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Abstract 

Classifying heterogeneous trajectories into distinct groups has gained huge appeal in this 
precision medicine era when massive amounts of naturally occurring longitudinal data can 
be used to derive evidence-based knowledge for facilitating precise diagnosis, prevention, 
and tailored treatment. Methods on the topic are sparse. Mixed models with a mixture 
distribution of random effects (HLME) classify trajectories through estimating profiles and 
computing posterior probabilities of belonging to a class. Two forms of the method are 
implemented in R and M-plus among standard statistical software. The method becomes 
computationally complex with increased data size and level of unbalancedness. It also 
requires specification of the number of classes prior to analysis. Likelihood function may 
have multiple local maxima. We introduced a flexible approach that applies mixture 
models to empirical BLUPs from linear/ spline mixed models. The method reduces 
drawbacks of HLMEs and works well on large datasets. This study compares the 
classification ability of two methods using real and simulated datasets of complex temporal 
curves and identifies situations when one method outperforms the other. 

Keywords: Classification; irregular spaced time; trajectories; linear mixed model ; 
heterogeneous; mixture distribution of random effects 
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1. Background and Motivation:  

In the analysis of longitudinal data, recognizing subgroups of individuals with 
heterogeneous trajectories, identifying potential contributors to varying trends, and 
utilizing this data-driven knowledge to make decisions are areas of growing research 
interest in this data science era1-2. In recent research related to learning healthcare systems 
and personalized and precision medicine, massive amounts of naturally occurring 
longitudinal data are used to derive evidence-based knowledge by accounting for 
individual-level variations and recognizing distinct patterns of health and disease 
trajectories with the goal of facilitating precise diagnosis, appropriate strategies for 
prevention, and tailored treatment of health conditions3-4.  

While naturally occurring data such as electronic medical records have shown great utility 
in learning healthcare systems and personalized medical decisions, observation times in 
these datasets are often irregularly spaced and vary across individuals as patients make 
clinic visits idiosyncratically, thereby producing unique sequences of measurements across 
individuals. The repeated measures of this type are usually expressed as parametric or 
semiparametric functions of time and are described by levels and shapes of the curves. 
Linear mixed effects regressions model these data as a combination of population temporal 
trend that is shared by all individuals and subject-specific effects that describe how the 
trend over time of each individual differs from the population mean trend. The former are 
the fixed effects and the later are the random effects in the model. The random effects vary 
from one individual to another, thereby accounting for sources of heterogeneity in 
trajectories across individuals. The inclusion of time as random effects in the model allows 
us to express the covariance of repeated measures as a function of time. In the general form 
of the mixed effect model, random effects are assumed to be distributed as multivariate 
normal with mean 0 and constant variance-covariance matrix. This distributional 
assumption of the random effects implies that individual-level trajectories are 
homogeneous in shapes, thus the model under this assumption can be termed as a 
homogeneous linear mixed effects model. If the dataset contains heterogeneous individual-
level trajectories, the above homogeneity assumption could be violated. With this violation, 
averaging over curves of heterogeneous shapes may result in missing important features of 
trajectories for individuals across heterogeneous subgroups causing misrepresentation of 
model fit. Therefore, it is important to identify potential hidden subgroups of individuals 
with distinct trajectories that may exist in a dataset. This requires appropriate capturing of 
the heterogeneity in levels and shapes of trajectories across individuals.  

Verbeke et al  (1996) introduced a heterogeneous linear mixed effects model where random 
coefficients were assumed to have a mixture of normals distribution. The method was 
implemented in a SAS macro, but the EM algorithm used was found to be computationally 
expensive and failed to provide good convergence criteria and direct estimates of the 
variance of the parameters. Proust-Lima et al (2017) recently extended the model of 
Verbeke et al by expressing mixture component-specific fixed and random effects. This 
extended model was implemented in R package ‘lcmm’. The package used Marquadrt 
algorithm in order to minimize the EM-algorithm related limitations found in Verbeke’s 
method. Immediately following Verbeke et al, Muthen et al (1999) introduced a similar 
method that combines multilevel mixed effects and mixture models and implemented the 
software Mplus. Muthen’s method gained wide popularity as the growth mixture model 
(GMM) and Mplus has been widely used, especially in the psychometric and socio-
behavioral studies, for over a decade in classification of longitudinal data. Both of these 
methods are built on the same concept: specifically, the combination of linear mixed effects 
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and mixture models and both methods have some inherent limitations. The method 
becomes mathematically and computationally complex fairly quickly. Computation time 
increases with sample size, degree of unbalancedness, complexity of the parametric curve, 
and number of random effects. The method requires pre-specification of the number of 
subgroups and typically uses information criteria (e.g., BIC) for the selection of number of 
classes, but definitive determination is exploratory. Log-likelihood functions may have 
local maxima; therefore, a careful choice of the initial values is crucial for ensuring 
convergence toward the global maxima. In Mplus, the programming structure lends itself 
to the situation of limited number of repeated observations per subject at a common set of 
measurement occasions across individuals. For computational feasibility, observations 
may need to be thinned and aligned to a common set of time points. In the R lcmm package, 
the algorithm may reach the highest number of iterations without convergence. Another 
serious limitation is that the methods are unavailable in mainstream statistical software 
packages other than R and Mplus. Taken together, it seems that although theoretically 
sound, methods implemented in R and Mplus do not fully resolve the problem of clustering 
unbalanced longitudinal data because of the computational complexities. In a recent 
application, we have determined that application of post-hoc finite mixture models to the 
empirical best linear unbiased predictor (eBLUP) from linear or piecewise linear mixed 
effects model can reasonably classify heterogeneous trajectories of hidden components in 
distinct subgroups. Theoretical ground of this functionality is obvious as vectors of BLUPs 
account for the heterogeneities in shapes across individual-level trajectories, and mixture 
models classify individuals based on these heterogeneities. This study uses 5 datasets of 
early childhood growth patterns consisting of 2-3 components of linear, quadratic and cubic 
trends with varying level of separability to compare the classification and evaluation 
performance of these three methods. The study would also identify the situations when one 
method performs better than others.  

2. Overview of heterogeneous linear mixed effects model: The general form of the linear 
mixed effects model is,  𝑌𝑖 =  𝑋𝑖𝛽 + 𝑍𝑖𝑏𝑖 + 𝜖𝑖,  𝑖 = 1,2, . . , 𝑁; where, 𝛽 is the vector of 
fixed effects that describes the shapes of average trajectories over all individuals under 
study; 𝑏𝑖~𝑀𝑁(0, 𝐷),  is the vector of random coefficients related to the 𝑖𝑡ℎ subject; 
𝜖𝑖~𝑀𝑁(0, 𝑅𝑖),  is the vector of measurement or sampling errors associated with the 
responses of the 𝑖𝑡ℎ subject. Vectors 𝑏𝑖 and 𝜖𝑖 are assumed to be independent. The 
distributional assumption of 𝑏𝑖 implies that individual-level trajectories are homogeneous 
in shapes, thus the model under this assumption is termed as homogeneous linear mixed 
effects model. Under this form of the model,𝑌𝑖~𝑀𝑁(𝑋𝑖𝛽,  𝑍′𝑖𝐷𝑍𝑖 + 𝜎2𝐼 = 𝑉𝑖)  and the 
empirical best linear unbiased predictor (BLUP) of random coefficients for given data (𝑌𝑖) 
is, 𝑏�̂� = �̂�(𝑏𝑖|𝑌𝑖) = �̂� 𝑍′𝑖�̂�𝑖

−1(𝑌𝑖 − 𝑋𝑖�̂�). This normality assumption of 𝑏𝑖, 𝑖 =
1,2, . . 𝑛 could be violated in presence of the hidden subgroups or heterogeneous shapes of 
individual trajectories. In case of the presence of subgroups in shapes of trajectories, 
Verbeke et al (1996) suggested a Gaussian mixture distribution of 𝑏𝑖 as 
𝑏𝑖~ ∑ 𝜋𝑔

𝐺
𝑔=1 𝑀𝑁(𝜇𝑔, 𝐷) with 𝜋𝑔 is the component probability, 𝑔 = 1,2, … 𝐺, 𝜇𝑔 is the 

component specific mean and 𝐷 is the common variance-covariance matrix. Then the 
covariance matrix of 𝑏𝑖, 𝐷∗ = 𝐷 + ∑ 𝜋𝑔𝜇𝑔𝜇𝑔

′𝐺
𝑔=1 − ∑ ∑ 𝜋𝑙𝜋𝑔 𝜇𝑙𝜇𝑔

′𝐺
𝑔=1

𝐺
𝑙=1 , and the 

distribution of  𝑌𝑖~∑ 𝜋𝑔
𝐺
𝑔=1 𝑀𝑁(𝑋𝑖𝛽 + 𝑍𝑖𝜇𝑔,  𝑉𝑖).  It is obvious that a restriction of 

∑ 𝜋𝑔𝜇𝑔 = 0,𝐺
𝑔=1  makes 𝐸(𝑌𝑖) = 𝑋𝑖𝛽 which is the mean trajectories under homogeneous 

model. Under the mixture model, the expression of the empirical BLUP becomes 
𝑏�̂� = 𝐸(𝑏𝑖|𝑌𝑖, 𝜑)́ = �̂� 𝑍′𝑖�̂�𝑖

−1(𝑌𝑖 − 𝑋𝑖�̂�) + 𝐴𝑖 ∑ 𝜋𝑖𝑔 (𝜑)𝜇𝑔
𝐺
𝑔=1 ; where 𝐴𝑖 = 𝐼 −

𝐷𝑍𝑖
′𝑉𝑖

−1𝑍𝑖; 𝜃 is the vector of parameters of 𝛽,  𝜎,  𝐷 and 𝑉𝑖, and  𝜋𝑖𝑔 = 𝑖𝑔(𝜑) =
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𝜋𝑔𝑓(𝑌𝑖|𝜃)

∑ 𝜋𝑔 𝐺
𝑔=1 𝑓(𝑌𝑖|𝜃)

 ; 𝜑′=(𝜋′,  𝜃′) is the posterior probability for the 𝑖𝑡ℎ individual to belong to 

the 𝑔𝑡ℎ component of the mixture. The second part of the expression of 𝑏�̂�
́  is the correction 

term toward the component means, proportional to the posterior probability of belonging 
to each component. The model described above is referred to as the heterogeneous mixed 
effects model and has been used for the classification of longitudinal data (Verbeeke, 
1996). Proust-Lima et al. (2017) defined an extension of this model in which both fixed 
and random effects can be mixture component specific with  𝑏𝑖~ ∑ 𝜋𝑔

𝐺
𝑔=1 𝑀𝑁𝑉(𝜇𝑔 , 𝐷𝑔); 

𝐷𝑔 = 𝑤𝑔𝐷,   where  𝑤𝑔 is the class-specific intensity of individual variability. They also 
replaced EM algorithm by Marquardt algorithm to improve computational efficiency and 
implemented to minimize the EM algorithm-related limitations; and implemented in the R 
package ‘lcmm’.  

Immediate following Verbeeke et al introduced to HLME model, Muthen et al (1999) 
expanded the concept through latent variable mixed effects models from the structural 
equation modeling approach and accommodated many linear and nonlinear mean functions 
over time. The method was implemented in Mplus and received popularity as growth 
mixture model (GMM).  

For a simple linear growth curve implemented in Mplus, Muthen et al described the 
responses of 𝑖𝑡ℎ individual who belongs to latent class 𝑐𝑖 = 𝑔 as  

𝑌𝑖𝑗|𝑐𝑖=𝑔 = 𝜂0𝑖 +  𝜂1𝑖𝑡𝑖𝑗 + 𝜖𝑖𝑗 

𝜂𝑘𝑖|𝑐𝑖=𝑔 = 𝛼𝑘𝑔 +  𝛾𝑘𝑔𝑥𝑖 + 𝜉𝑘𝑖, 𝑘 = 0, 1 

where 0 i  and 1 i are random intercepts and slopes,  𝛼0𝑔 and 𝛼1𝑔are the average intercept 
and slope of time varying variables, 𝛾0𝑔 and 𝛾1𝑔intercepts and slopes of time invariant 
variables associated with latent class g, and 𝑐𝑖 is the latent categorical random variable with 
probability of the unobserved class membership of the 𝑖𝑡ℎ subject,   Pr(𝑐𝑖 = 𝑔) = 𝜋𝑖𝑔. 
This probability follows the multinomial logistic regression with respect to time invariant 
covariates 𝑋𝑐𝑖 associated with 𝑖𝑡ℎ subject as 

𝜋𝑖𝑔 = 𝑃(𝑐𝑖 = 𝑔|𝑋𝑐𝑖) =  
𝑒𝛾0𝑔+ 𝑋𝑐𝑖

𝑇 𝛾1𝑔 

∑ 𝑒𝛾0𝑙+ 𝑋𝑐𝑖
𝑇 𝛾1𝑙 𝐺

𝑙=1

 , 𝜋𝑖𝑔 ≥ 0. 

To obtain the desired clustering given a pre-specified number of classes, subjects can be 
assigned to their most likely class based on the posterior probabilities of class membership 
as,  

𝑃(𝑐𝑖 = 𝑔|𝑋𝑐𝑖, 𝑌𝑖) =  
𝜋𝑖𝑔𝑃(𝑌𝑖|𝑐𝑖 = 𝑔)

∑ 𝜋𝑖𝑙𝑃(𝑌𝑖|𝑐𝑖 = 𝑙)𝐺
𝑙=1

. 

 

Model parameters are estimated using an EM algorithm from the likelihood function of 
mixture distributions for a given pre-specified number of classes.    [ An overview of the 
model framework and estimation procedure is available in a book of Taylor & Francis 
Groups book’s “Longitudinal Data Analysis” (edited by G Fitzmaurice, M Davidian, G 
Verbeke, G Molenberghs) 
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3. Post-hoc Mixture Modeling of BLUPs:  This method is built on capturing the 
heterogeneity in individual trajectories through the empirical BLUP (eBLUP) from the fit 
of a suitable linear mixed effects model and then applying the conventional mixture model 
on the captured eBLUP as a post-hoc analysis. Fixed effects in the linear mixed effects 
model describe the shape of the average trajectories over all individuals under study and 
the random coefficients explains the heterogeneity between trends in average and 
individual trajectories. Thus, the random coefficients convey heterogeneities across 
trajectories of all individuals respective to the shape of average trajectory. For individuals 
with trajectories of similar shapes would be expected to have similar pattern in 
heterogeneities, and thereby could safely be used as a primary sources of information for 
classification of trajectories. Without loss of generality fixed effects can be ignored for this 
purpose.  Under the general form of linear mixed effects model, the random coefficients 
𝑏𝑖, 𝑖 = 1,2, . . 𝑛,   are normally distributed,  𝑏𝑖~𝑀𝑁(0, 𝐷).  If there exists 𝐺 mixture 
components, then 𝑏𝑖|𝑔𝑖 = 𝑔 ~𝑀𝑁(𝛾𝑔,  𝐷𝑔), and the marginal distribution of 𝑏𝑖 can be 
given as 𝑓(𝑏𝑖) = ∑ 𝑓(𝐺

𝑔=1 𝑏𝑖, 𝑔𝑖 = 𝑔) = ∑ 𝑓(𝑏𝑖|𝑔𝑖 = 𝑔)𝑃(𝑔𝑖 = 𝑔)𝐺
𝑔=1  = 

∑ 𝜋𝑘𝑓(𝑏𝑖|𝑔𝑖 = 𝑔) = ∑ 𝜋𝑔
𝐺
𝑔=1

𝐺
𝑔=1 𝑀𝑁(𝛾𝑔,  𝐷𝑔).  The likelihood function of 𝜃 = (𝛾1, …𝛾𝐺, 

𝐷1, … 𝐷𝐺, 𝜋1… 𝜋𝐺−1) for given 𝑏𝑖 is 𝐿(𝜃|𝑏1, 𝑏2, …. 𝑏𝑛) = ∐ ∑ 𝜋𝑔
𝐺
𝑔=1 𝑀𝑁(𝑏𝑖; 𝛾𝑔 ,  𝐷𝑔)𝑛

𝑖=1 . 
In reality, we observe data 𝑌𝑖, not 𝑏𝑖. However, we use the empirical BLUP of 𝑏𝑖 for given 
𝑌𝑖. That is, we use 𝑏�̂� = �̂�(𝑏𝑖|𝑌𝑖) = �̂� 𝑍′𝑖�̂�𝑖

−1(𝑌𝑖 − 𝑋𝑖�̂�) as data for classification. In 
addition to the empirical BLUP, scores from suitable linear transformations of BLUP such 
as principal component analysis, factor analysis and canonical analysis can also be used 
for classification purpose. Transformations may be beneficial to pre-process BLUP for 
classification. It may be helpful to handle outliers also.  Of course, the accuracy of the 
classification may depend on the accuracy of capturing heterogeneities between individual 
and average trajectories. Prediction error, 𝑉𝑎�̂�(𝑏�̂� -𝑏𝑖) =�̂� − �̂� 𝑍′

𝑖�̂�𝑖
−1𝑍𝑖�̂� +

�̂� 𝑍′
𝑖�̂�𝑖

−1𝑋𝑖[∑ 𝑋𝑖
′𝑛

𝑖=1 �̂�𝑖
−1𝑋𝑖]

−1
𝑋𝑖′�̂�𝑖

−1𝑍𝑖�̂� can be investigated for this purpose. In this 
study, we used Gaussian finite mixture models implemented R package mclust for 
classifications BLUP and principal components of BLUP (BLUPLNT).    

4. Real Data Applications: We have used five datasets consisting of trajectories of 2-3 
distinct components with varying level of separability to compare classification 
performance of three methods. The datasets of mixture distributions are created by 
combining components of plausible homogeneous patterns of linear, quadratic and cubic 
trends of early childhood growth trajectories identified from a large dataset of 3,365 
children. The dataset consists of the standardized scores of weight-for-length (at ages < 2 
years) and body mass index (BMI) (at ages ≥ 2 years), collected on clinic visits during their 
first 5 years of life. In the United States, weight-for-length and BMI are common measures 
of the somatic growth of children aged < 2 years and ≥ 2 years, respectively. Because the 
same quantile cutoffs of the two variables are used to classify the weight status of children, 
the standardized score of this variable, denoted BMIz, has been used as an early childhood 
growth indicator. The data were retrospectively retrieved from electronic health records.  

Using the identified plausibly homogeneous subsets, we generated 5 datasets of two or 
three components with varying extent of separability. We generated classifications of 2-4 
groups using four methods: HLME in Mplus (GMM), HLME in R (HLME), post-hoc 
mixture model of BLUPs using R-package mclust (BLUP), and post-hoc mixture model of 
principal component analysis of BLUPs (BLUPLNT). We  used Bayesian information 
criteria (BIC) from the following three methods for evaluations: Mplus GMM fit (Mplus), 
R HLME fit (RHLME), the goodness of fit of the linear mixed effects model. The linear 
fixed effects model was applied on the solutions of each method, namely Mplus GMM 
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(GMM), R HLME (HLME), BLUP and BLUPLNT. The description of the datasets and 
classification and evaluation performance results for all methods are presented below:    

Dataset 1 consists of three well isolatable components (Figure 1) of trajectories with linear 
and opposite quadratic trends of BMIz. Component 1 of this dataset consists of 254 
children with a linear trend, component 2 consists of 83 children with concave downtrend, 
and component 3 consists of 50 children with a concave up trend. Figure 1 shows 
classifications of 2, 3, and 4 groups of this dataset using GMM, HLME, BLUP and 
BLUPLNT. In two-group classification, GMM, BLUP and BLUPLNT produced similar 
results, combining components 1 and 3 into one group. By contrast, HLME split all three 
components to form two groups. In three-group classifications, all methods were able to 
identify the three components as distinct groups. In four-group classifications, all methods 
retained components 2 and 3 as distinct groups and split component 1 into two groups. 
GMM and HLME retained most trajectories of the component in the same group while a 
BLUP and BLUPLANT divided the group more evenly. In terms of the evaluations of 
cluster solutions, all methods uniquely identified three-group classifications as the best 
(Figure 1). To evaluate the same number of classes, GMM and BLUPLNT in two-group 
classifications, HLME and BLUPLNT in three-group classifications, and BLUP and 
BLUPLNT emerged as optimum in four-group classifications, respectively using mixed 
effects model.  
 
 Dataset 2 also consists of three components with distinct trajectories (Figure 2). 
Components 1 and 2 of this dataset are the same as those in dataset 1. Component 3 
comprises a cubic mean trajectory trend. Once again, all methods achieved similar 
performance to identify three components as distinct groups. In two-group classifications, 
GMM combines components 1 and 2 into 1 group, HLME combines 1 and 3, and BLUP 
and BLULNT combine 2 and 3 into one group. All methods retained two components 
distinct and split one component in to two groups in four-group classifications. GMM split 
component 3, while other methods split component 1, but in different sizes. In terms of the 
evaluation, Mplus showed a tendency of picking higher number of groups as the better 
solution, HLME picked the three-group classification as the optimum. Linear mixed effects 
model fit chose three-group classifications as the best for GMM and HLME solutions and 
two-group classifications for BLUP and BLUPLNT. Using this method of evaluation to 
compare classifications of the same number of groups, BLUP and BLUPLNT for two-
group, GMM for three-group and BLUP for four-group classifications appeared to be the 
best.  
 
Dataset3 comprises three less separable components (Figure 3). Component 1 consists of 
156  children with a weak cubic mean trend in BMIz, components 2 and 3 contains 102 
and 126 children with mean trends of opposite patterns at the beginning of the life. Methods 
differed substantially in both classifications and evaluations of this dataset. In two-group 
classifications, GMM, BLUP, and BLUPLNT merged children of components 1 and 2 into 
the same group. Component 3 remained as a distinct group. HLME split components 1 and 
3 to form two groups. One group contained children from component 2 and splits of 
components 1 and 3, and the group contained children splits of components 1 and 3. In 
three-group classifications of this dataset, GMM and HLME merged components 1 and 2 
and splits component 3; BLUP split component 1 to merge 43 children with component 
children in component 2, and retained component 3 as a distinct group. BLUPLNT was 
almost the same as BLUP except that it merged 11 children from component 1 with 
children of component 2. In four-group classifications, HLME, BLUP, and BLUPLNT 
appeared to be similar. All three methods split components 1 and 3, merged a split of 
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component 1 with component 2, and split component 3 to two distinct groups. GMM 
merged components 1 and 2 into a group and split component 3 into three distinct groups. 
For evaluations of the cluster solutions, Mplus suggested an increased number of 
classifications, HLME suggested its three group classifications, and linear mixed effects 
model suggested BLUP’s three-group classifications as the optimum solutions. We can 
also evaluate classifications of the same group numbers across four methods using mixed 
effects model. In two-group classifications, GMM, BLUP, and BLUPLNT have the 
optimum solution. In three- and four-group classifications, BLUP solutions are the best. 
Overall in this method of evaluation, BLUP’s three-group classification is the best.  
 
Dataset 4 is composed of two clearly opposite quadratic trends (Figure 4). GMM, BLUP 
and BLUPLNT identified two components perfectly in two-group classifications while 
HLME split both components. In three- and four-group classifications, all methods 
performed similarly. Specifically, all methods retained component 1 as distinct and split 
component 2. Mplus and RHLME picked four-group classifications as the optimum, while 
linear mixed effects model picked two-group classifications using GMM, BLUP and 
BLUPLNT as the optimum. For the HLME solutions, this method picked three-group 
classification as the optimum. According this method, BLUP perform the best for two-, 
three-, and four-group classifications among four methods.  
 
Dataset 5 is made of two components (Figure 5). Trajectories in component 1 showed trend 
to become heterogeneous with increased age. GMM, BLUP, and BLUPLNT performed 
similarly once again for two-group classifications. HLME combined almost all children 
(97 out of 101) of component 1 with the children of component 2 for this classification. 
For three-group classifications, GMM and HLME split component 2 in two different 
groups, and component 1 remained distinct. BLUP and BLUPLNT still retained two-
components as two distinct groups and third group contains only one child. For four-group 
classifications, GMM and HLME split both components to form four groups. BLUP and 
BLUPLNT still retained component 1 as distinct group and split component 2 in three 
groups with one group contained only one child.  
 
5. Discussions and conclusions: GMM and HLME combine the concepts of linear mixed 
effects and mixture models to classify hidden subgroups in the longitudinal unbalanced 
data. Theoretically, both methods are firm footed and both methods apply mixture models 
on the heterogeneity in trajectories captured by random coefficients of the mixed effects 
model. The process of combining these two concepts becomes computationally 
complicated as it requires estimating increased number of parameters. None of the methods 
considered in this study performed consistently in all datasets. As discussed, GMM in 
Mplus generally works well on relatively small datasets with less degree of 
unbalancedness. The HLME in R can handle large datasets, but was very inconsistent in 
regards to the accuracy of the classification. Also, computational time can increase greatly 
with the size of the data and number of random coefficients. Application of post-hoc 
mixture models on the empirical random coefficients may reduce complexities drastically 
as it does not involve in estimating extra parameters for combining random coefficients 
and mixture models. In running programs in all three methods, we need a linear mixed 
effects model that captures the heterogeneity in trajectories accurately. In other words, 
classification performance of all these methods largely depends on the accuracy of the 
model fit. The classification performance also depends on the separability of the 
components in the datasets. We identified a piecewise linear mixed effects model for each 
dataset that best fit to the corresponding dataset and then applied the same model across all 
methods. In regards to the classification performance, we investigated the strength of the 
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methods in classifying datasets of known number of components with varying separability 
into the same number as well as more or fewer number of groups.   
 
Methods performed equally in identifying components for datasets with clear separability, 
and varied substantially for datasets with less separable components. All methods 
performed uniformly for classifications and evaluations to identify three components of the 
dataset 1 as three distinct groups. This is a dataset in which components of this dataset are 
unambiguously well-separable. It is also obvious from graphical inspection that the three 
components are distinct with sound homogeneity among within component trajectories. 
When squeezed three components into two classess, HLME split all components to form 
two groups which was different from three other methods. In mixed model evaluation, this 
classification was worst among four in terms of BIC. When classified three components in 
to four classes, BLUP and BLUPLNT appeared to perform much better according to BIC 
using linear mixed effects model.   
The dataset 2 differ from the dataset 1 by only component 3. This component of the dataset 
2 is slightly more complex in terms of the degree of polynomial and heterogeneity than 
that of the component 3 in the dataset 1. This makes components of the dataset 2 slightly 
less separable than that of the dataset 1. Once again, all methods performed similarly to 
identify three components. But, the evaluation was different across methods. GMM in 
Mplus tended to show that the higher the number of groups the better is the classification, 
while HLME in R showed three-groups as the optimum. For the classifications using GMM 
and HLME, the linear mixed effects model suggested three groups as the optimum 
classification. Using the linear mixed effects model, BIC is the same for HLME, BLUP 
and BLUPLNT, however, if we consider all model fits, it is the smallest for two-group 
BLUP classification. Once again, BLUP performed better in two- and four-groups 
classification of this three-component dataset using the linear mixed effect evaluation.  
 
Components of dataset 3 are least separable among the three-component datasets. To group 
into three classes of this three-component dataset, GMM and HLME worked similarly and 
merged component 1 with component 2 and split component 3. Likewise linear mixed 
effects model, visual inspection of the components of this dataset seems don’t quite support 
these classifications. Once again, GMM in Mplus supported a higher number of clusters, 
while RHLME supported a three-group classification. Linear mixed effects indicated two 
groups in GMM and four in HLME as the optimum for the corresponding methods. Three-
group classifications using BLUP and BLUPLNT are quite different, and linear mixed 
effects models identified this classification using BLUP as the optimum among all 
groupings. In each of the two-, three-and four-group classifications, BLUP performed best 
according to the linear mixed effects model.  
Components of dataset 4 are highly separable from each other. GMM, BLUP and 
BLUPLNT identified perfectly both components of this dataset in two-group 
classifications. However, GMM in Mplus identified 4 group-classifications as optimum, 
while linear mixed effect models supported this two-group classification as the best. HLME 
performed poorly in identifying two components of this dataset. In three- and four-group 
classifications of this two-component dataset, BLUP performed better in terms of the 
evaluation by linear mixed effects model.  
 
Components of dataset 5 are less separable. GMM and BLUP and BLUPLNT performed 
similarly to identify two components of this dataset. GMM in Mplus supported this as the 
optimum which is suggested by linear mixed effects model also. However, for overall 
groupings, the linear mixed effects model suggested four clusters by the HLME as the 
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optimum followed by the same numbers of BLUP classification. However, HLME once 
again completely failed to recognize two components as distinct groups.  
 
Looking across all datasets, when the number of groups in the modeling approach is the 
same as the number of components in the dataset, BLUP and BLUPLNT performed well 
in identifying components in all datasets, GMM was able to identify the correct clusters in 
4 datasets, and HLME only performed well in 2 3-cluster datasets with separable 
components. HLME performed poorly in classifying two-component datasets irrespective 
of separability. Evaluations using linear mixed effects model appeared to be more realistic 
than fit statistics from the GMM in Mplus and RHLME.  Choosing the number of clusters 
based on the BIC from the GMM in Mplus tended to pick higher number of groups as the 
optimum classifications. HLME showed inconsistent performance in classification and 
then evaluation was often different from others. In evaluations of classifications involving 
fewer or more number of groups than the number of components, fit statistics BIC for 
BLUP and BLUPLNT classes was lower in most cases than that for classes of GMM and 
HLME as per evaluations of linear mixed effects models. This may suggestive that BLUP 
and BLUPLNT are likely to be more reasonable than two other methods in these situations.  
 
The other strengths of the post-hoc mixture modeling of BLUP or BLUPLNT are that, 
unlike HLME and GMM, this method can provide more freedom in terms of software use 
by allowing to perform mixed effects model and mixture models in different statistical 
software packages, doesn’t impose serious computational burden for the increase in size 
and the level of unbalancedness of the dataset, and is less likely to be affected by the 
problem related to multiple maxima of the likelihood as the model is less complex than 
two others.  
In summary, this study indicates that post-hoc mixture modeling of BLUP and BLUPLNT 
can be used to identify the hidden components of unbalanced longitudinal data. 
Classification performance heavily relies on the accuracy of the model fit in all methods. 
Methods perform classification and evaluation with similar level of accuracy for datasets 
with clearly separable components, and differ in performance for datasets with relatively 
less separability. Post-hoc mixture modeling of BLUPs or BLUPLNTs showed better 
accuracy than two other methods in classification and evaluation in this situation. Overall, 
post-hoc mixture modeling methods perform better than two other methods on these five 
datasets. Future appropriate simulation studies could provide further insight in comparing 
the strength and weakness of the three methods in classifying longitudinal data with 
irregular spaces between measurement times.   
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Figure 1: Classifications and Evaluations of Dataset 1 

Comp1 Comp2 Comp3 Comp1 Comp2 Comp3 Comp1 Comp2 Comp3 Comp1 Comp2 Comp3

N=254 N=83 N=50 N=254 N=83 N=50 N=254 N=83 N=50 N=254 N=83 N=50

Groups

1 254 0 50 131 39 41 251 0 50 254 0 50

2 0 83 0 123 44 9 3 83 0 0 83 0

1 0 83 0 0 83 0 0 0 50 0 0 50

2 254 0 1 254 0 0 251 0 0 254 0 0

3 0 0 49 0 0 50 3 83 0 0 83 0

1 6 0 0 13 0 0 0 0 50 0 0 50

2 0 0 48 241 0 0 65 0 0 128 0 0

3 0 83 0 0 83 0 188 0 0 126 0 0

4 248 0 2 0 0 50 1 83 0 0 83 0

3

4

Classifications

No. of 

Classes GMM HLME BLUP BLUPLNT

2

Groups GMM HLME BLUP BLUPLNT

2 7952 9895 9241 9562 9263 9241

3 7815 9418 9106 9094 9107 9094

4 7819 9433 9708 9678 9358 9351

BIC

Mplus RHLME

Evaluations

Mixed Effects Model
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Figure 2: Classifications and Evaluations of dataset 2 

Comp1
Comp

2

Comp

3

Comp

1

Comp

2

Comp

3
Comp1 Comp2 Comp3 Comp1 Comp2

Comp

3

N=254 N=83 N=84 N=254 N=83 N=84 N=254 N=83 N=84 N=254 N=83 N=84

Groups

1 253 83 3 254 0 82 254 0 8 0 83 79

2 1 0 81 0 83 2 0 83 76 254 0 5

1 253 0 5 254 0 1 254 0 1 0 83 0

2 0 83 0 0 0 83 0 0 83 254 0 1

3 1 0 79 0 83 0 0 83 0 0 0 83

1 0 83 0 0 0 83 159 0 0 0 83 0

2 0 0 45 243 0 1 95 0 2 81 0 0

3 254 0 2 0 83 0 0 0 82 0 0 84

4 0 0 37 11 0 0 0 83 0 173 0 0

4

No. of 

Classes

GMM

Classifications

HLME BLUPLNTBLUP

2

3

GMM HLME BLUP BLUPLNT

2 9197 11157 10807 10890 10742 10785

3 9002 10920 10801 10842.6 10843 10843

4 8956 10940 11259 11051.2 11019 11060

Groups

Evaluations

Mixed Effects Model

BIC

Mplus RHLME
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Comp1 Comp2 Comp3 Comp1 Comp2 Comp3 Comp1 Comp2 Comp3 Comp1 Comp2 Comp3
N=156 N=102 N=126 N=156 N=102 N=126 N=156 N=102 N=126 N=156 N=102 N=126

1 156 102 0 141 0 94 0 0 126 0 0 126

2 0 0 126 15 102 32 156 102 0 156 102 0

1 156 102 0 0 0 65 0 0 126 145 0 0

2 0 0 77 156 102 0 113 0 0 11 102 0

3 0 0 49 0 0 61 43 102 0 0 0 126

1 156 102 0 50 102 0 0 0 56 0 0 62

2 0 0 71 106 0 0 0 0 70 0 0 63

3 0 0 29 0 0 65 113 0 0 145 0 1

4 0 0 26 0 0 61 43 102 0 11 102 0

4

3

2

Classifications

Groups

BLUPLNTGMM HLME BLUP
No. of 

Classes

GMM HLME BLUP BLUPLNT

2 9687 11829 11304 11417 11304 11304

3 9594 11472 11491 11651 11176 11293

4 9562 11496 11638 11261 11252 11334

Mixed Effects Model

BIC

Mplus RHLME

Evaluations

Groups

Figure 3: Classifications and Evaluations of Dataset 3 
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Comp1 Comp2 Comp1 Comp2 Comp1 Comp2 Comp1 Comp2

N=50 N=83 N=50 N=83 N=50 N=83 N=50 N=83

1 50 0 31 40 0 83 50 0

2 0 83 19 43 50 0 0 83

1 0 79 50 0 0 47 50 0

2 0 4 0 72 0 36 0 30

3 50 0 0 11 50 0 0 53

1 0 58 0 61 0 39 50 0

2 0 4 0 18 0 30 0 27

3 50 0 0 4 0 14 0 31

4 0 21 50 0 50 0 0 25

Classifications

2

3

4

Groups
No. of 

Classes
GMM HLME BLUP BLUPLNT

GMM HLME BLUP BLUPLNT

2 2688 3416 3049 3299 3049 3049

3 2678 3200 3129 3139 3160 3173

4 2655 3182 3406 3249 3144 3223

BIC

Mixed Effects Model
Mplus RHLME

Groups

Figure 4: Classifications and Evaluations of the dataset 4 
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Comp1 Comp2 Comp1 Comp2 Comp1 Comp2 Comp1 Comp2

N=101 N=102 N=101 N=102 N=101 N=102 N=101 N=102

1 0 101 97 102 101 1 100 0

2 101 1 4 0 0 101 1 102

1 0 30 0 31 101 0 101 0

2 101 1 101 0 0 1 0 101

3 0 71 0 71 0 101 0 1

1 89 1 0 33 101 0 100 0

2 12 0 0 69 0 1 1 50

3 0 34 8 0 0 70 0 1

4 0 67 93 0 0 31 0 51

Classifications

4

GMM HLME

Groups

BLUP BLUPLNT

2

No. of 

Classes

3

GMM HLME BLUP BLUPLNT

2 3819 4771 4629 4718 4621 4656

3 3823 4565 4708 4690 4624 4624

4 3831 4578 4722 4523 4583 4604

Mixed Effects Model

BIC

Evaluations

MPlus RHLME
Groups

Figure 5: Classifications and Evaluations of Dataset 5 
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