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Abstract
Estimating the impact of trauma treatment protocols is complicated by the high-dimensional
yet finite sample nature of trauma data collected from observational studies. Viscoelastic
assays are highly predictive measures of hemostasis.1 However, the effectiveness of throm-
boelastography(TEG) based treatment protocols has not been statistically evaluated. To
conduct robust and reliable estimation with sparse data, we built an estimation ”machine”
for estimating causal impacts of candidate variables using the collaborative targeted maxi-
mum loss-based estimation(CTMLE) framework.7 The computational efficiency is achieved
by using the scalable version of CTMLE such that the covariates are pre-ordered by sum-
mary statistics of their importance before proceeding to the estimation steps.20 To extend
the application of the estimator in practice, we used super learning in combination with
CTMLE to flexibly choose the best convex combination of algorithms. By selecting the
optimal covariates set in high dimension and reducing constraints in choosing pre-ordering
algorithms, we are able to construct a robust and data-adaptive model to estimate the pa-
rameter of interest. Under this estimation framework, CTMLE outperformed the other dou-
bly robust estimators(IPW,AIPW,stabilized IPW,TMLE) in the simulation study. CTMLE
demonstrated very accurate estimation of the target parameter (ATE). Applying CTMLE
on the real trauma data, the treatment protocol (using TEG values immediately after injury)
showed significant improvement in trauma patient’s hemostasis status (control of bleeding),
and a decrease in mortality rate at 6h compared to standard care. The estimation results
did not show significant change in mortality rate at 24h after arrival.
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1. Introduction

Globally, trauma is a leading cause of death and poses both clinical and statistical
challenges.1 Using highly predictive measures to optimize treatment assignment is
of great current interest. Given the most common preventable cause of death after
trauma is bleeding, important predictor variables are related to controlling bleeding
and treating impaired coagulation that can be diagnosed with standard plasma-
based lab test like INR(International Normalized Ratio)/PTT(Partial Thrombo-
plastin Time), as well as viscoelastic assays like TEG (Thromboelastography).2

Viscoelastic assays are used to identify real time abnormalities of clot formation
and fibrinolysis, termed trauma-induced coagulopathy.1 However, the association
of abnormalities identified by TEG with TIC (Trauma-Induced-Coagulopathy) are
incompletely defined, and specifically the impact of treatment rules assigned based
on TEG measures has not been closely examined. The goal of our study was to em-
ploy robust, semiparametric data-adaptive modeling procedures (specifically, scal-
able collaborative targeted minimum loss-based estimation) to estimate the poten-
tial impact of various protocols for achieving hemostasis (control of bleeding) and
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avoiding death.

We focused on estimating the impact of blood products assigned based on TEG
measures on patient’s hemostasis and mortality status. Since the covariates are high-
dimensional, we deployed ensemble machine learning (SuperLearning) methods for
modeling the prediction of outcomes versus both adjustment covariates and inter-
vention variables.4 Given the common problem of high dimension and small sample,
standard doubly-robust estimators (such as estimating equation and targeted learn-
ing approaches) can break down due to lack of experimentation in the data (pos-
itivity violations), caused by high correlation between covariates and exposures in
trauma data.3 We developed estimators of our estimands of interest within the col-
laborative targeted minimum loss-based estimation framework(CTMLE), which op-
timizes the variance-bias trade-off when modeling the so-called propensity score, not
with respect to prediction intervention, but to the estimand/parameter of interest.7

This allows for more automated estimation using machine learning in situations with
limited data. Also,we built upon the standard CTMLE framework by adding pre-
ordering step to boost the computational efficiency. CTMLE demonstrated robust
and accurate estimation to the target parameter in the simulation study compared
to the other doubly robust estimatros(IPW,AIPW,stablized IPW,TMLE). Also, the
super learner version of CTMLE (SL-CTMLE) achieved excellent computational ef-
ficiency for high-dimensional adjustment sets. 20

2. Method

2.1 Data

1671 trauma patients at San Francisco General Hospital were enrolled in an obser-
vational cohort study as part of the ongoing prospective longitudinal examination
of the activation of coagulation and inflammation after injury. Injury, demographic,
clinical and outcome data was collected on arrival and out to 28 days for all patients.
TEG parameters from the ED were solely for study purposes and no treatment de-
cisions were based upon their parameters. Massive transfusion (MT) was defined as
the transfusion of 10 units of packed red blood cells (pRBCs)/fresh frozen plasma
(FFP) in the first 24 hours, and transfusion decisions were at the discretion of the at-
tending trauma surgeon. Blood samples were drawn in citrated vacuum tubes upon
arrival to the ED, and then again at 6 hours. Citrate rapid thromboelastography
(CRT TEG) and citrated kaolin TEG (CK TEG) were performed with the TEG
5000 immediately after sample collection. The patients were statistically treated
with blood product transfusion based on a protocol defined as: 2 units of plasma
for ACT(activated clotting time) > 128 seconds, 10 units of cryo (cryoprecipitate)
for alpha angle< 65 degrees, and one 1 unit of plt(platelets) for MA(maximum am-
plitutde) < 55mm.The demographics and baseline measurements are summarized
in Table 1.
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Table 1: Baseline Covariates and Missingness
Covariates Mean(sd) Number of Missing Values(%)

(Injury Survey Score)iss 17.7(15.63) 2(0.12)
Admit base excess -4.0(6.31) 433(25.91)

Gender, n(%)
Female 310(18.55) 0(0)

Male 1361(81.45) 0(0)
Age 41(18.6) 3(0.18)

Mechanism, n(%)
Blunt 960(57.45) 5(0.30)

Penetrating 706(42.25) 0(0)
Systolic blood pressure (sbp, mmHg) 135.9(33.26) 43(2.57)

Heart rate (hr, bpm) 97.6(24.93) 42(2.51)
Race, n(%) 1(0.06)

White 949 (56.79)
Black 375 (22.44)
Asian 214(12.81)

Native American 8(0.48)
Pacific Islander 9(0.54)

Other 36(2.15)
Unknown 79(4.73)

Table 1: Summary of covariates and missingness of the data.

2.2 Estimation Problem Definition

We aimed to analyze the average treatment effect of patients being on versus off
protocol. We modeled the trauma data as following: a collection of baseline co-
variates, W , containing imputed values and missingness indicators (summarized in
Table 1).

Binary outcome Y represented the outcome (e.g. 6h hemostasis, 6h mortality
or 24h mortality) of each patient.We used notation Oi = (Wi, Ai, Yi) to represent
each observation unit. The parameter of interest is defined as:

Ψ(P0) = E0[E0(Y |A = 1,W )− E0(Y |A = 0,W )] (1)

where Ψ can be interpreted as a causal risk difference under assumptions (W con-
tains all confounders, there is sufficient experimentation of A within strata of W 6,
time orders of W → A → Y ). However, it can also be thought of more generally
as a measure of importance (akin to comparing adjusted means), without appeal
to a causal model. Instead of treating the target estimand as a causal parameter,
we take a more conservative perspective by treating the estimand as a statistical
association controlling for the baseline covariates W given in Table 1.

For future sections, we will introduce a few new notations: the treatment model
is defined as g0(a,W ) = P0(A = a|W ), the conditional mean of the outcome is:
Q̄0(A,W ) = E0(Y |A,W ). The empirical version of the above notations are repre-
sented as: gn(A,W ) and Q̄n(A,W )

2.3 Model Trauma Data

2.3.1 Treatment Variable

The original data was a sequence of continuous measures (act,alpha, ma,refer to
section 3.1) representing the units of each blood product given to patients from 0h
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to 24h. By comparing the continuous measures and predefined protocols (cases in
Algorithm 1 below), we were able to map the measures into on/off protocol status.
We examined three separate rules based upon different sets of variables. Note,
that A∗ = d(V ) could imply both A∗ = 0 or A∗ = 1, depending on what the rule
indicates given the variables V . In essence, being defined as an intervention where a
subject receives a specific level of an intervention, it means that the patient receives
the treatment as indicated by the particular rule. One could estimate a parameter
equivalent to 1, by defining A = I(A∗ = d(V )), that is the indicator of receiving
the treatment returned by rule, d(V ).

Each of the three rules investigated, d(V ), are defined as following:

Algorithm 1: Mapping continuous measures to binary on/off protocol status

case 1
if act ≥ 128 and plasma > 0, A = 1
if act ≥ 128 and plasma = 0, A = 0
if act = 0 or act < 128 and plasma = 0, A = 1
else A = 0
case 2
if alpha ≤ 65 and cryo > 0, A = 1
if alpha ≤ 65 and cryo = 0, A = 0
if alpha = 0 and cryo = 0, A = 1
else A = 0
case 3
if ma ≤ 55 and plt > 0, A = 1
if ma ≤ 55 and plt > 0, A = 0
if ma = 0 and plt = 0, A = 1
else A = 0

2.3.2 Outcome Variable

We analyzed three different types of outcomes: 1) hemostasis 2) mortality at 6h
3) mortality at 24h. Hemostasis is defined by whether or not the patient received
packed red blood cells(RBC) after 6h (e.g. 7-12h interval). If the patient received
treatments in 0-6h but did not receive packed RBC in 7-12h, then hemostasis was
achieved. If the patient received packed RBC in 7-12h, hemostasis is coded as non-
hemostasis. Mortality outcomes were given in the original data (e.g. dead = 1,
alive = 0).

2.3.3 Covariates

Baseline covariates used for the analysis are shown in Data section(3.1). Only for
theses variables, we imputed the missing values and also added, for each covariate
with missing values, an additional basis function as the indicator that a particular
observation had the covariate observed versus missing. Thus, one can think of our
final list of covariates, W , as the information sufficient to consistently estimate the
marginal adjusted (for all the confounders) associations of interest.

2.4 Doubly Robust Estimators

TMLE based estimator has its root in doubly robust estimators.6 Double Ro-
bust(DR) estimators generally refer to estimators of the target parameter of interest
that have either Q̄0 or ḡ0 part or both being consistent.8 To find the best DR, we
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aim to find the estimator with efficient influence curve. The efficient influence curve
of the target parameter in a semiparametric model model is defined as: 11

D∗(Q̄0, g0)(O) =
a

g0(1,W )
− 1− a
g0(0,W )

[Y −Q̄0(A,W )]+Q̄0(1,W )−Q̄0(0,W )−Ψ(P0)

(2)
The augumented inverse probability of treatment weighted (AIPTW) estimator

is one example of a doubly robust estimator.16 Using the propensity score and
conditional mean of outcome in sample gn, Q̄n to define the sample efficient influence
influence curve, we have:16

n∑
i=1

a

gn(1,W )
− 1− a
gn(0,W )

[Yi − Q̄n(Ai,Wi)] + Q̄n(1,Wi)− Q̄n(0,Wi)−Ψn (3)

By setting the equation to 0 and solve for the target parameter directly, we get:

ΨAIPTW =

n∑
i=1

a

gn(1,W )
− 1− a
gn(0,W )

[Yi− Q̄n(Ai,Wi)] + Q̄n(1,Wi)− Q̄n(0,Wi) (4)

However, under the AIPTW setting, the propensity score may inflate the value
of the estimator by producing estimations outside of the reality constraints.10 This
in turn, given no inherent constraints on the estimator, values of parameter estimate
that can be −1 or 1. Given how sensitive the estimator is to gn, particularly in small
sample sizes, one can benefit from finite sample robustness by using a substitution
(plug-in) estimator.

2.5 TMLE

Different from the AIPTW esitmator, TMLE is a plug-in estimator which targets
specifically towards the parameter of interest by first generating an initial estimate
and then fluctuating the estimator to minimize the bias-variance tradeoff.15 The
estimation procedure can be roughly divided into two steps. The first step involves
using specified confounders and intervention variable of interest as regressors to get
the initial expectation of outcome, we call Q̄0

n(A,W ).15 The updating step takes
both the initial predicted value as offset and the clever covariates to regress on the
expected conditional outcome. Variance can be calculated based on the efficient
influence curve and confidence intervals can be constructed accordingly.15 The de-
tailed algorithm is shown as follwing:
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Algorithm 2: TMLE Algorithm

Estimating Step:
1.Estimate initial Q̄0

n

2.Estimate gn
3.Construct cleaver covariates Hn(a,W ) using formula:

Hn(a,W ) =
a

gn(1,W )
− 1− a
gn(0,W )

(5)

Targeting Step:
4.Run Yi ∼Hn(Ai,Wi) + logit(Q̄0

n(Ai,Wi)), treating the last term as an offset
in a regression.

5.Update initial estimator using εn from step 4

Q̄∗n(A,W ) = expit(logit[Q̄0
n(A,W )] + εnHn(A,W ))

6.

ΨTMLE =
1

n

n∑
i=1

(Q̄∗n(1,Wi)− Q̄∗n(0,Wi))

Thus, the estimator augments the original fit of the regression model, by in-
cluding a ”clever covariate”, which optimally adjusts for any residual confounding
remaining in the original Q̄n fit and smooths the estimator sufficiently so that it
is asymptotically normal. However, though TMLE can be an attractive alternative
to estimating equation approaches, it still can suffer from overfitting of gn. For-
tunately, the fact that it is a maximum likelihood-based (or minimum loss-based)
procedure, one can use the likelihood (or risk) in the esitmation of Q̄ to choose the
model for gn, to insure the estimator does not ”blow-up”. Generally, procedures
based upon TMLE, but using clever selection of the model for gn based upon the
likelihood (or more generally risk) are called collaborative.

2.6 Greedy CTMLE

CTMLE is motivated by the sparse data setting. When data is sparse and lack
of good support (e.g. lack of positivity),7 the efficient influence curve can take
extremely large value such that the TMLE will have non-linear behavior. One cause
for this is that confounders might be instrumental variables, which have no impact
on the outcome variable, but are highly correlated with the intervention variable
of interest.9 However, removing the variables with prescreening procedures could
hurt the asymptotic behavior of TMLE because there exists statistically significant
covariates which lie in the noise level.7 Most prescreening procedures are based on
marginal regression, which result in a bias of the order n−1/2. 20 CTMLE does
not affect the asymptotic behavior of TMLE, as the ”full” model will be chosen as
n→∞.

CTMLE algorithm constructs a sequence of estimators gn,h, Q
∗
n,h such that the

loss functions of both gn,h, Q
∗
n,h have decreasing values when increasing h. The

construction of sequences uses forward greedy search.7 CTMLE reduces the dimen-
sion of covariates that are used to construct the external estimator gn of g0 thereby
reduces the bias introduced by positivity violations, but one that avoids dropping
strong confounders.9
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2.7 Scalable CTMLE

The original CTMLE uses greedy approach for selecting covariates sequentially.
Greedy CTMLE does have robust performance 9 and the time complexity of running
greedy CTMLE is O(p2) when the dimension of covariates is p.20 In addition, when
the dimension of prediction basis (p) approaches to infinity, the large time complex-
ity could lead to memory storage issue and slow down the computation process. We
endeavored to utilize an estimator that is both statistically and computationally ro-
bust. In this case, if the CTMLE template is constructed by pre-ordering covariates
rather than by greedy searching, we could largely reduce the time complexity to
O(p).21 Therefore, we used this scalable CTMLE to estimate the average treatment
effect based on the data modeled in sections 3.2 and 3.3.

The pre-ordering step is in between of the estimation of Q̄0 and the iterative
construction step of Q̄∗n,k.20 We ordered the covariates by the relative decrease in
cross-validated risk resulting from the model fit when these variables are included
in the clever covariate (5). Specifically, for each covairte Wk as a predictor, we used
logistic model to construct gn,k of g0. Then we defined clever covarite as a function
of A and Wk. Then we run regression of Y on clever covariate and offset Q̄0(A,W )
to fit εk. After defining Q̄∗n,k in the standard way, we computed the empirical cross-
validated loss Lk. Each covariate will get a rank based on the increasing value of
Lk.21

After setting up the rank, we add the covariates one by one to estimate gn,k for
k-th covariate.20 Then we followed the standard CTMLE step to estimate Q̄k

n and
evaluate the empirial loss Lk of Q̄∗n,k. If the empirical loss Lk decreased compared

to Lk−1, we kept adding the next covariate. Otherwise, we replaced Q̄n,k by Q̄∗n,k−1.
Then we re-add the k-th covariate. The final step was to use cross-validation to find
the best estimator from the sequence Q̄∗n,0 to Q̄∗n,p.

13 The reason such a procedure
leads to greater robustness in finite samples it tends to remove covariates in the
model for g that behave like instrumental variables, in that they are very highly
predictive of A but of little importance in the model for Q̄. Such variables result
in very small estimated g and since g enters as an inverse in the targeted learning
update, they tend to introduce large variance to the estimator with little bias-
reduction.

2.8 Super Learner Extension of Scalable CTMLE

The pre-ordering algorithm described in the above scalable CTMLE section used
logistic model.20To further optimize the performance of scalable CTMLE, we com-
bined multiple ordering algorithms, each generating a unique templates of CTMLE
algorithm. Then all the CTMLE algoritms out of mutliple ordering schemes were
merged and the one with the lowest cross-validated risk whas chosen estimator.

To combine various algorithms without bringing computational burdens, we
relied on super learning, which is an ensemble learning strategy that combines al-
gorithms in a convex manner, such that the time complexity stays as O(p).14 The
convex nature of super learner not only preserves running time efficiency but also
preserves scalability as long as each algorithm in the learner library is scalable.14

The super learner version of scalable CTMLE is only a small extension added
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to the previous algorithm. We followed (Ju, Gruber and Lendle 2016) SL-C-TMLE
framework by defining N pre-ordering schemes and for each n-th scheme, we run the
same algorithm as in scalable CTMLE. Finally, we used cross-validation to select
the best Q̄∗n out of all (n, k) combinations. 13 We derived the variance and 95%
confidence interval coverage based on the efficient influence curve.

We used (Ju 2017)CMTLE package for the analysis.21 (https://cran.r-project.
org/web/packages/ctmle/ctmle.pdf). Results can be reproduced from: https:

//github.com/WaverlyWei/TEG-CTMLE

3. Simulation

3.1 Parametric Bootstrap

To demonstrate the robust performance of SL-CTMLE under finite sample and
close to positivity violation situations, we used parametric bootstrap to run the
simulation. In parametric bootstrap, samples were drawn from a data generating
distribution that mimics the true data generating distribution. The bias estimate
in parametric bootstrap is defined as: 22

ˆBiasPB(Ψ̂, P̂0, n) = EP̂0
Ψ̂(P#

n )−Ψ(P̂0) (6)

P̂0 is an estimate of the true data generating distribution P0. P
#
n is the parametric

bootstrap distribution sampled from P̂0. Ψ(P̂0) is the true parameter applied on
P̂0.

24 In practice, since we do not know the true target parameter applied on P̂0,
we would replace Ψ(P̂0) with the estimator of the target parameter applied on the
observed data:

Ψ(P̂0) = Ψ̂(Pn) (7)

The parametric bootstrap simulation procedure is implemented by first estimating
P0. P0 includes the estimation of Q0 and g0 which further breaks down to estimation
of: P0(W = w), P (A = a|W = w), P0(Y = y|A = a,W = w). Then we generated
bootstrap samples P n from P̂0. We sampled W with random draws and generated A
as gn(1|W ). We sampled Y as Qn(Y |A,W )+N(0, 1).Then we applied our estimator
to the bootstrapped samples P n and computed the empirical mean across the sample
estimates: EP̂0

Ψ̂(P n)
This simulated dataset consisted of W’s generated from bivariate normal distri-

bution. 22

W = (W1,W2),Wi ∼ N(µ,Σ)

µ1 = 1, µ2 = 2,Σ =

∣∣∣∣1 1
2 3

∣∣∣∣
P (A = 1|W ) = Φ(0.23 + 0.1 ∗W1 + 0.35 ∗W2)

P (Y |A,W ) = 5.5 +A+ 0.5 ∗W1 + 4.5 ∗W2 +N(0, 1)

We generated 200 parametric bootstrap samples each with 1000 obserbations.
Then we evaluated the performance of AIPW, IPW, stablized IPW TMLE and
SL-CTMLE on the parametric bootstrap samples. The performance of the five
estimators are shown in Figure 1 and Table 2:

 
2079

https://cran.r-project.org/web/packages/ctmle/ctmle.pdf
https://cran.r-project.org/web/packages/ctmle/ctmle.pdf
https://github.com/WaverlyWei/TEG-CTMLE
https://github.com/WaverlyWei/TEG-CTMLE


●

●

●

● ●

0.00

0.25

0.50

0.75

AIPW IPW SL−CTMLE Stablized IPW TMLE
estimator

AT
E

estimator

●

●

●

●

●

AIPW

IPW

SL−CTMLE

Stablized IPW

TMLE

Comparison of Estimator Performance

Figure 1: Estimator comparison. Dashed line indicates the true ATE value.
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ATE SE Bias MSE CI

AIPW 0.133 0.118 0.121 0.0286 (-0.0997, 0.364)
IPW 0.808 0.031 0.796 0.635 (0.747, 0.869)

SL-CTMLE 1.133e-3 4.76e-4 -0.012 1.44e-4 (2.00e-4,2.066e-3)
TMLE 0.125 4.75e-4 0.113 0.0128 (0.124, 0.126)

Stablized IPW 0.127 4.67e-4 0.115 0.0132 (0.124, 0.134)

Table 2: Estimator performance comparison over 200 parametric bootstrap
samples

Doubly robust estimator IPW has the largest bias but with relatively narrow
confidence interval compared to AIPW. AIPW has the largest standard error out of
all five estimators. stablized IPW and TMLE has similar estimation performance
but both have larger MSE than SL-CTMLE. SL-CTMLE has the smallest bias,
variance ans MSE out of all five estimators. The estimated value from SL-CTMLE
was cloest to the true ATE.

Then we compared the time complexity of greedy CTMLE and SL-CTMLE
which has pre-ordering embedded. SL-CTMLE took less running time than greedy
CTMLE across three different magnitude of sample sizes. The advantage of SL-
CTMLE became more prominent when the data became high-dimensional. When
p = 100, SL-CTMLE was 10 folds faster than greedy CTMLE. When p = 1000,
SL-CTMLE was 50 folds faster than greedy CTMLE.

N = 10 N = 100 N = 1000

greedy CTMLE 656.25 674.20 1308.75
SL-CTMLE 373.67 442.23 813.82

p = 10 p = 100 p = 1000

greedy CTMLE 2534.33 480,000.21 5829,613.59
SL-CTMLE 934.85 47,265.28 101,375.31

Table 3: Estimator time complexity benchmarks (in milliseconds) over 100
evaluations. When sample size N = 10, N = 100 and N = 1000, dimension p was
fixed (p = 5). When p = 10, p = 100 and p = 1000, sample size N was fixed (N =
100).

4. Results of Data Analysis

Table 4 to Table 6 report the average treatment effect (ATE), p-value and 95%
confidence interval coverage of each blood product transfusion based on predefined
protocol. Table 4 reports hemostasis as the outcome. Table 5 and Table 6 report
mortality at 6 hour and mortality at 24 hour as outcome respectively. Platelet
transfusion had 13% significant increase in hemostasis (p < 0.01) in the on versus
off-protocol, but no significant effect in either mortality at 6h or mortality at 24h.
Plasma transfusion showed significant 11% increase in hemostasis and 17% decrease
in mortality at 6h (p<0.01) but no significant effect in mortality at 24h. Cryopre-
cipitate transfusion resulted in 20% increase in hemostasis and 16% decrease in
mortality at 6h (p<0.01) but no significant impact on mortality at 24h.
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Treatment Adjusted ATE(95% CI) Unadjusted ATE
Platelet Protocol 0.133(0.0430, 0.223) 0.2005 (0.183,0.221)

Hemostasis Plasma Protocol 0.111(0.0914, 0.131) 0.09723 (0.0324,0.127)
Cryo Protocol 0.203(0.1042, 0.3009) 0.2418(0.1318,0.2845)

Platelet Protocol -0.1365(-0.3239, 0.0508) -0.1196(-0.3598,0.0357)
Mortality at 6h Plasma Protocol -0.1692(-0.2159, -0.1224) -0.2111(-0.3912,-0.1523)

Cryo Protocol -0.1584(-0.2347, -0.08216) -0.09389(-0.1456, 0.1721)
Platelet Protocol 0.00501( -0.2951, 0.3051) 0.02597(-0.0817,0.0945)

Mortality at 24h Plasma Protocol -0.07946 (-0.4196, 0.2606) -0.1476(-0.3128,0.4289)
Cryo Protocol 0.04573(-0.1912, 0.2827) 0.04367(-0.0815,0.1023)

Table 4: The ATE of each blood product transfusion with change in hemostasis
status as the outcome.Hemostasis is defined based on transfusion of packed RBC
(achieved hemostasis == 1), positive value implies increase in the percentage of

patients who achieved hemostasis.Death == 1, Alive == 0, negative value implies
decrease in death rate

5. Discussion

The treatment protocol based on TEG showed significant improvement in 1671
trauma patient’s hemostasis status and decrease in mortality at 6h. The effect of
intervention on mortality at 24h is statistically insignificant for all blood product
transfusions. In the data used, there are insufficient observations recorded after
the first 6 hours to estimate the relative benefits of being on protocol during later
periods, for those patients not yet in hemostasis. Between 6 hours to 24 hours, the
intervention was possibly confounded by many other treatments received during the
same time interval, but the positivity and independence assumptions under causal
framework are no longer well-defined due to the sparsity of data between 6 and 24
hours. Although CTMLE is less prone to posivity bias, it can err on the side of
insufficient adjustment of real confounding if the sample size insufficient. In any
case, it provides essentially as much adjustment as the data will ”tolerate.”

The estimation of hemostasis and mortality at 6h as outcomes proves the ro-
bustness of CTMLE under the high-dimensional, sparse data setting. Traditionally,
doubly robust estimators relie on getting a consistent estimation of either g0 or Q0

(ideally both) to construct a well-behaved estimator in an asymptotic manner.17

Standard TMLE updates initial estimation of Q̄0 into Q̄∗n based on estimator gn of
g0. This method handles most of the estimation problems well, but breaks down
when the data is extremely sparse in high dimensions.15 To achieve robust estimation
even in high dimensions, we optimized the construction step of gn by incorporating
the idea of ”dimension reduction.” Instead of including all the covariates to build
propensity score model, we selected covariates based on a targeted loss function.
The additional selection step makes the estimation pipeline more sequential and
flexible in a data-driven manner.

To make the CTMLE procedure more computationally efficient, we add an ad-
ditional layer, ranking, to the selection step. The core idea is that an ordered
data structure generally reduces the computational complexity on a large scale.
The previous greedy selection algorithm has a second-order time complexity. By
pre-ranking the covariates, we could reduce the time complexity to O(p), with p
representing the dimension of covariates. 20
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The pre-ordering step leaves room for further improvement. We would like to
select the most optimal pre-ordering algorithm. To achieve the goal, we extended
the pre-ordering step to a convex combination of learners in learner library, which
is called super learning.14 Super learning does not disrupt the estimation step or
the computational efficiency. Instead, it truly makes the estimation procedures non
parametric by letting the machine try out all possible combinations of algorithms
and eventually select the best estimator using cross-validation.21

The current work focuses on analyzing whether the protocol has any impact on
trauma patient’s hemostasis and mortality. The future work will extend to design
the optimal treatment regime based on the scalable CTMLE framework to find out
if we can theoretically achieve better performance than the current protocol. Also,
the future work will extend the binary treatment/outcome variables to continuous
variables to make the estimator even more data-driven and more adaptive in various
practical settings.
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