The Fundamental Instruction Set Operation Codes Support Function Library

Timothy Hall*

Abstract

This paper documents the Fundamental Instruction Set Operation Codes (FISOC) Support Function Library that may be used to implement arbitrary extended precision Rational Arithmetic And Conversions (RAC) statistical algorithms in embedded systems, including Field Programmable Gate Arrays and Very High Speed Integrated Circuits. The FISOC support function library consists of a minimal set of low-level register and static memory manipulation commands that provide for all functionality available through Reduced Instruction Set Computing and high-level software (both commercial and maintained shareware), with an emphasis on simplifying and condensing statistical analyses that require exceptionally high levels of precision and errorless calculation results. Examples of common statistics-related calculation algorithms are included that demonstrate the implementation flexibility and practical utility of the library, and a demonstration of the utility of RAC analytic methodology is given through the strategic calculation of the square root.

Key Words: Reduced Instruction Set Computing, Rational Arithmetic, Assembly-Level Algorithms, HDL Implementations

1. Introduction

The Fundamental Instruction Set Operation Codes (FISOC) is a collection of twenty-five assembly-level operation codes and assembly language directives that are used in the implementation of Rational Arithmetic and Conversions (RAC) routines [1]. This set of operators is a minimal set of such commands that may implement the RAC routines in assembly-level code (in the sense that all other instructions may be implemented in terms of the FISOC). While it is possible to further reduce the FISOC to a smaller subset by implementing some of the FISOC operation codes in term of the other operation codes, e.g., subtractions may be implemented as the addition of negated arguments, the resulting code becomes difficult to maintain, as the clarity of its purpose becomes less and less transparent as the number of instructions decreases beyond what is available in the FISOC.

1.1 Standard Requirements

Throughout this paper all references to assembly-level instructions and assembly language commands specifically refer to MMIX, the general-purpose assembly-level coding system invented by Dr. Donald E. Knuth of Stanford University [2]. All FISOC routines are implemented in the MMIX context, and may be converted, as needed, to other assembly-level contexts.

The FISOC works with BYTE, WYDE, and OCTA memory locations, and expresses TETRA-related operands in terms of high and low WYDE components. Furthermore, the FISOC does not address any MMIX functionality that does not affect registers nor memory values. While input/output routines and extra-FISOC operation codes (such as NEG) may be used for acceptance testing, the MMIX-implemented RAC routines comply strictly with the FISOC standard.

[^0]The MMIX implementations of the RAC routines do not include immediate [I] nor directional [B] indications - these are provided by the assembler during compilation. However, the descriptions in this memorandum do indicate these components for comparisons with MMIX documentation. Probable [P] indicators are used both in the descriptions and in the MMIX implemented RAC routines.

1.2 Operation Codes

1. ADD, ADDI, ADDU, LDA, ADDUI (LDA, LDAI) - Addition, with unsigned addition, and with immediate versions. The LDA[I] instructions are aliases for ADDU[I], where the Y and Z fields are used the same way in both instructions, and the absence of a Z field in LDA[I] is taken as the immediate version with $Z=0$. The LDA assembly language directive is an alias for the ADDU operation code.
2. SUB, SUBI, SUBU, SUBUI - Subtraction, with unsigned subtraction, and with immediate versions.
3. MUL, MULI, MULU, MULUI - Multiplication, with unsigned multiplication, and with immediate versions.
4. DIV, DIVI, DIVU, DIVUI - (Integer) Division, with unsigned division, and with immediate versions, where the results are stored in \$X (the integer part) and in special register $r \mathrm{R}$ (the remainder part).
5. AND - Logical Bitwise AND, with immediate version.
6. SET - Alias for OR and ORI depending on whether YZ field is a register or an immediate constant. Although OR[I] are not part of the FISOC standard, their functionality is provided in the FISOC by this directive.
7. BZ, BNZ, BP, BNP, BN, BNN, BEV, BOD - Conditional and probable conditional branches if X field is zero, non-zero, positive, non-positive, negative, non-negative, even, or odd, respectively.
8. CMP, CMPI, CMPU, CMPUI -Numerical comparison, with unsigned comparison, and with immediate versions. These comparisons are made as integers, whether signed or unsigned.
9. IS - This assembly language directive is an alias for the assignment of a label to a register number or to another label.
10. GET - Retrieval of value stored in a special register. There is no immediate version.
11. PUT, PUTI - Storage of value in Y field with immediate constant offset, or in a special register.
12. JMP, JMPB - Unconditional branch forward (without signifier) and backwards (with B signifier).
13. LDB, LDBI - Load BYTE from memory position, with immediate constant offset.
14. STB, STBI - Store BYTE at memory position, with immediate constant offset.
15. LDW, LDWI - Load WYDE from memory position, with immediate constant offset.
16. STW, STWI - Store WYDE at memory position, with immediate constant offset.
17. LDO, LDOI - Load OCTA from memory position, with immediate constant offset.
18. STO, STOI - Store OCTA at memory position, with immediate constant offset.
19. PUSHJ, PUSHJB - Unconditional branch to subroutine forward (without signifier) and backwards (with B signifier).
20. POP - Return from subroutine with number of arguments as returned values. The order of the returned values is always $\$ 1, \$ 0, \$ 2, \$ 3, \ldots$, relative to the local registers defined in the subroutine.
21. SETH - Assign WYDE value in YZ field to highest position (16 highest-order bit positions) in X field register.
22. SL, SLI, [SLU, SLUI] - Shift left within a register with immediate versions, with all zeros as right fill. Note that unsigned versions of shift left are redundant with the signed versions.
23. SR, SRI, SRU, SRUI - Shift right within a register with immediate versions, with left fill policy determined by signed (depending on the sign of the Y field - its leading bit) or unsigned (zeros) versions.
24. TRAP - General purpose control of input/output to the user interface.
25. SWYM - The "no op" instruction; it does nothing. Acronym stands for "Sympathize With Your Machinery."

1.3 Sufficiency With MMIX

The FISOC standard functions cover the following MMIX instructions: (00) TRAP, (18-27) MUL[U][I], DIV[U][I], ADD[U][I], SUB[U][I], (30-33) CMP [U] [I], (38-3F) SL[U][I], SR[U][I], (40-5F) [P]BN[B], [P]BZ[B], [P]BP[B], [P]BOD[B], [P]BNN[B], [P]BNZ [B], [P] BNP [B],[P]BEV[B], (80-87) LDB[U][I],LDW[U][I], (8C-8F) LDO [U][I], (A0-A7) STB[U][I], STW[U][I], (AC-AF) STO[U][I], (C8C9) AND [I], (E0) SETH, (F0-F3) JMP [B], PUSHJ [B\}, (F6-F8) PUT [I] , POP, (FD-FE) SWYM, and GET.

All other MMIX operation codes may be implemented in terms of the FISOC operation codes. A sample of this universality is demonstrated in the following listings. This means the FISOC standard is sufficient for implementing any MMIX command/instruction.

1. (01-17) Floating Point Calculations - These are equivalent to the corresponding RAC functions where floating point numbers are expressed as signed rational numbers, with the exception of the following special cases that handle exceptions (NAN) and tests for tolerances (the epsilon value given in the special register rE). These considerations are part of the RAC conversions and the use of 0 as the sign value.
2. (61) CSNI \$X,\$Y,Z - Conditional Set If Negative With Immediate

CMP I	$\$ W, \$ Y, 0$
BNN	$\$ W, @+4 \star 2$
SET	$\$ X, Z$

3. (72) ZSZ $\mathbf{\$ X}, \$ \mathbf{Y}, \$ \mathbf{Z}$ - Zero Or Set If Zero With Register

CMPI	$\$ W, \$ Y, 0$	JMP	$@+4 \star 2$
BNZ	$\$ W, @+4 * 3$	SET	$\$ X, 0$
SET	$\$ X, \$ Z$		

4. (90-91/B0-B1) LDSF[I]/STSF[I] \$X,\$Y,\$Z/Z - Load/Store Short Float With Register/Immediate
The FISOC standard does not use IEEE-754 (et seq.) floating point numbers in its calculations. Furthermore, the input/output interface is restricted to signed decimal numbers as alternate forms of signed rational numbers. Only XNUM and RAC structures are exclusively used within the MMIX code.

5. (C2) ORN \$X,\$Y,\$Z - Logical OR NOT With Register

The first ten instructions place ones in all positions of register \$K. The instructions with asterisks perform the logical OR NOT operation.

SETH	\$K, \#FFFF	SRUI	\$KK, 32	* SUBU	\$Y, \$K, \$Y
SETH	\$KK, \#FFFF	ADDU	\$K, \$K, \$KK	*AND	\$X, \$Y, \$ Z
SRUI	\$KK,16	SETH	\$KK, \#FFFF	*SUBU	\$ $\mathrm{X}, \mathrm{\$ K}, \mathrm{~S}$
ADDU	\$K, \$K, \$KK	SRUI	\$KK,48		
SETH	\$KK, \#FFFF	ADDU	\$K, \$K, \$KK		

Proof.	Start	$\begin{aligned} & \$ \mathrm{X}=\varnothing \\ & \$ \mathrm{Y}=0 \\ & \$ \mathrm{Z}=0 \end{aligned}$	$\begin{aligned} & \$ \mathrm{X}=\varnothing \\ & \$ \mathrm{Y}=0 \\ & \$ \mathrm{Z}=1 \end{aligned}$	$\begin{aligned} & \$ \mathrm{X}=\varnothing \\ & \$ \mathrm{Y}=1 \\ & \$ \mathrm{Z}=0 \end{aligned}$	$\begin{aligned} & \$ \mathrm{X}=\varnothing \\ & \$ \mathrm{Y}=1 \\ & \$ \mathrm{Z}=1 \end{aligned}$
	*SUBU \$Y,\$K,\$Y	$\begin{aligned} & \$ \mathrm{X}=\varnothing \\ & \$ \mathrm{Y}^{\prime}=1 \end{aligned}$	$\begin{aligned} & \$ \mathrm{X}=\varnothing \\ & \$ \mathrm{Y}^{\prime}=1 \end{aligned}$	$\begin{aligned} & \$ \mathrm{X}=\varnothing \\ & \$ \mathrm{Y}^{\prime}=0 \end{aligned}$	$\begin{aligned} & \$ \mathrm{X}=\varnothing \\ & \$ \mathrm{Y}^{\prime}=0 \end{aligned}$
	*AND \$X, \$Y, \$Z	$\begin{gathered} \$ \mathrm{Z}=0 \\ \$ \mathrm{X}^{\prime}=0 \\ \$ \mathrm{Y}^{\prime}=1 \\ \$ \mathrm{Z}=0 \end{gathered}$	$\begin{aligned} & \$ \mathrm{Z}=1 \\ & \$ \mathrm{X}^{\prime}=1 \\ & \$ \mathrm{Y}^{\prime}=1 \\ & \$ \mathrm{Z}=1 \end{aligned}$	$\begin{aligned} & \$ \mathrm{Z}=0 \\ & \$ \mathrm{X}^{\prime}=0 \\ & \$ \mathrm{Y}^{\prime}=0 \\ & \$ \mathrm{Z}=0 \end{aligned}$	$\begin{gathered} \$ Z=1 \\ \$ X^{\prime}=0 \\ \$ Y^{\prime}=0 \\ \$ Z=1 \end{gathered}$
	$\begin{gathered} * \text { SUBU } \$ \mathrm{X}, \$ \mathrm{~K}, \$ \mathrm{X} \\ \text { Results }=\$ \mathrm{X}^{\prime \prime}=\mathrm{ORN} \end{gathered}$	$\begin{gathered} \$ X^{\prime \prime}=1 \\ \$ Y^{\prime}=1 \\ \$ Z=0 \end{gathered}$	$\begin{gathered} \$ X^{\prime \prime}=0 \\ \$ Y^{\prime}=1 \\ \$ Z=1 \end{gathered}$	$\begin{gathered} \$ X^{\prime \prime}=1 \\ \$ Y^{\prime}=0 \\ \$ Z=0 \end{gathered}$	$\begin{gathered} \$ X^{\prime \prime}=1 \\ \$ Y^{\prime}=0 \\ \$ Z=1 \end{gathered}$

6. (DC-DD) MOR[I] \$X,\$Y,\$Z/Z - Multiple OR With Register/Immediate

If $y_{i j}$ is byte i and bit j within that byte of register $\$ \mathrm{Y}$, with a corresponding meaning of $z_{i j}$ for $\$ \mathrm{Z} / \mathrm{Z}$, then the assignment to $\$ \mathrm{X}$ as a result of the MOR[I] operation code is given by

$$
\left(\begin{array}{cccc}
y_{00} & y_{10} & \cdots & y_{70} \\
y_{01} & y_{11} & \cdots & y_{71} \\
\vdots & \vdots & \ddots & \vdots \\
y_{07} & y_{17} & \cdots & y_{77}
\end{array}\right)\left(\begin{array}{cccc}
z_{00} & z_{10} & \cdots & z_{70} \\
z_{01} & z_{11} & \cdots & z_{71} \\
\vdots & \vdots & \ddots & \vdots \\
z_{07} & z_{17} & \cdots & z_{77}
\end{array}\right)
$$

where the bit products are MUL[U][I] operations and the additions are logical OR[I] operations (since OR[I] may in turn be expressed as FISOC operation codes). Therefore, MOR [I] may be expressed as FISOC operation codes.

2. Programming Considerations

The following information addresses the programming considerations necessary for implementing the RAC routines in MMIX.

1. Since BYTE is the smallest basic unit of memory location available in MMIX, all individual decimal digit representations (using four bits ${ }^{1}$ per digit) appear as $\# 0 X$, where X may be $0-9$.
2. Since OCTA is the largest basic unit of memory locations (and the only register size), considerable additional code is needed in MMIX to manipulate the position of loaded and stored data in memory locations. This differs from C array structures where the individual bytes are addressed as offsets from a base position, regardless of crossing OCTA or any other memory location boundary. This consideration makes the use of shift operators (SLU and SRU - and their signed variations) necessary in the FISOC.
3. Many ANSI C, MATLAB, and MAPLE implementation structures are not directly available in MMIX (and therefore in the FISOC standard). For example, a for loop requires the use of three registers (independently of all others used within the loop) - one for the loop index, one to hold comparison results, and one to hold the limiting value for the loop index. While some registers used in the loop body may substitute for one or more of these registers depending on availability, such "economies" usually render the code less transparent and therefore more difficult to maintain. Furthermore, several branches and jump operations are needed to control the flow of the logical code to the beginning of the loop depending on the tests performed and/or conditions found in the loop body. Finally, loops within loops (commonly needed to index vectors and matrices) require a hierarchy of such reserved registers to make sure inapplicable values are not inadvertently stored in registers that are used prematurely.
4. Many of the RAC routines call other RAC routines as subroutines. These subroutine RAC routines may themselves call other RAC routines as sub-subroutines. While each RAC routine uses a unique namespace to prevent misuse of identically named labels within each routine, proprietary memory space is needed for each RAC routine to ensure needed results are not overwritten or otherwise misused during subroutine processing. This is especially the case for iterative methods, such as the square root routine, where twenty-five XNUM structures are needed to hold all the intermediate values.
[^1]
3. Example FISOC Implementations Of The RAC Routines

The following sections document the MMIX implementations of several common RAC routines according to the FISOC standard. While an XNUM structure may be of any length (subject to implementation storage limits), the XNUM structure implemented herein represents a signed 512 decimal digit integer, so that the range of representable numbers is $\pm 10^{512}-1$, and the smallest absolute increment in any RAC representation is therefore $\left(10^{512}-1\right)^{-1} \approx 10^{-512}$.

Comment lines start with a semicolon (;), which must be in the first column of the line. The dollar sign (\$) followed by a positive integer between 0 and 255 (inclusive) are the names of 64-bit registers available in MMIX.

3.1 Floor Function

42	SET	rTMPB, rIN
43	SET	rTMPC,rID
44	SET	rTMPD, rXXN
45	SET	rTMPE, rXXD
46	PUSHJ	rTMPA, :pqicstat:RAC:pqicRREC:Start
47	LDB	rTMPA, rXXN, 0
48	CMP	rCMP, rTMPA, 0
49	BNZ	rCMP, Non I
50	SET	rTMPB, rXXN
51	SET	rTMPC, rON
52	PUSHJ	rTMPA, pqicstat:RAC:pqicXCPX:Start
53	SET	rTMPB, rONE
54	SET	rTMPC, rOD
55	PUSHJ	rTMPA, :pqicstat:RAC:pqicXCPX:Start
56	JMP	Quit
57 NonI	BP	rCMP, NonN
58	STB	: Nego, rON, 0
59	STB	:PosO,rod, 0
60	JMP	@+4*3
61 NonN	STB	: Poso,ron, 0
62	STB	: Poso,rod, 0
63	SET	rTMPB, rXXN
64	SET	rTMPC, rXXD
65	SET	rTMPD, rRO
66	SET	rTMPE, rRT
67	PUSHJ	rTMPA, :pqicstat:RAC:pqicXDIV:Start
68	SET	rTMPB, rRT
69	SET	rTMPC, rZER
70	PUSHJ	rTMPA, :pqicstat: RAC:pqicXCMP: Start
71	CMP	rCMP, rTMPA, 0
72	BNZ	rCMP, RndOff
73	SET	rTMPB, rRO
74	SET	rTMPC, rON
75	PUSHJ	rTMPA, :pqicstat:RAC:pqicXCPX:Start
76	JMP	Finish
77 RndOff	LDB	rTMPA, rON, 0
78	CMP	rCMP, rTMPA, 0
79	BN	rCMP, DecrN
80	SET	rTMPB, rRO
81	SET	rTMPC, ron
82	PUSHJ	rTMPA, pqicstat:RAC:pqicXCPX:Start
83	JMP	Finish
84 DecrN	SET	rTMPB, rRO
85	SET	rTMPC, rONE
86	SET	rTMPD, rRT
87	PUSHJ	rTMPA, :pqicstat:RAC:pqicXSUB:Start
88	SET	rTMPB, rRT
89	SET	rTMPC, rON
90	PUSHJ	rTMPA, :pqicstat:RAC:pqicXCPX:Start
91 Finish	SET	rTMPB, rONE
92	SET	rTMPC, rOD
93	PUSHJ	rTMPA, :pqicstat:RAC:pqicXCPX:Start
94 Quit	PUT	:rJ,rJ
95	POP	0,0

3.2 RAC Multiplication

56	SET	rTMPC, rUD
57	SET	rTMPD, rTAN
58	SET	rTMPE, rTAD
59	PUSHJ	rTMPA, :pqicstat:RAC:pqicRREC:Start
60	SET	rTMPB, rVN
61	SET	rTMPC, rVD
62	SET	rTMPD, rTBN
63	SET	rTMPE, rTBD
64	PUSHJ	rTMPA, :pqicstat: RAC:pqicRREC:Start
65	LDB	rTMPA, rTAN, 0
66	LDB	rTMPB, rTBN, 0
67	MUL	rCMP, rTMPA, rTMPB
68	STB	:Poso,rTAN,0
69	STB	:Poso,rTBN, 0
70	SET	rTMPB, rTAN
71	SET	rTMPC, rTBD
72	SET	rTMPD, rKK
73	PUSHJ	rTMPA, :pqicstat:RAC:pqicGCD: Start
74	SET	rTMPB, rTAD
75	SET	rTMPC, rTBN
76	SET	rTMPD, rRR
77	PUSHJ	rTMPA, :pqicstat:RAC:pqicGCD: Start
78	SET	rTMPB, rTBN
79	SET	rTMPC, rRR
80	SET	rTMPD, rNN
81	SET	rTMPE, rJJ
82	PUSHJ	rTMPA, :pqicstat: RAC:pqicXDIV:Start
83	SET	rTMPB, rTAN
84	SET	rTMPC, rKK
85	SET	rTMPD, rMM
86	SET	rTMPE, rJJ
87	PUSHJ	rTMPA, :pqicstat: RAC:pqicXDIV:Start
88	SET	rTMPB, rMM
89	SET	rTMPC, rNN
90	SET	rTMPD, rJJ
91	PUSHJ	rTMPA, :pqicstat:RAC:pqicXMUL: Start
92	SET	rTMPB, rJJ
93	SET	rTMPC, rNN
94	PUSHJ	rTMPA, :pqicstat:RAC:pqicXCPX:Start
95	SET	rTMPB, rTBD
96	SET	rTMPC, rKK
97	SET	rTMPD, rTAN
98	SET	rTMPE, rJJ
99	PUSHJ	rTMPA, :pqicstat: RAC:pqicXDIV:Start
100	SET	rTMPB, rTAN
101	SET	rTMPC, rKK
102	PUSHJ	rTMPA, :pqicstat: RAC:pqicXCPX:Start
103	SET	rTMPB, rTAD
104	SET	rTMPC, rRR
105	SET	rTMPD, rTAN
106	SET	rTMPE, rJJ
107	PUSHJ	rTMPA, :pqicstat: RAC:pqicXDIV:Start
108	SET	rTMPB, rTAN
109	SET	rTMPC, rRR
110	PUSHJ	rTMPA, :pqicstat: RAC:pqicXCPX: Start
111	SET	rTMPB, rRR
112	SET	rTMPC, rKK

113	SET	rTMPD, rMM
114	PUSHJ	rTMPA, :pqicstat:RAC:pqicXMUL:Start
115	SET	rTMPB, rNN
116	SET	rTMPC, rMM
117	SET	rTMPD, rTAN
118	SET	rTMPE, rTAD
119	PUSHJ	rTMPA, :pqicstat:RAC:pqicRRED: Start
120	SET	rTMPB, rTAN
121	SET	rTMPC, rTAD
122	SET	rTMPD, rRN
123	SET	rTMPE, rRD
124	PUSHJ	rTMPA, pqicstat:RAC:pqicRREC:Start
125	STB	rCMP, rRN, 0
126	JMP	Quit
127 PZero	SET	rTMPB, rKK
128	SET	rTMPC, rRN
129	PUSHJ	rTMPA, pqicstat:RAC:pqicXCPX:Start
130	ADDU	rTMPB, : rLMT, 7
131	STB	: Poso,rKK,rTMPB
132	SET	rTMPB, rKK
133	SET	rTMPC, rRD
134	PUSHJ	rTMPA, :pqicstat:RAC:pqicXCPX:Start
135 Quit	PUT	: rJ, rJ
136	POP	0,0

3.3 XNUM Division

31	PBN	rCMP, ZeroOut
32	STB	:Poso,:DVQ,0
33	SET	rTMPB, rUIN
34	SET	rTMPC, : DVQ
35	PUSHJ	rTMPA, :pqicstat:RAC:pqicXCMP: Start
36	CMP	rCMP, rTMPA, 0
37	BNZ	rCMP, Cont
38	STB	:Poso, :DVQ,0
39	STW	:Poso, ${ }^{\text {dVQ,2 }}$
40	SET	rTMPB, : DVQ
41	SET	rTMPC, rDQ
42	PUSHJ	rTMPA, ${ }^{\text {Pqicstat: RAC:pqicXCPX: Start }}$
43	SET	rTMPB, : DVQ
44	SET	rTMPC, rDR
45	PUSHJ	rTMPA, :pqicstat:RAC:pqicXCPX: Start
46	JMP	Quit
47 Cont	STB	:Poso, :DVQ,0
48	LDW	rTMPA, rUIN, 2
49	LDW	rTMPB, rUDIV, 2
50	CMP	rCMP,rTMPA, rTMPB
51	BN	rCMP, kkp
52	BP	rCMP, Regular
53	SUBU	rTMPC, rLMT,rTMPA
54 FindSz	LDB	rTMPD, rUIN, rTMPC
55	LDB	rTMPE, rUDIV,rTMPC
56	CMP	rCMP,rTMPD,rTMPE
57	BN	rCMP, kkp
58	BP	rCMP, Regular
59	ADDU	rTMPC, rTMPC, 1
60	CMP	rCMP, rTMPC,rLMT
61	BN	rCMP, FindSz
62	LDB	rTMPA, rUIN, 0
63	LDB	rTMPB, rUDIV,0
64	MUL	rTMPA, rTMPA, rTMPB
65	STB	rTMPA, :DVQ, 0
66	STW	:Poso, :DVQ,2
67	SUBU	rTMPD, rLMT, 1
68	STB	:Poso,:DVQ,rTMPD
69	STB	:Poso, ${ }^{\text {dVT, } 0}$
70	STW	:Poso, ${ }^{\text {DVT, } 2}$
71	SET	rTMPB, :DVQ
72	SET	rTMPC, rDQ
73	PUSHJ	rTMPA, :pqicstat:RAC:pqicXCPX: Start
74	SET	rTMPB, :DVT
75	SET	rTMPC, rDR
76	PUSHJ	rTMPA, :pqicstat:RAC:pqicXCPX: Start
77	JMP	Quit
78 kkp	STB	:Poso, :DVQ,0
79	STW	:Poso, ${ }^{\text {dVQ, }} 2$
80	SET	rTMPB, :DVQ
81	SET	rTMPC, rDQ
82	PUSHJ	rTMPA, :pqicstat:RAC:pqicXCPX: Start
83	SET	rTMPB, rUIN
84	SET	rTMPC, rDR
85	PUSHJ	rTMPA, :pqicstat:RAC:pqicXCPX:Start
86	JMP	Quit
87 Regular	LDB	rTMPA, rUIN, 0

88	LDB	rTMPB, rUDIV, 0
89	MUL	rTMPA, rTMPA, rTMPB
90	STB	rTMPA, :DVQ,0
91	STW	:PosZ, ${ }^{\text {DVQ, } 2}$
92	STB	:PosO, :DVN,0
93	STB	:Poso, ${ }^{\text {dVM, }} 0$
94	LDW	rTMPA, rUIN, 2
95	LDW	rTMPB, rUDIV, 2
96	STW	rTMPB, :DVM, 2
97	STW	rTMPB, :DVN, 2
98	SUBU	rTMPA, rTMPA, rTMPB
99	ADDU	rMRK, rTMPA, 1
100	SUBU	rTMPA, rLMT, rTMPB
101	LDW	rTMPB, rUIN, 2
102	SUBU	rTMPB, rLMT, rTMPB
103 FillNM	LDB	rTMPC, rUIN, rTMPB
104	STB	rTMPC, : DVN, rTMPA
105	LDB	rTMPC,rUDIV,rTMPA
106	STB	rTMPC, : DVM, rTMPA
107	ADDU	rTMPA, rTMPA, 1
108	ADDU	rTMPB, rTMPB, 1
109	CMP	rCMP, rTMPA, rLMT
110	BN	rCMP,FillNM
111 CheckM	CMP	rCMP, rMRK, 0
112	BNP	rCMP, F1
113 WhileO	SET	rTMPB, : DVN
114	SET	rTMPC, : DVM
115	PUSHJ	rTMPA, :pqicstat:RAC:pqicXCMP: Start
116	CMP	rCMP,rTMPA, 0
117	BNN	rCMP, jjp
118	CMP	rCMP, rMRK, 1
119	BZ	rCMP, MrkM
120	SUBU	rMRK, rMRK, 1
121	SET	rTMPB, : DVT
122	SET	rTMPC, : DVN
123	SET	rTMPD, 1
124	PUSHJ	rTMPA, pqicstat:RAC:pqicXEQT: Start
125	SUBU	rTMPA, rLMT, rMRK
126	LDB	rTMPB, rUIN, rTMPA
127	SUBU	rTMPD, rLMT, 1
128	STB	rTMPB, : DVT, rTMPD
129	SET	rTMPB, : DVT
130	SET	rTMPC, : DVN
131	PUSHJ	rTMPA, pqicstat:RAC:pqicXCPX:Start
132	JMP	jjp
133 MrkM	SUBU	rTMPD, rLMT, 1
134	STB	:PosZ, ${ }^{\text {dVQ, rTMPD }}$
135	SET	rMRK, 0
136	JMP	CheckM
137 jjp	LDW	rTMPA, :DVQ, 2
138	CMP	rCMP,rTMPA, 0
139	BNZ	rCMP, @+4*2
140	STW	rMRK, :DVQ, 2
141	LDW	rTMPA, :DVM, 2
142	SUBU	rTMPA, rLMT, rTMPA
143	LDB	rTMPB, : DVN, rTMPA
144	LDB	rTMPD, ${ }^{\text {dVM, rTMPA }}$

145	SUBU	rTMPA, rTMPA, 1
146	LDB	rTMPC, : DVN, rTMPA
147	MULU	rTMPC, rTMPC, :nTEN
148	ADDU	rTMPC,rTMPC,rTMPB
149	DIVU	rST,rTMPC,rTMPD
150	SET	rFLG, 1
151 WLoop	CMP	rCMP,rFLG, 0
152	BNP	rCMP, CheckM
153	LDA	rTMPB, : SCRH
154	STO	rST, rTMPB, 0
155	SET	rTMPC, :DVT
156	PUSHJ	rTMPA, :pqicstat:RAC:pqicNLDX: Start
157	SET	rTMPB, :DVT
158	SET	rTMPC, :DVM
159	SET	rTMPD, :DVX
160	PUSHJ	rTMPA, pqicstat:RAC:pqicXMUL:Start
161	SET	rTMPB, :DVN
162	SET	rTMPC, :DVX
163	SET	rTMPD, :DVT
164	PUSHJ	rTMPA, :pqicstat:RAC:pqicXSUB:Start
165	SET	rTMPB, :DVT
166	SET	rTMPC, :DVM
167	PUSHJ	rTMPA, :pqicstat:RAC:pqicXCMP: Start
168	CMP	rCMP, rTMPA, 0
169	BNN	rCMP, EndW
170	LDB	rTMPA, :DVT, 0
171	CMP	rCMP,rTMPA, 0
172	BP	rCMP, $@+4 * 3$
173	SUBU	rST,rst, 1
174	JMP	WLoop
175	SUBU	rTMPA, rLMT, rMRK
176	STB	rST, : DVQ,rTMPA
177	CMP	rCMP, rMRK, 1
178	BNP	rCMP, RX
179	SET	rTMPB, : DVN
180	SET	rTMPC, :DVT
181	SET	rTMPD, 1
182	PUSHJ	rTMPA, pqicstat:RAC:pqicXEQT:Start
183	SUBU	rTMPA, rLMT, rMRK
184	ADDU	rTMPA, rTMPA, 1
185	SUBU	rTMPB, rLMT, 1
186	LDB	rTMPC, rUIN, rTMPA
187	STB	rTMPC, : DVN,rTMPB
188	JMP	RXC
189 RX	SET	rTMPB, : DVT
190	SET	rTMPC, :DVN
191	PUSHJ	rTMPA, :pqicstat:RAC:pqicXCPX:Start
192 RXC	SUBU	rMRK, rMRK, 1
193	SET	rFLG, 0
194	JMP	WLoop
195 EndW	ADDU	rST,rst, 1
196	JMP	WLoop
197 F1	SET	rTMPB, : DVQ
198	PUSHJ	rTMPA, :pqicstat: RAC:pqicXLEN:Start
199	STW	rTMPA, ${ }^{\text {DVQ, }} 2$
200	SET	rTMPB, :DVN
201	PUSHJ	rTMPA, :pqicstat:RAC:pqicXLEN:Start

202
203
204
205
206
207
208
209
210
211 Quit
212

```
STW rTMPA,:DVN,2
SET rTMPB,:DVQ
SET rTMPC,rDQ
PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start
SET rTMPB,:DVN
SET rTMPC,rDR
PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start
LDB rTMPA,rUIN,0
STB rTMPA,rDR,0
PUT :rJ,rJ
POP 0,0
```


4. The Improved Precision Of A Reciprocal Square Root

An interesting feature of calculating the (positive) square root of a RAC, a result commonly needed in statistical calculations, is found in the choice between calculating its value directly or through its reciprocal. What at first appears to be an uncontroversial choice is actually a demonstration of the utility of using rational arithmetic.

Let $\frac{r}{s}$ be the RAC result for calculating $\sqrt{\frac{a}{b}}$ to within tolerance $t o l$, for $a>b>0$. If the calculation were exact, ${ }^{2}$ we would have

$$
\frac{r}{s}=\sqrt{\frac{a}{b}} \Longrightarrow \frac{s}{r}=\sqrt{\frac{b}{a}}
$$

so that the use of $\frac{s}{r}$ is also an errorless calculation of $\sqrt{\frac{b}{a}}$.
Now suppose the absolute difference between $\frac{r}{s}$ and $\sqrt{\frac{a}{b}}$ is ε, where ${ }^{3} 0<\varepsilon<\sqrt{\frac{a}{b}}-$ $\sqrt{\frac{b}{a}}$ and $a>b>0$, i.e., we have

$$
0<\left|\frac{r}{s}-\sqrt{\frac{a}{b}}\right|=\varepsilon<\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}, a>b
$$

If $\frac{r}{s}>\sqrt{\frac{a}{b}}$, then we have

$$
0<\frac{r}{s}-\sqrt{\frac{a}{b}}=\varepsilon<\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}, a>b
$$

and

$$
\sqrt{\frac{b}{a}}-\frac{s}{r}>0
$$

which means

$$
\frac{r}{s}=\frac{\varepsilon \sqrt{b}+\sqrt{a}}{\sqrt{b}}=\frac{\varepsilon \sqrt{\frac{b}{a}}+1}{\sqrt{\frac{b}{a}}}
$$

[^2]$$
\frac{s}{r}=\frac{\sqrt{\frac{b}{a}}}{\varepsilon \sqrt{\frac{b}{a}}+1}
$$

However, we also have

$$
\begin{equation*}
\left(\varepsilon \sqrt{\frac{b}{a}}+1\right)\left(-\varepsilon+\sqrt{\frac{b}{a}}\right)=\left(1-\varepsilon^{2}\right) \sqrt{\frac{b}{a}}-\varepsilon\left(1-\frac{b}{a}\right)<\sqrt{\frac{b}{a}} \tag{1}
\end{equation*}
$$

since $\frac{b}{a}<1$ and $\varepsilon>0$, which means

$$
\frac{s}{r}=\frac{\sqrt{\frac{b}{a}}}{\varepsilon \sqrt{\frac{b}{a}}+1}>-\varepsilon+\sqrt{\frac{b}{a}}
$$

or

$$
0<\sqrt{\frac{b}{a}}-\frac{s}{r}<\varepsilon
$$

Likewise, if $\frac{r}{s}<\sqrt{\frac{a}{b}}$, then we have

$$
0<-\left(\frac{r}{s}-\sqrt{\frac{a}{b}}\right)=\varepsilon<1, a>b
$$

and

$$
\frac{s}{r}-\sqrt{\frac{b}{a}}>0
$$

which means

$$
\begin{aligned}
& \frac{r}{s}=\frac{-\varepsilon \sqrt{b}+\sqrt{a}}{\sqrt{b}}=\frac{1-\varepsilon \sqrt{\frac{b}{a}}}{\sqrt{\frac{b}{a}}} \\
& \frac{s}{r}=\frac{\sqrt{\frac{b}{a}}}{1-\varepsilon \sqrt{\frac{b}{a}}}
\end{aligned}
$$

However, we also have

$$
\begin{equation*}
\left(1-\varepsilon \sqrt{\frac{b}{a}}\right)\left(\varepsilon+\sqrt{\frac{b}{a}}\right)=\sqrt{\frac{b}{a}}+\varepsilon\left(1-\frac{b}{a}-\varepsilon \sqrt{\frac{b}{a}}\right)>\sqrt{\frac{b}{a}} \tag{2}
\end{equation*}
$$

since

$$
\begin{aligned}
0<\varepsilon<\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} & \Longrightarrow 0<\varepsilon \sqrt{\frac{b}{a}}<1-\frac{b}{a} \\
& \Longrightarrow 0<\frac{b}{a}<1-\varepsilon \sqrt{\frac{b}{a}}
\end{aligned}
$$

which means

$$
\frac{s}{r}=\frac{\sqrt{\frac{b}{a}}}{1-\varepsilon \sqrt{\frac{b}{a}}}<\varepsilon+\sqrt{\frac{b}{a}}
$$

or

$$
0<\frac{s}{r}-\sqrt{\frac{b}{a}}<\varepsilon
$$

This shows

$$
0<\left|\frac{s}{r}-\sqrt{\frac{b}{a}}\right|<\varepsilon
$$

which means the absolute difference of $\frac{s}{r}$ from $\sqrt{\frac{b}{a}}$ is necessarily less than the absolute difference of $\frac{r}{s}$ from $\sqrt{\frac{a}{b}}$.

Note that (1) and (2) give the exact extent to which the error of $\left|\frac{s}{r}-\sqrt{\frac{b}{a}}\right|$ differs from the error of $\left|\frac{r}{s}-\sqrt{\frac{a}{b}}\right|$ in both over- and under-estimation circumstances, respectively.

There is necessarily less error calculating the square root of a number less than 1 (under the FISOC-compliant RAC methods) than when the number is greater than 1 . This follows from the fact that the square root of a rational number between 0 and 1 is also between 0 and 1 (which bounds the absolute error to a rapidly decreasing value with each approximating iteration - see [3]). This provides for a simple solution when the operand of the square root is significantly large: Calculate the (positive) square root of the reciprocal of the operand as a RAC, and then use the reciprocal of that RAC as the final answer. Whatever tolerance was used, the final answer will be closer (in absolute value) to the exact value than would have been found if the reciprocals had not been used (for the same tolerance).

REFERENCES

[1] Hall, T. (2017), "Statistical Calculations Through Rational Arithmetic And Conversions," Proceedings of the 2017 Joint Statistical Meetings, Section on Statistical Computing, Alexandria, VA: American Statistical Association, pp. 876-893.
[2] Knuth, D. E. (2003), MMIXware: A RISC Computer for the Third Millennium, Berlin: Springer Verlag, Lecture Notes in Computer Science Series.
[3] Hall, T. (2015), "PQIC Mathematical Notes, Operations Research Series, Number 2: PQICSTAT Rational Arithmetic And Conversion Operators," Cambridge, MA, USA: Proprietary PQIC Technical Memorandum.

[^0]: *PQI Consulting, P. O. Box 425616, Cambridge, MA, USA 02142-0012 - info@pqic.com

[^1]: ${ }^{1}$ Since there are ten decimal digits, three binary positions is not sufficient to represent all possible integers $\left(2^{3}<10\right)$, Likewise, five binary positions would be a waste of memory space when four binary position will suffice, i.e.,

 $$
 \min _{n}\left\{2^{n}>10\right\}=4
 $$

 Furthermore, even four binary digits has some wasted memory space, e.g., $\# 0 A-\# F F$ are unused. In fact, only a nybble is needed to store an individual decimal digit.

 However, the analytical methods used for RAC arithmetic must allow for the arithmetic result of two singledecimal digit arguments to be expressed in the same format as any single digit decimal number. Since the maximum sum of these numbers is 18 and the minimum difference is -18 , and the maximum product is 81 , then a full byte of memory space is needed to represent even a single decimal digit.

[^2]: ${ }^{2}$ This result is only possible when $\frac{a}{b}$ is a perfect square of a rational number. However, the purpose here is to show that an errorless calculation of any rational number is an errorless calculation of its reciprocal.
 ${ }^{3}$ The calculations in this section show that the upper bound of ε needs to be $\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}$, rather than an arbitrary small value, to ensure the conclusion when $\frac{r}{s}$ underestimates $\sqrt{\frac{a}{b}}$. As a practical matter, when a is significantly larger than b, we have $\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}$ is significantly larger than 1 . Since $\varepsilon>0$ is meant to be small (representing the number of significant digits of $\frac{r}{s}$ representing $\sqrt{\frac{a}{b}}$), then this condition only becomes questionable when a is only slightly larger than b, i.e., when $\sqrt{\frac{a}{b}}$ is close to 1 . It shall be the responsibility of the implementing analyst to check this condition before accepting the results from the RAC square root module.

