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Abstract
A step-stress accelerated life test is a special life test where test units are subjected to higher stress

levels than normal operating conditions so that the information on the lifetime parameters of a test
unit can be obtained more quickly in a shorter period of time. Also, progressive Type-I censoring is
a generalized form of time censoring where functional test units are withdrawn successively from
the life test at some prefixed non-terminal time points. Despite its flexibility and efficient utiliza-
tion of the available resources, progressively censored sampling has not gained much popularity
due to its analytical complexity compared to the conventional censoring schemes. In particular,
understanding the mean completion time of a life test is of great practical interest in order to design
and manage the life test optimally under frequent budgetary and time constraints. In this work,
the expected termination time of a general k-level step-stress accelerated life test under progres-
sive Type-I censoring is derived using a recursive relationship of the stochastic termination time
based on the conditional block independence. To be comprehensive, two different modes of failure
inspections are considered: continuous inspection where the exact failure times are observed, and
interval inspection where the exact failure times are not available but only the number of failures
that occurred.

Key Words: accelerated life tests, continuous inspection, interval inspection, order statistics, pro-
gressive Type-I censoring, step-stress loading

1. Introduction

Thanks to the continual improvement in manufacturing process and technology, prod-
ucts are becoming increasingly reliable with substantially long life-spans, which makes the
standard life tests under normal usage conditions very difficult if not impossible. This dif-
ficulty is overcome by accelerated life test (ALT) where the units are subjected to higher
stress levels than normal operating conditions so that more failures can be collected in a
shorter period of time. The lifetime at the normal operating condition is then estimated
through extrapolation using a stress-response regression model. The (step-up) step-stress
test is a special class of ALT where the stress levels are gradually increased at some fixed
time points during the experiment. During the past decades, the inference and design op-
timization for the step-stress ALT have attracted great attention in the reliability literature;
see, for example, Miller and Nelson (1983), Bai et al. (1989), Nelson (1990), Meeker and
Escobar (1998), Bagdonavicius and Nikulin (2002), Wu et al. (2006), Balakrishnan and
Han (2008, 2009), Han and Balakrishnan (2010), Kateri et al. (2010), Han and Ng (2013),
Han and Kundu (2015), and Han (2015).

Moreover, due to time and cost constraints, censored sampling is usually unavoidable
in practice, and in particular, a generalized censoring scheme known as progressive Type-
I censoring allows functional test units to be withdrawn successively from the life test at
some prefixed non-terminal time points. Withdrawn unfailed units can be used in other
tests in the same or at a different facility; see, for instance, Gouno et al. (2004), Han et
al. (2006), and Balakrishnan et al. (2010). Despite its flexibility and efficient utilization of
the available resources, progressively censored sampling has not gained much popularity
∗Department of Management Science and Statistics, University of Texas at San Antonio, TX 78249

 
1955



in ALT due to its analytical complexity compared to the conventional censoring schemes;
see Cohen (1963) and Lawless (1982). In particular, understanding the mean completion
time of a life test under progressive Type-I censoring is of great practical interest in order
to design and manage the life test optimally under frequent budgetary and time constraints.

The research presented here is motivated by the following engineering case study. A
three-level step-stress ALT under progressive Type-I censoring is being planned with the
sample size of n = 30 prototypes in order to assess the reliability characteristics of a solar
lighting device in the second phase. The dominant failure mode of the device is controller
failure, and the stress factor is temperature whose level is increased during the test in the
range of 293K to 353K with the normal operating temperature at 293K. The standardized
stress loading of the testing chamber is determined to be x1 = 0.1, x2 = 0.5, and x3 = 0.9.
One of the objectives of the study is to report the mean termination time in order to manage
the future tests more efficiently. Due to technical limitations and budgetary constraints, it is
also considered that the exact failure times of test units may not be observable (i.e., interval
inspection). To answer these questions, this work formulates the expected termination time
of a general k-level step-stress ALT under progressive Type-I censoring by using a recur-
sive relationship of the stochastic termination time. It is assumed that without changes in
the failure mechanism, the lifetimes of test units follow an exponential distribution at each
stress level, along with the accelerated failure time (AFT) model for the effect of chang-
ing stress. This results in the conditional block independence of the ordered failure time
data as discussed by Iliopoulos and Balakrishnan (2009), Balakrishnan and Cramer (2014).
Allowing the intermediate censoring to take place at each stress change time point (viz.,
τi, i = 1, 2, . . . , k), two different modes of failure inspections are considered: continuous
inspection where the exact failure times are observed, and interval inspection where the
exact failure times are not available but only the number of failures that occurred.

The rest of the paper is organized as follows. Section 2 presents the model descriptions
for the progressively Type-I censored k-level step-stress ALT under continuous and inter-
val inspections. The expected termination time under continuous inspection is then derived
recursively in Section 3 while the expected termination time under interval inspection is
derived in Section 4. For simplicity, no notational distinction is made in this article be-
tween the random variables and their corresponding realizations. Also, we adopt the usual
conventions that

∑m−1
j=m aj ≡ 0 and

∏m−1
j=m aj ≡ 1.

2. Progressively Type-I Censored Step-stress ALT

To describe the procedure of a general k-level step-stress ALT under progressive Type-
I censoring, let us first denote s(t) to be the given stress loading (a deterministic function
of time) for ALT. Also, let sH be an upper bound of stress level and sU be the normal
use-stress level. The standardized stress loading is then defined as

x(t) =
s(t)− sU
sH − sU

, t ≥ 0

so that the range of x(t) is [0, 1]. Now, let us define 0 ≡ x0 ≤ x1 < x2 < · · · < xk ≤ 1 to
be the ordered k standardized stress levels to be used in the test. Then, for i = 1, 2, . . . , k,
let ni denote the (random) number of units failed at stress level xi in time interval [τi−1, τi)).
Let yi,l denote the l-th ordered failure time of ni units at xi, l = 1, 2, . . . , ni while ci
denotes the number of units censored at time τi. Furthermore, let Ni denote the number
of units operating and remaining on test at the start of stress level xi. That is, Ni+1 =
Ni − ni − ci = n −

∑i
j=1 nj −

∑i
j=1 cj . Then, the step-stress ALT under progressive

Type-I censoring proceeds as follows. A total of N1 ≡ n test units is initially placed at
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stress level x1 and tested until time τ1 at which point c1 live items are arbitrarily withdrawn
from the test and the stress is changed to x2. The test is continued onN2 = n−n1−c1 units
until time τ2, when c2 items are withdrawn from the test and the stress is changed to x3,
and so on. Finally, at time τk, all the surviving items are withdrawn, thereby terminating
the life test. Note that since n ≡

∑k
i=1(ni + ci), the number of surviving items at time τk

is ck = n −
∑k

i=1 ni −
∑k−1

i=1 ci = Nk − nk. Obviously, when there is no intermediate
censoring (viz., c1 = c2 = · · · = ck−1 = 0), this situation corresponds to the k-level
step-stress ALT under conventional Type-I right censoring as a special case. When there
is no right censoring (viz., τk = ∞ and nk = Nk), this situation corresponds to the k-
level step-stress testing under complete sampling as a special case. It is also noted that
under the continuous failure inspection, a step-stress ALT produces the observed values of
n = (n1, n2, . . . , nk) and y = (y1,y2, . . . ,yk) with yi = (yi,1, yi,2, . . . , yi,ni) while only
n is observed under the interval (or group) inspection since the exact failure times are not
available.

As noted in Balakrishnan and Han (2009), Balakrishnan et al. (2010), unlike pro-
gressive Type-II censoring scheme, prefixing the progressive Type-I censoring scheme
c = (c1, c2, . . . , ck−1) bears an inherent mathematical issue since there is a positive prob-
ability that all the units could fail before reaching the last stress level xk, resulting in an
early termination of the test as well as failing to fully implement c. For this reason, Gouno
et al. (2004) had to assume a large sample size, small global censoring proportions, and
a small number of stress levels for an approximate/asymptotic analysis of progressively
Type-I censored data so that the prefixed number of units could be successfully removed
at the end of each interval. However, in a reliability test, the sample size is usually small
and there might be severe censoring due to budgetary constraints and facility requirements.
Under such conditions, the assumption of a large sample is violated and consequently, the
progressive censoring scheme needs to be modified to assure its feasibility. One simple
modification which can be entertained in practice is to first decide on a fixed number of
units to be censored at the end of each stress level xi, say c∗ = (c∗1, c

∗
2, . . . , c

∗
k−1) where

c∗i ≥ 0 and
∑k−1

i=1 c
∗
i < n. Then, the actual number of units censored at the end of xi

is determined by ci = min
{
c∗i , Ni − ni

}
. If the number of remaining units at any cen-

soring time point is less than or equal to the prefixed number of units to be censored at
that point, all the remaining units are withdrawn and the life test is terminated. Hence,
this modification allows the life test to terminate earlier than scheduled whenever there are
insufficient live units remaining on the test. Since the number of surviving units at the end
of each stress level before censoring takes place is random, the actual censoring scheme
c is essentially random in this case. When c∗ = (0, 0, . . . , 0) = 0k−1, c = 0k−1 and it
corresponds to the k-level step-stress ALT under conventional Type-I right censoring as a
special case. Another practical modification is to decide on the fixed proportions of sur-
viving units to be censored at the end of each stress level xi, say π∗ = (π∗1, π

∗
2, . . . , π

∗
k−1)

where 0 ≤ π∗i < 1. Since all the remaining units are withdrawn from the test at time
τk, one could define π∗k = 1. Then, the actual number of units censored at the end of xi
is determined by ci = Υ((Ni − ni)π

∗
i ) where Υ(·) is a discretizing function of choice,

mapping its argument to a non-negative integer. It could be round(·), floor(·), ceiling(·),
or trunc(·), for example. This modification again allows the life test to terminate before
reaching the last stress level xk without any mathematical inconsistency. Since the number
of surviving units at the end of each stress level before censoring takes place is random, the
actual censoring scheme c is essentially random as well. Whenπ∗ = (0, 0, . . . , 0) = 0k−1,
c = 0k−1 and it corresponds to the k-level step-stress ALT under conventional Type-I right
censoring as a special case.

In order to derive the distributional properties for the progressively Type-I censored
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step-stress ALT, here we assume that under any stress level xi, the lifetime of a test unit
follows an exponential distribution whose probability density function (PDF) and cumula-
tive distribution function (CDF) are given by

fi(t) =
1

θi
exp

(
− t

θi

)
, 0 < t <∞, (1)

Fi(t) = 1− Si(t) = 1− exp

(
− t

θi

)
, 0 < t <∞, (2)

respectively. The parameter θi is the mean time to failure (MTTF) of a test unit at stress
level xi. Since this is non-constant stress loading, an additional assumption is required to
represent the effect of changing stress. The AFT model, also referred to as the additive ac-
cumulative damage model, is often appropriate as it generalizes several well-known models
in reliability engineering for the exponential distribution, including the basic (linear) cumu-
lative exposure model and the PH model. Under the AFT model along with (1) and (2), the
PDF and CDF of a test unit for the step-stress ALT are

f(t) =

[
i−1∏
j=1

Sj(∆j)

]
fi(t− τi−1) if

{
τi−1 ≤ t ≤ τi for i = 1, 2, . . . , k − 1
τk−1 ≤ t <∞ for i = k

,(3)

F (t) = 1−

[
i−1∏
j=1

Sj(∆j)

]
Si(t− τi−1)

if
{
τi−1 ≤ t ≤ τi for i = 1, 2, . . . , k − 1
τk−1 ≤ t <∞ for i = k

,(4)

where τ0 ≡ 0 and ∆j = τj − τj−1 is the step duration at stress level xj . Of course,
fi(t) and Fi(t) are as given in (1) and (2), respectively. It is worth mentioning that under
the assumption of exponentiality, the AFT model coincides with the cumulative exposure
model, which produces the conditional block independence of the ordered failure time data
as discussed by Iliopoulos and Balakrishnan (2009), Balakrishnan and Cramer (2014). This
is a critical property for deriving the expected termination time of a k-level step-stress ALT
under progressive Type-I censoring as shown in the following sections.

3. Expected Termination Time under Continuous Inspection

For both continuous and interval inspections, let Ti denote the duration (or the time
until termination) of a progressively Type-I censored step-stress ALT starting from the i-th
stage (viz., stress level xi) withNi surviving units. It can be shown that for i = 1, 2, . . . , k,
a general k-level progressively Type-I censored step-stress ALT, starting from the i-th stage
forms a sub- (k−i+1)-level progressively Type-I censored step-stress ALT with the sample
size Ni, the ordered stress levels xi < xi+1 < · · · < xk, and the sub-censoring scheme
ci = (ci, ci+1, . . . , ck−1). Also, given Ni, the lifetime of a remaining test unit follows a
left-truncated distribution at τi−1. Hence, the termination time T1 of a progressively Type-I
censored step-stress ALT can be expressed recursively using the duration of a sub-step-
stress ALT. Under the continuous inspection in particular, for i = 1, 2, . . . , k, Ti can be
defined recursively as

Ti =

{
min{Yi,Ni − τi−1,∆i}+ Ti+1 if Ni > 0;
0 if Ni = 0 or i = k + 1

,
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where Yi,Ni is the largest order statistic (failure time) from a sample of size Ni starting at
time τi−1. Then, the conditional mean of Ti given Ni is expressed as

E[Ti|Ni] =

{
E[min{Yi,Ni − τi−1,∆i}|Ni] + E[Ti+1|Ni] if Ni > 0;
0 if Ni = 0 or i = k + 1

.

(5)
In order to derive more explicit formula of (5), let c∗ = (c∗1, c

∗
2, . . . , c

∗
k−1) denote

the vector of a prefixed number of units to be censored at the end of each stress level
xi. The actual number of units censored at the end of xi is then determined by ci =
min

{
c∗i , Ni − ni

}
, which guarantees a feasible progressive Type-I censoring as discussed

in Section 2. When Ni > 0, it is derived that

E[Ti|Ni] = E[min{Yi,Ni − τi−1,∆i}|Ni] + E[Ti+1|Ni]

= E[min{Yi,Ni − τi−1,∆i}|Ni] + ENi+1

[
ETi+1

[Ti+1|Ni, Ni+1]
∣∣Ni

]
= E[Yi,Ni − τi−1|Ni, Yi,Ni < τi]P (Yi,Ni < τi|Ni) + ∆iP (Yi,Ni ≥ τi|Ni)

+

max{0,Ni−c∗i }∑
Ni+1=0

E[Ti+1|Ni, Ni+1]P (Ni+1|Ni)

= E[Yi,Ni − τi−1|Ni, Yi,Ni < τi]P (Yi,Ni < τi|Ni)

+

[
∆i +

max{0,Ni−c∗i }∑
Ni+1=1

E[Ti+1|Ni, Ni+1]P (Ni+1|Ni, Yi,Ni ≥ τi)

]
×P (Yi,Ni ≥ τi|Ni),

where the last equality is due to the fact that E[Ti+1|Ni, Ni+1] = 0 when Ni+1 = 0.
Also, given Ni > 0, Ni+1 > 0 implies Yi,Ni > τi since continuation of the step-stress
ALT at the (i+ 1)-th stage with a positive number of surviving units indicates that the test
has successfully gone through all the preceding stress levels x1, x2, . . . , xi with a positive
number of functioning units. Thus, Ni+1 > 0 suggests that the largest lifetime out of Ni

surviving units in the beginning of the i-th stage must have passed τi. This also means
that there were enough surviving units to be censored at each preceding stress change time
point, and the desired number of units c∗1, c

∗
2, . . . , c

∗
i could be successfully withdrawn.

Now, using the Markovian property, E[Ti+1|Ni, Ni+1] = E[Ti+1|Ni+1] and hence, for
i = 1, 2, . . . , k − 1, (5) becomes

E[Ti|Ni] =


E[Yi,Ni − τi−1|Ni, Yi,Ni < τi]P (Yi,Ni < τi|Ni) + ∆iP (Yi,Ni ≥ τi|Ni)

+

max{0,Ni−c∗i }∑
Ni+1=1

E[Ti+1|Ni+1]P (Ni+1|Ni) if Ni > 0;

0 if Ni = 0
(6)

with the stopping condition specified by

E[Tk|Nk] =


E[Yk,Nk

− τk−1|Nk, Yk,Nk
< τk]P (Yk,Nk

< τk|Nk) + ∆kP (Yk,Nk
≥ τk|Nk)

if Nk > 0;
0 if Nk = 0

.

It can be shown that given Ni, Yi,Ni is conditionally distributed as the largest order statistic
from a random sample of size Ni from a left-truncated distribution at τi−1. Using (1)-
(4), this truncated PDF is expressed as fi;trL(t) = f(t)/

[
1 − F (τi−1)

]
= fi(t − τi−1)

for t ≥ τi−1, i = 1, 2, . . . , k. It is then easy to see that given Ni, (Yi,Ni − τi−1) is
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conditionally distributed as the largest order statistic from a random sample of sizeNi from
the exponential distribution whose PDF and CDF are as given in (1) and (2). Therefore,
P (Yi,Ni < τi|Ni) = P (Yi,Ni − τi−1 < ∆i|Ni) = [Fi(∆i)]

Ni in (6) using the property of
the order statistics.

Moreover, givenNi and Yi,Ni < τi, Yi,Ni is conditionally distributed as the largest order
statistic from a random sample of size Ni from a left- and right-truncated distribution at
τi−1 and τi, respectively. Using (1)-(4), this doubly truncated PDF is given by fi;trLR(t) =
f(t)/

[
F (τi) − F (τi−1)

]
= fi(t − τi−1)/Fi(∆i) for τi−1 ≤ t ≤ τi, i = 1, 2, . . . , k. It is

then obvious that given Ni and Yi,Ni < τi, (Yi,Ni − τi−1) is conditionally distributed as the
largest order statistic from a random sample of size Ni from a right-truncated distribution
at ∆i, whose PDF is given as fi;trR(t) = fi(t)/Fi(∆i) for 0 ≤ t ≤ ∆i, i = 1, 2, . . . , k.
Therefore, the first conditional expectation in (6) is derived as

E[Yi,Ni − τi−1|Ni, Yi,Ni < τi] = Ni

∫ ∆i

0
t

[
Fi(t)

Fi(∆i)

]Ni−1[ fi(t)

Fi(∆i)

]
dt

=
Ni

[Fi(∆i)]Ni

Ni−1∑
l=0

(
Ni − 1

l

)
(−1)l

∫ ∆i

0
t[Si(t)]

lfi(t) dt

=
θi

[Fi(∆i)]Ni

Ni∑
l=1

(
Ni

l

)
(−1)l

[
∆i

θi
Si(l∆i)−

1

l
Fi(l∆i)

]
.

Analyzing ci = min
{
c∗i , Ni − ni

}
, the conditional probability mass function (PMF) of

Ni+1 given Ni is also obtained as

fNi+1|Ni
(m|Ni) = P (Ni+1 = m|Ni) = P (Ni − ni − ci = m|Ni)

=

{
P (ni ≥ Ni − c∗i |Ni), m = 0;
P (ni = Ni −m− c∗i |Ni), m = 1, 2, . . . ,max{0, Ni − c∗i }

=



Ni∑
ni=max{0,Ni−c∗i }

(
Ni

ni

)
[Fi(∆i)]

ni [Si(∆i)]
Ni−ni ,

m = 0;(
Ni

Ni −m− c∗i

)
[Fi(∆i)]

Ni−m−c∗i [Si(∆i)]
m+c∗i ,

m = 1, 2, . . . ,max{0, Ni − c∗i }

since givenNi, ni follows a binomial distribution with parametersNi and
F (τi)− F (τi−1)

1− F (τi−1)
=

Fi(∆i).
Upon utilizing these distributional results, the conditional expectation in (6) is simpli-

fied as

E[Ti|Ni] =



θi

Ni∑
l=1

(
Ni

l

)
(−1)l+1

l
Fi(l∆i) + [Fi(∆i)]

Ni

×
max{0,Ni−c∗i }∑

Ni+1=1

E[Ti+1|Ni+1]

(
Ni

Ni+1 + c∗i

)[
Si(∆i)

Fi(∆i)

]Ni+1+c∗i
if Ni > 0;

0 if Ni = 0
(7)
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for i = 1, 2, . . . , k − 1, with the stopping condition specified by

E[Tk|Nk] =

 θk

Nk∑
l=1

(
Nk

l

)
(−1)l+1

l
Fk(l∆k) if Nk > 0;

0 if Nk = 0

.

Using the recursive relation in (7), the expected termination time of a progressively Type-I
censored step-stress ALT can be computed asE[T1] = E[T1|N1 = n] under the continuous
inspection mode. As a special case when c∗ = 0k−1, the expected termination time of a
general k-level step-stress ALT under Type-I censoring can be derived explicitly as

E[T1] =
k∑
i=1

θi

n∑
l=1

(
n

l

)
(−1)l+1

l

[
i−1∏
j=1

Sj(∆j)

]l
Fi(l∆i)

using the induction on (7). The above formula is still valid under complete sampling by
letting τk →∞ or equivalently, ∆k →∞. As a corollary, in the case of a simple step-stress
ALT (viz., k = 2) under Type-I censoring, the expected termination time of test is

E[T1] =
n∑
l=1

(
n

l

)
(−1)l+1

l

[
θ1F1(l∆1) + θ2S1(l∆1)F2(l∆2)

]
while the expected termination time of a simple step-stress ALT under complete sampling
is

E[T1] =
n∑
l=1

(
n

l

)
(−1)l+1

l

[
θ1F1(l∆1) + θ2S1(l∆1)

]
.

4. Expected Termination Time under Interval Inspection

Similar to the progressively Type-I censored step-stress ALT under the continuous in-
spection, the termination time T1 of a progressively Type-I censored step-stress ALT under
the interval inspection can be expressed recursively using the duration of a sub-step-stress
ALT. Assuming that the failure inspection occurs at the end of each stress level prior to
censoring (at each stress change time point), Ti can be defined recursively as

Ti =

{
∆i + Ti+1 if Ni > 0;
0 if Ni = 0 or i = k + 1

for i = 1, 2, . . . , k. Then, the conditional mean of Ti given Ni is expressed as

E[Ti|Ni] =

{
∆i + E[Ti+1|Ni] if Ni > 0;
0 if Ni = 0 or i = k + 1

. (8)

Again, to derive more explicit formula of (8), let ci = min
{
c∗i , Ni − ni

}
be the actual

number of units censored at the end of xi, where c∗ = (c∗1, c
∗
2, . . . , c

∗
k−1) is the vector of a

prefixed number of units to be censored. When Ni > 0, it is derived that

E[Ti|Ni] = ∆i + E[Ti+1|Ni] = ∆i + ENi+1

[
ETi+1

[Ti+1|Ni, Ni+1]
∣∣Ni

]
= ∆i +

max{0,Ni−c∗i }∑
Ni+1=0

E[Ti+1|Ni, Ni+1]P (Ni+1|Ni)

= ∆i +

max{0,Ni−c∗i }∑
Ni+1=1

E[Ti+1|Ni+1]P (Ni+1|Ni),
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where the last equality is due to the fact thatE[Ti+1|Ni, Ni+1] = 0 whenNi+1 = 0, and the
Markovian property stating E[Ti+1|Ni, Ni+1] = E[Ti+1|Ni+1]. Applying the conditional
PMF of Ni+1 given Ni provided in Section 3, the conditional expectation in (8) can be
expressed as

E[Ti|Ni] =


∆i + [Fi(∆i)]

Ni

max{0,Ni−c∗i }∑
Ni+1=1

E[Ti+1|Ni+1]

(
Ni

Ni+1 + c∗i

)[
Si(∆i)

Fi(∆i)

]Ni+1+c∗i

if Ni > 0;
0

if Ni = 0
(9)

for i = 1, 2, . . . , k − 1, with the stopping condition specified by

E[Tk|Nk] =

{
∆k if Nk > 0;
0 if Nk = 0

.

Using the recursive relation in (9), the expected termination time of a progressively Type-I
censored step-stress ALT can be computed as E[T1] = E[T1|N1 = n] under the interval
inspection mode.

For the interval inspection mode, there is another way to derive the expected termina-
tion time of a step-stress ALT. It is via the conditional mean of Ti given Ni > 0, which is
expressed as

E[Ti|Ni > 0] = ∆i + E[Ti+1|Ni > 0]

= ∆i + E[Ti+1|Ni > 0, Ni+1 = 0]P (Ni+1 = 0|Ni > 0)

+ E[Ti+1|Ni > 0, Ni+1 > 0]P (Ni+1 > 0|Ni > 0)

= ∆i + E[Ti+1|Ni+1 > 0]P (Ni+1 > 0|Ni > 0)

= ∆i + E[Ti+1|Ni+1 > 0]
P (Ni+1 > 0)

P (Ni > 0)

for i = 1, 2, . . . , k−1, with the stopping conditionE[Tk|Nk > 0] = ∆k. The third equality
is due to the fact that Ti+1 = 0 when Ni+1 = 0. Also, Ni+1 > 0 implies Yi,Ni > ∆i,
which implies Ni > 0 in turn, since continuation of the step-stress ALT at the (i + 1)-th
stage with a positive number of surviving units indicates that the test has successfully gone
through all the preceding stress levels x1, x2, . . . , xi with a positive number of functioning
units. Since P (N1 ≡ n > 0) = 1, using the above recursive relation sequentially, one can
obtain that

E[T1] = E[T1|N1 > 0] =

k∑
i=1

∆iP (Ni > 0) = ∆1 +

k∑
i=2

∆iP (Ni > 0). (10)

In order to derive more concrete expression of (10), it is necessary to formulate the
probability of a step-stress ALT proceeding to stress level xi or P (Ni > 0). For this pur-
pose, let π∗ = (π∗1, π

∗
2, . . . , π

∗
k−1) denote the vector of a prefixed proportion of surviving

units to be censored at the end of each stress level xi. The actual number of units censored
at the end of xi is then determined by ci = Υ((Ni − ni)π∗i ) with a discretizing function
of choice Υ(·). This definition of ci nevertheless complicates the derivation of the distribu-
tional characteristics of the associated random quantities. For simplicity, ci = (Ni−ni)π∗i
is assumed for i = 1, 2, . . . , k − 1 as Υ((Ni − ni)π∗i ) ≈ (Ni − ni)π∗i . Under this setup,
the following lemma specifies the recursive nature of the conditional probability of Ni.
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Lemma 1. For i = 1, 2, . . . , k and j = 1, 2, . . . , i− 1, we have

P (Ni = 0|n1, n2, . . . , nj−1) =
[
H

(i)
j

]Nj ,

where

H
(i)
j =

{
Fj(∆j) + Sj(∆j)

[
H

(i)
j+1

]1−π∗j for j = 1, 2, . . . , i− 1

0 for j = i
.

It is also observed that the following property holds for the recursive function H(i)
j

defined above. That is, it is always bounded between 0 and 1.

Corollary 1. For i = 1, 2, . . . , k and j = 1, 2, . . . , i, we have 0 ≤ H(i)
j < 1.

Now, it follows naturally that

P (Ni > 0) = 1− P (Ni = 0) = 1−
[
H

(i)
1

]N1 = 1−
[
H

(i)
1

]n
.

Upon applying this result to (10), the expected termination time of a progressively Type-I
censored step-stress ALT under the interval inspection mode is obtained as

E[T1] = τk −
k∑
i=2

∆i

[
H

(i)
1

]n
. (11)

As a special case when π∗ = 0k−1, H(i)
j can be explicitly expressed as

H
(i)
j =

i−1∑
l=j

Fl(∆l)
l−1∏
l′=j

Sl′(∆l′) = 1−
i−1∏
l=j

Sl(∆l) =
F (τi−1)− F (τj−1)

1− F (τj−1)

by sequentially expanding its recursive relation. Consequently, P (Ni > 0) = 1−[F (τi−1)]n

in this case, and thus, the expected termination time of a general k-level step-stress ALT
under Type-I censoring is explicitly obtained as

E[T1] = τk −
k∑
i=2

∆i[F (τi−1)]n.

As a corollary, in the case of a simple step-stress ALT (viz., k = 2) under Type-I censoring,
the expected termination time of test is simply

E[T1] = τ2 −∆2[F1(∆1)]n.
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