrent neural network language models estimate probability of next word. While n-gram
models are based on n-grams observed in the training data set, this approach is based on
the full history of text in the training data set. However, training recurrent neural networks
using backpropagation is not trivial due to the well-known vanishing gradient problem [3].
The problem is that the gradient is not propagated properly and becomes to be vanishing
or growing exponentially. To address this issue, Long Short-Term Memory (LSTM) [3] is
proposed. In this network, the explicit gradient problem is prevented.

In this paper, we introduce how to build two types of language models using SAS.

• N-gram models are supported by SAS language model functionality, called
language model action set. This action set enables users to build their own n-gram
language models based on n-grams identified from input documents.

• LSTM models [3, 9, 10, 11] are supported by SAS deep learning functionality,
called deep learning action set. We leverage LSTM models to predict next word in
a sentence for language models

Moreover, our two approaches allow for processing a huge number of documents in a

distributed computing resources on cloud. We conduct user studies and our user studies
demonstrate the effectiveness of our language models.

2. N-Gram Model

This section introduces n-gram models for language modeling. We first describe approach,
and then, details of each step to build n-gram language models. We next provide example
code in Python.

2.1 Approach

We developed a language model action set that enables users to build their own n-gram
language models based on n-grams identified from input documents. Note that action set
is a collection of CAS actions. Each action performs analytics tasks on SAS Cloud Analytic
Services (CAS) supported by SAS Viya platform. An action is designed to perform a task
efficiently and effectively because this can work in parallel such as loading data and
distributing the collection of n-grams statistics over several nodes in Cloud.

The language model action set, called langModel includes three actions to build n-
gram language models in a pipeline: textToNGram, nGramCount, and nGramCountToLM
actions. Figure 1 illustrates three actions. We describe these actions in Section 2.2.

2086

Figure 1. Overview of three actions that help build n-gram language models.

These three actions are dependent on each other in a pipeline. The first action takes
input text as an input. Then, based on the output of the first action, the second action finds
frequency of distinct n-gram. Then, third action, named nGramCountToLM analyzes
frequency information and generates a language model where corresponding log
probability and weight for each n-gram is stored. The language model is stored as binary
SAS Cloud Analytics Service (CAS) tables. The model could be used for variety of
purposes such as generating transcripts for speech-to-text applications. When this is used
for the speech-to-text applications, the application’s performance is improved in terms of
accuracy.

2.2 Build N-Gram Language Models

This section presents each step. The first step is to use the textToNgram action, which
converts raw text data into n-gram output table. N-gram output table contains 1-grams, 2-
grams, …, and n-grams. An n-gram is a sequence of N words, w1, w2, w3, …, wn. Consider
that an example sentence is “I like my car.” For example, 2-gram (i.e., bigram) is a
sequence of two words such as “I like”, “like my”, or “my car.” 3-gram (i.e., trigram) is a
sequence of three words such as “I like my”, or “like my car.”

The second step is to feed the n-gram table generated from the textToNgram action to
the nGramCount action. Note that n-gram models are built based on the collection of n-
grams and their frequency counts. In this step, the action identifies distinct n-gram and
calculates frequency count of an n-gram.

The third step is to generate an n-gram language model using the nGramCountToLM
action. The nGramCountToLm action takes frequency counts data for each n-gram and
calculates probabilities and generates the language model. In this step, infrequent n-grams
are pruned by setting a value for the minCount parameter within the action. This parameter
specifies a minimum number of times that the n-gram must occur in the input data set. The
action prunes any n-gram that does not appear as many times or more than this value. The
language model output table includes probabilities and weights of n-grams:

• Probability represents conditional probability of the last word of an n-gram

given the previous words. Let P (wn | w1, w2, w3, …, wn-1) is conditional
probability for a sequence of N words.

P (wn | w1, w2, w3, … , wn − 1) = ln (
C (w1, w2, w3, … , wn)

C (w1, w2, w3, … , wn − 1)
)

where C (w1, w2, w3, … , wn) denotes frequency counts of n-grams, w1, w2,
w3, …, wn.

textToNGram

•Process documents
and create n-gram
data.

nGramCount

• Take n-gram data as
an input and
calculate frequency
of each n-gram.

nGramCountToLM

• Take the frequency
of each n-gram as an
input and calculate
log probability and
weight for each n-
gram.

2087

• Explicit probabilities of n-grams that are not observed in the training data set
cannot be calculated. We use stupid backoff [7] to yield better language
models using empirically pre-computed probabilities with regards to n-1
grams. We use 0.89 as a default value. Weights are calculated by 10 based log
function on it.

2.3 Example Use Case

This example illustrates how to build n-gram language models. To perform tasks on CAS
server, users submit code using CAS clients that are supported by several languages such
as CASL [12], Python, Lua, or Java. Client-side source code in this example was written
in Python.

Figure 2: Code written in Python.

Figure 2 illustrates example code. In the example code, the SAS Scripting Wrapper for

Analytics Transfer (SWAT) package [5] is used to interface with the CAS server at Line
1. Note that s is the session returned by SWAT. Next, train data set, named “train” is loaded
into a CAS table at Lines 3-4. Table 1 presents all the data set in “train” data set. In the
data set, “Text” column contained text data for processing.

Next, langModel action set is loaded for using three actions for building language

model at Line 5. To process “train” data set, three actions are called in a sequence:

Line #

1 import swat

2 s=swat.CAS("cloud.example.com", 5570)

3 r=s.table.loadTable(path=" train.sashdat",

4 casOut={"name":"train", "replace":True})

5 s.loadactionset('langModel')

6 s.textToNgram(table = {"name": "train"},

7 casInVarList = ["Text"],

8 nGrams = 4,

9 casOut = {"name": "nGrams", "replace":True})

10 s.nGramCount (table = {"name": "nGrams"},

11 casOut = {"name": "nGramsCnt", "replace":True})

12 s.nGramCountToLM (nGramTable = {"name": "nGramsCnt"},

13 minCount= 0,

14 casOut = {"name": "LMTable", "replace":True})

Table 1: Example text table that is used as an input.

DocID Text

1 I like my car

2 I like my house

3 I love my family

2088

textToNgram (Lines 6-9), nGramCount (Lines 10-11), and nGramCountToLM (Lines 12-
14) actions.

Each action includes own parameters. For example, casInVarList and nGram
parameters in the textToNGram action specify list of columns in the input table for
processing and the maximum number of words that output table can contain. As we specify
nGrams as 4 and casInVarList as “Text”, output table, named “nGrams” includes only 1-4
grams collected from “train” data set in Figure 2.

Next, the nGramCountToLM action processes “nGrams” table and generates
frequency count table, named “nGramCnt” at Lines 10-11. Finally, the nGramCountToLM
action processes “nGramCnt” and generates an output table named “LMTable” that
contains corresponding language model. In this step, minCount parameter specifies a
minimum number of occurrences of a n-gram in the input table. To include all of n-grams,
we set minCount as 0. Finally, Table 2 presents part of “LMTable.” Table 2 shows an
example output table after training a model. This table includes 1-4 grams and their
corresponding log probability over terms and weight.

3. LSTM-Based Model

This section introduces LSTM based models for language modeling. We first describe
approach, and then, details of each step to build LSTM based language models. We next
provide example code in Python.

3.1 Approach

LSTM models [3, 9, 10, 11] are supported by SAS deep learning functionality, called deep
learning action set. We leverage the deep learning action set to predict next word in a
sentence for language models. The deep learning action set, called deepLearn includes
several actions to help build and train LSTM language models in a pipeline: buildModel,
addLayer, and dlTrain actions. When the models are built, dlScore action is used to score
an input table against the models. Figure 3 illustrates four actions. We describe these
actions in Section 3.2.

Table 2: Example output table of n-gram language model.

_NGRAM_1_ _NGRAM_2_ _NGRAM_3_ _NGRAM_4_ PROB WEIGHT

1 I love my family 0 NaN

2 I like my car -0.30103 NaN

3 I like my house -0.30103 NaN

4 love my family

0 -0.05061

5 like my car

-0.30103 -0.05061

6 like my house

-0.30103 -0.05061

 * Actual column names of PROB and WEIGHT in the output table are _LOG_PROBABILITY_
and _LM_WEIGHT_.
 * NaN represents a missing number.

2089

Figure 3. Overview of four actions that help build LSTM based language models

Figure 4 illustrates an overview of single LSTM layer. X(1), X(2), …, X(n) is a

sequence of input words. As LSTM uses forget gate [3], LSTM splits each of cell state into
two sequences. C(t) represents the current cell state at the time of t. H(t) is the current cell
activation. The output y is the probability distribution of possible next word and this value
is calculated by a sigmoid function based on the final cell state, H(3).

Figure 4: An overview of single LSTM layer

3.2 Build LSTM-Based Language Models

Figure 5 illustrates an example LSTM model. The model has an input layer X, two hidden
layers s1 and s2, and output layer y. Input to the network in time t denotes as x(t), output
is denoted as y. Input vector X(t) is formed by concatenating vector w representing word
in X(t).

buildModel

•Creates an empty deep learning
model.

addLayer

• Adds a layer to a deep learning
model. For each layer, layer type,
model table, and layer name are
specified. .

dlTrain

• Trains a deep learning model.

dlScore

• Scores a table using a deep
learning model.

A

X(1): I

H(0)

C(0)

A

X(2): Iike

H(1)

C(1)

A

X(3): my

H(2)

C(2)

y
H(3)

2090

Figure 5: An example LSTM model.

When we build LSTM-based language models, we consider followings:

• At the input layer, the input words are mapped with corresponding vectors
provided by a word embedding table.

• At the output layer, a softmax activation function is used to produce
normalized probability values for candidate words.

• At the output layer, cross entropy loss function is used for training. This is
equivalent to maximum likelihood.

3.3 Example Use Case

This example illustrates how to build LSTM-based models. Figure 6 illustrates

example code. In the example code, s is the session returned by SWAT. Next, deepLearn
action set is loaded for using actions for building LSTM language model at Line 1.

Figure 6. LSTM models written in Python.

The buildModel action in the deep learning action set creates an empty “RNN” model

at Line 2. The addLayer action adds an input layer (Line 3), two hidden LSTM layers

LSTM Layer

LSTM Layer

Output Layer

Input Layer

Line #

1 s.loadactionset('deepLearn')

2 s.buildmodel(model=dict(name='model', replace=True), type='RNN')

3 s.addlayer(model='model', name='data', layer=dict(type='input'))

4 s.addlayer(model='model', name='rnn1', srclayers=['data'],

5 layer=dict(type='recurrent', init='XAVIER', n=100,

6 rnnType='LSTM', outputType='samelength'))

7 s.addlayer(model='model', name='rnn2', srclayers=['rnn1'],

8 layer=dict(type='recurrent', init='XAVIER', n=100,

9 rnnType='LSTM', act='TANH'))

10 s.addlayer(model='model', name='outlayer', srclayers=['rnn2'],

11 layer=dict(type='output', init='XAVIER',

12 act='softmax', error='ENTROPY'))

2091

(Lines 4-9) with 100 neurons, and output layer (Line 12). For each layer, information such
as layer type, model table, or layer name is specified. Details about each parameter are
found in [4]. In particular, as noted in Section 3.2., at output layer, act='softmax' and
error='ENTROPY' are specified for a softmax activation function and cross entropy error.

Next, Figure 7 illustrates example code to train an input model. Train and valid data
sets, named “train” and “valid” are loaded into a CAS tables at Lines 1-4. These tables are
created based on an output of the textToNgram action where 1, 2, 3, 4-grams are collected.
We use only 4-grams in “train” table. Word embedding data set, named “glove100d” is
loaded into a CAS table at Lines 5-6. The input words are mapped with corresponding
vectors provided by the word embedding table. In particular, we set X(1), X(2), X(3) as an
input variables and y as a target variable. The choice of the optimizer is important in the
context of regularized models. In the example, we use Adam which is a variant of
Stochastic gradient descent (SGD) with dropout as 0.5. We could use other deep learning
parameters [4] that are supported in the deep learning action set.

Figure 7. Training code written in Python.

Next, Figure 8 illustrates example code to score an input test data set against the

models. Test data set, named “test” is loaded into a CAS table at Lines 1-2. This table
should be in the same format with “train” table. The dlscore action scores “test” data set
and creates an output table, named “score”.

Line #

1 r=s.table.loadTable(path="train.sashdat",

2 casOut={"name":"train ", "replace":True})

3 r=s.table.loadTable(path="valid.sashdat",

4 casOut={"name":"valid ", "replace":True})

5 r=s.table.loadTable(path="glove100d.sashdat",

6 casOut={"name":"glove100d", "replace":True})

7 r = s.dlTrain(model='model',

8 table=dict(name= 'train'), validTable=dict(name= 'valid'),

9 inputs=["_NGRAM_1_", "_NGRAM_2_", "_NGRAM_3_"],

10 target='_NGRAM_4_',

11 texts=["_NGRAM_1_", "_NGRAM_2_", "_NGRAM_3_"],

12 nominals=["_NGRAM_4_"],

13 modelWeights=dict(name='model_weight', replace=True),

14 textParms=dict(initEmbeddings='glove100d',

15 modelOutputEmbeddings=dict(name='trainedGlove', replace=True)),

16 optimizer=dict(dropout= 0.5, algorithm=dict(method = 'ADAM',

17 learningrate = 0.005)),

16 seed=1234)

2092

Figure 8. Scoring code written in Python.

4. User Study

We have applied n-gram models on wiki data set. The wiki data set was used as a case
study to explore how language model works. Table 3 lists training and testing data sets. #
Obs column indicates the number of observations in the data set. Each observation
represents a single sentence.

Table 3: Data set distribution.

N-gram models are created based on tri-grams. Tri-grams uses only up to 3 sequential

terms in the sentence. To perform this task, we used three actions, textToNGram,
nGramCount, and nGramCountToLM actions. As generated language model can be
extremely large, we reduce the number of rows by setting minCount parameter.

Table 4 lists 4 language models that we created with minCount=0, 5, 10, and 15. # Obs

column indicates the number of rows in the language model. Perplexity [2, 8] is measured
against the testing data set. Lower perplexity shows better performance. From Table 4, we
showed that, when minCount is 0, the perplexity is the lowest.

We trained wiki data set against LSTM based models that we built. The models were
trained in several epochs [2, 4], in which all n-grams from the training data are sequentially
used. After each epoch, we stored best models. We observed that perplexity continues to
decrease after each epoch. We observed that perplexity is measured as 401.56 for the first
epoch and dropped down as 278.11 within a few epochs. Approximately, this measure was
reduced by more than 30%. However, the measure of the LSTM based models is still higher

Line #

1 r=s.table.loadTable(path="test.sashdat",

2 casOut={"name":"test", "replace":True})

1 r2 = s.dlscore(model='model',

2 table='test',

3 initEmbeddings='glove100d',

4 initWeights= 'model_weight',

5 copyVars=['_NGRAM_1_','_NGRAM_2_','_NGRAM_3_', '_NGRAM_4_'],

6 casout=dict(name='score', replace=True))

Data Set # Obs

Training dataset 86,892

Testing dataset 10,691

Table 4: Results measured for each training model

Model Name minCount # Obs Perplexity

Arpar_model_0 0 1695056 125.74

Arpar_model_5 5 70843 201.93

Arpar_model_10 10 35159 216.86

Arpar_model_15 15 23195 222.17

2093

than that of the n-gram models. We consider future improvements especially for LSTM
based models. For example, to reduce this measure further, we plan to explore and train
LSTM models using longer n-grams and sequence to sequence modeling. We also plan to
investigate hyper-parameters of models and find the best configuration for these parameters
to handle a large number of documents efficiently and effectively.

4. Conclusions and Future Work

In this paper, we presented two approaches that can be explored using SAS. We aim to
predict next word in a sentence using CAS actions. First, we used SAS language model
action set to build statistical n-gram language models. These models can be used to train
and score a large number of documents efficiently. We also explored neural networks for
building language models. Especially, we used LSTM-based models supported by SAS
deep learning action set.
In Future, we would like to build language models with large-scale corpora. For this task,
alternative training methods for LSTM models such as longer n-grams and sequence to
sequence modeling need to be investigated for better performance. We also would like to
apply our LSTM based models for various applications such as automatic speech
recognition and machine translation. In addition, we would also like to investigate and find
the best configuration for hyper-parameters of the models.

References

[1] Yoshua Bengio and Jean Sbastien Senecal. Quick training of probabilistic neural nets

by importance sampling. In Proceedings of AISTATS, 2003.
[2] Tomas Mikolov et al. Recurrent neural network based language model. In

Proceedings of INTERSPEECH, pages 1045–1048, 2010.
[3] Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735– 1780, 1997.
[4] SAS Deep Learning Programming Guide

https://support.sas.com/documentation/prod-p/vdmml/index_deep_learn_guide.html
[5] SAS Scripting Wrapper for Analytics Transfer (SWAT)

https://github.com/sassoftware/python-swat
[6] Philip Clarkson et al. Statistical language modeling using the CMU-Cambridge

toolkit. In Proceedings of EUROSPEECH, 2707-2710, 1997.
[7] Thorsten Brants and Ashok C. Popat and Peng Xu and Franz J. Och and Jeffrey Dean,

Large language models in machine translation. In Proceedings of EMNLP, pages
858-867, 2007.

[8] Stolcke, Andreas, SRILM - an extensible language modeling toolkit, In Proceedings
of ICSLP-2002, 901-904, 2002.

[9] Martin Sundermeyer, Ralf Schluter, and Hermann Ney. LSTM neural networks for
language modeling. In Proceedings of INTERSPEECH, 194-197, 2012

[10] Felix A. Gers, Nicol N. Schraudolph, and Jürgen Schmidhuber. Learning precise
timing with LSTM recurrent networks. Journal of Machine Learning Research, vol.
3, pp. 115-143, 2003.

[11] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio. Empirical
Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. Presented in
NIPS Deep Learning and Representation Learning Workshop, 2014.

[12] SAS® Cloud Analytic Services 3.4: CASL Programmer’s Guide

2094

https://support.sas.com/documentation/prod-p/vdmml/index_deep_learn_guide.html
https://support.sas.com/documentation/prod-p/vdmml/index_deep_learn_guide.html
https://github.com/sassoftware/python-swat
https://github.com/sassoftware/python-swat

