
The Fundamental Instruction Set Operation Codes
Support Function Library

Timothy Hall∗

Abstract

This paper documents the Fundamental Instruction Set Operation Codes (FISOC) Support Function

Library that may be used to implement arbitrary extended precision Rational Arithmetic And Con-

versions (RAC) statistical algorithms in embedded systems, including Field Programmable Gate

Arrays and Very High Speed Integrated Circuits. The FISOC support function library consists of

a minimal set of low-level register and static memory manipulation commands that provide for all

functionality available through Reduced Instruction Set Computing and high-level software (both

commercial and maintained shareware), with an emphasis on simplifying and condensing statis-

tical analyses that require exceptionally high levels of precision and errorless calculation results.

Examples of common statistics-related calculation algorithms are included that demonstrate the im-

plementation flexibility and practical utility of the library, and a demonstration of the utility of RAC

analytic methodology is given through the strategic calculation of the square root.

Key Words: Reduced Instruction Set Computing, Rational Arithmetic, Assembly-Level Algo-

rithms, HDL Implementations

1. Introduction

The Fundamental Instruction Set Operation Codes (FISOC) is a collection of twenty-five

assembly-level operation codes and assembly language directives that are used in the imple-

mentation of Rational Arithmetic and Conversions (RAC) routines [1]. This set of operators

is a minimal set of such commands that may implement the RAC routines in assembly-level

code (in the sense that all other instructions may be implemented in terms of the FISOC).

While it is possible to further reduce the FISOC to a smaller subset by implementing some

of the FISOC operation codes in term of the other operation codes, e.g., subtractions may

be implemented as the addition of negated arguments, the resulting code becomes difficult

to maintain, as the clarity of its purpose becomes less and less transparent as the number of

instructions decreases beyond what is available in the FISOC.

1.1 Standard Requirements

Throughout this paper all references to assembly-level instructions and assembly language

commands specifically refer to MMIX, the general-purpose assembly-level coding system

invented by Dr. Donald E. Knuth of Stanford University [2]. All FISOC routines are im-

plemented in the MMIX context, and may be converted, as needed, to other assembly-level

contexts.

The FISOC works with BYTE, WYDE, and OCTA memory locations, and expresses

TETRA-related operands in terms of high and low WYDE components. Furthermore, the

FISOC does not address any MMIX functionality that does not affect registers nor memory

values. While input/output routines and extra-FISOC operation codes (such as NEG) may

be used for acceptance testing, the MMIX-implemented RAC routines comply strictly with

the FISOC standard.

∗PQI Consulting, P. O. Box 425616, Cambridge, MA, USA 02142-0012 – info@pqic.com

1939

The MMIX implementations of the RAC routines do not include immediate [I] nor di-

rectional [B] indications – these are provided by the assembler during compilation. How-

ever, the descriptions in this memorandum do indicate these components for comparisons

with MMIX documentation. Probable [P] indicators are used both in the descriptions and

in the MMIX implemented RAC routines.

1.2 Operation Codes

1. ADD, ADDI, ADDU, LDA, ADDUI (LDA, LDAI) – Addition, with unsigned addi-

tion, and with immediate versions. The LDA[I] instructions are aliases for ADDU[I],

where the Y and Z fields are used the same way in both instructions, and the absence

of a Z field in LDA[I] is taken as the immediate version with Z = 0. The LDA

assembly language directive is an alias for the ADDU operation code.

2. SUB, SUBI, SUBU, SUBUI – Subtraction, with unsigned subtraction, and with im-

mediate versions.

3. MUL, MULI, MULU, MULUI - Multiplication, with unsigned multiplication, and

with immediate versions.

4. DIV, DIVI, DIVU, DIVUI - (Integer) Division, with unsigned division, and with

immediate versions, where the results are stored in $X (the integer part) and in special

register rR (the remainder part).

5. AND - Logical Bitwise AND, with immediate version.

6. SET – Alias for OR and ORI depending on whether YZ field is a register or an

immediate constant. Although OR[I] are not part of the FISOC standard, their func-

tionality is provided in the FISOC by this directive.

7. BZ, BNZ, BP, BNP, BN, BNN, BEV, BOD – Conditional and probable conditional

branches if X field is zero, non-zero, positive, non-positive, negative, non-negative,

even, or odd, respectively.

8. CMP, CMPI, CMPU, CMPUI –Numerical comparison, with unsigned comparison,

and with immediate versions. These comparisons are made as integers, whether

signed or unsigned.

9. IS – This assembly language directive is an alias for the assignment of a label to a

register number or to another label.

10. GET – Retrieval of value stored in a special register. There is no immediate version.

11. PUT, PUTI – Storage of value in Y field with immediate constant offset, or in a

special register.

12. JMP, JMPB – Unconditional branch forward (without signifier) and backwards

(with B signifier).

13. LDB, LDBI – Load BYTE from memory position, with immediate constant offset.

14. STB, STBI – Store BYTE at memory position, with immediate constant offset.

15. LDW, LDWI – Load WYDE from memory position, with immediate constant offset.

16. STW, STWI – Store WYDE at memory position, with immediate constant offset.

1940

17. LDO, LDOI – Load OCTA from memory position, with immediate constant offset.

18. STO, STOI – Store OCTA at memory position, with immediate constant offset.

19. PUSHJ, PUSHJB – Unconditional branch to subroutine forward (without signifier)

and backwards (with B signifier).

20. POP – Return from subroutine with number of arguments as returned values. The

order of the returned values is always $1, $0, $2, $3, ..., relative to the local registers

defined in the subroutine.

21. SETH – Assign WYDE value in YZ field to highest position (16 highest-order bit

positions) in X field register.

22. SL, SLI, [SLU, SLUI] – Shift left within a register with immediate versions, with

all zeros as right fill. Note that unsigned versions of shift left are redundant with the

signed versions.

23. SR, SRI, SRU, SRUI – Shift right within a register with immediate versions, with

left fill policy determined by signed (depending on the sign of the Y field – its leading

bit) or unsigned (zeros) versions.

24. TRAP – General purpose control of input/output to the user interface.

25. SWYM - The ”no op” instruction; it does nothing. Acronym stands for ”Sympathize

With Your Machinery.”

1.3 Sufficiency With MMIX

The FISOC standard functions cover the following MMIX instructions: (00) TRAP, (18-27)

MUL[U][I], DIV[U][I], ADD[U][I], SUB[U][I], (30-33) CMP[U][I], (38-3F)

SL[U][I], SR[U][I], (40-5F) [P]BN[B], [P]BZ[B], [P]BP[B], [P]BOD[B],

[P]BNN[B], [P]BNZ[B], [P]BNP[B],[P]BEV[B], (80-87) LDB[U][I], LDW[U][I],

(8C-8F) LDO[U][I], (A0-A7) STB[U][I], STW[U][I], (AC-AF) STO[U][I], (C8-

C9) AND[I], (E0) SETH, (F0-F3) JMP[B], PUSHJ[B}, (F6-F8) PUT[I], POP, (FD-FE)

SWYM, and GET.

All other MMIX operation codes may be implemented in terms of the FISOC operation

codes. A sample of this universality is demonstrated in the following listings. This means

the FISOC standard is sufficient for implementing any MMIX command/instruction.

1. (01-17) Floating Point Calculations – These are equivalent to the corresponding

RAC functions where floating point numbers are expressed as signed rational num-

bers, with the exception of the following special cases that handle exceptions (NAN)

and tests for tolerances (the epsilon value given in the special register rE). These

considerations are part of the RAC conversions and the use of 0 as the sign value.

2. (61) CSNI $X,$Y,Z – Conditional Set If Negative With Immediate

CMPI $W,$Y,0

BNN $W,@+4*2

SET $X,Z

1941

3. (72) ZSZ $X,$Y,$Z – Zero Or Set If Zero With Register

CMPI $W,$Y,0

BNZ $W,@+4*3

SET $X,$Z

JMP @+4*2

SET $X,0

4. (90-91/B0-B1) LDSF[I]/STSF[I] $X,$Y,$Z/Z – Load/Store Short Float With

Register/Immediate

The FISOC standard does not use IEEE-754 (et seq.) floating point numbers in its

calculations. Furthermore, the input/output interface is restricted to signed decimal

numbers as alternate forms of signed rational numbers. Only XNUM and RAC struc-

tures are exclusively used within the MMIX code.

5. (C2) ORN $X,$Y,$Z – Logical OR NOT With Register

The first ten instructions place ones in all positions of register $K. The instructions

with asterisks perform the logical OR NOT operation.

SETH $K,#FFFF

SETH $KK,#FFFF

SRUI $KK,16

ADDU $K,$K,$KK

SETH $KK,#FFFF

SRUI $KK,32

ADDU $K,$K,$KK

SETH $KK,#FFFF

SRUI $KK,48

ADDU $K,$K,$KK

*SUBU $Y,$K,$Y

*AND $X,$Y,$Z

*SUBU $X,$K,$X

Proof.































































































Start

$X = ∅

$Y = 0

$Z = 0

$X = ∅

$Y = 0

$Z = 1

$X = ∅

$Y = 1

$Z = 0

$X = ∅

$Y = 1

$Z = 1

*SUBU $Y,$K,$Y

$X = ∅

$Y’ = 1

$Z = 0

$X = ∅

$Y’ = 1

$Z = 1

$X = ∅

$Y’ = 0

$Z = 0

$X = ∅

$Y’ = 0

$Z = 1

*AND $X,$Y,$Z

$X’ = 0

$Y’ = 1

$Z = 0

$X’ = 1

$Y’ = 1

$Z = 1

$X’ = 0

$Y’ = 0

$Z = 0

$X’ = 0

$Y’ = 0

$Z = 1

*SUBU $X,$K,$X

Results = $X” = ORN

$X” = 1

$Y’ = 1

$Z = 0

$X” = 0

$Y’ = 1

$Z = 1

$X” = 1

$Y’ = 0

$Z = 0

$X” = 1

$Y’ = 0

$Z = 1

6. (DC-DD) MOR[I] $X,$Y,$Z/Z – Multiple OR With Register/Immediate

If yij is byte i and bit j within that byte of register $Y, with a corresponding meaning

of zij for $Z/Z, then the assignment to $X as a result of the MOR[I] operation code

is given by











y00 y10 · · · y70
y01 y11 · · · y71

...
...

. . .
...

y07 y17 · · · y77





















z00 z10 · · · z70
z01 z11 · · · z71

...
...

. . .
...

z07 z17 · · · z77











1942

where the bit products are MUL[U][I] operations and the additions are logical

OR[I] operations (since OR[I] may in turn be expressed as FISOC operation

codes). Therefore, MOR[I] may be expressed as FISOC operation codes.

2. Programming Considerations

The following information addresses the programming considerations necessary for imple-

menting the RAC routines in MMIX.

1. Since BYTE is the smallest basic unit of memory location available in MMIX, all

individual decimal digit representations (using four bits1 per digit) appear as #0X ,

where X may be 0− 9.

2. Since OCTA is the largest basic unit of memory locations (and the only register size),

considerable additional code is needed in MMIX to manipulate the position of loaded

and stored data in memory locations. This differs from C array structures where the

individual bytes are addressed as offsets from a base position, regardless of crossing

OCTA or any other memory location boundary. This consideration makes the use of

shift operators (SLU and SRU – and their signed variations) necessary in the FISOC.

3. Many ANSI C, MATLAB, and MAPLE implementation structures are not directly

available in MMIX (and therefore in the FISOC standard). For example, a for loop

requires the use of three registers (independently of all others used within the loop)

– one for the loop index, one to hold comparison results, and one to hold the limiting

value for the loop index. While some registers used in the loop body may substi-

tute for one or more of these registers depending on availability, such “economies”

usually render the code less transparent and therefore more difficult to maintain. Fur-

thermore, several branches and jump operations are needed to control the flow of the

logical code to the beginning of the loop depending on the tests performed and/or

conditions found in the loop body. Finally, loops within loops (commonly needed

to index vectors and matrices) require a hierarchy of such reserved registers to make

sure inapplicable values are not inadvertently stored in registers that are used prema-

turely.

4. Many of the RAC routines call other RAC routines as subroutines. These subroutine

RAC routines may themselves call other RAC routines as sub-subroutines. While

each RAC routine uses a unique namespace to prevent misuse of identically named

labels within each routine, proprietary memory space is needed for each RAC routine

to ensure needed results are not overwritten or otherwise misused during subroutine

processing. This is especially the case for iterative methods, such as the square root

routine, where twenty-five XNUM structures are needed to hold all the intermediate

values.

1Since there are ten decimal digits, three binary positions is not sufficient to represent all possible integers

(23 < 10), Likewise, five binary positions would be a waste of memory space when four binary position will

suffice, i.e.,

min
n

{2n > 10} = 4

Furthermore, even four binary digits has some wasted memory space, e.g., #0A − #FF are unused. In

fact, only a nybble is needed to store an individual decimal digit.

However, the analytical methods used for RAC arithmetic must allow for the arithmetic result of two single-

decimal digit arguments to be expressed in the same format as any single digit decimal number. Since the

maximum sum of these numbers is 18 and the minimum difference is −18, and the maximum product is 81,

then a full byte of memory space is needed to represent even a single decimal digit.

1943

3. Example FISOC Implementations Of The RAC Routines

The following sections document the MMIX implementations of several common RAC

routines according to the FISOC standard. While an XNUM structure may be of any length

(subject to implementation storage limits), the XNUM structure implemented herein rep-

resents a signed 512 decimal digit integer, so that the range of representable numbers is

±10512 − 1, and the smallest absolute increment in any RAC representation is therefore
(

10512 − 1
)

−1 ≈ 10−512.

Comment lines start with a semicolon (;), which must be in the first column of the line.

The dollar sign ($) followed by a positive integer between 0 and 255 (inclusive) are the

names of 64-bit registers available in MMIX.

3.1 Floor Function

1 ; Calculates the floor of the ratio of two XNUM structures

2 ; rIN/rID and stores the results in the RAC structure rON/rOD

3 rIN IS $0

4 rID IS $1

5 rON IS $2

6 rOD IS $3

7 rXXN IS $4

8 rXXD IS $5

9 rONE IS $6

10 rZER IS $7

11 rRO IS $8

12 rRT IS $9

13 rCMP IS $10

14 rJ IS $11

15 rTMPA IS $12

16 rTMPB IS $13

17 rTMPC IS $14

18 rTMPD IS $15

19 rTMPE IS $16

20

21 Start GET rJ,:rJ

22 SET rXXN,:FQA

23 SET rXXD,:FQB

24 SET rONE,:FQC

25 SET rZER,:FQD

26 SET rRO,:FQE

27 SET rRT,:FQF

28 STB :PosO,rONE,0

29 STB :PosO,rZER,0

30 STW :PosO,rONE,2

31 STW :PosO,rZER,2

32 SET rTMPA,0

33 ADDU rTMPB,:rLMT,7

34 STB rTMPA,rZER,rTMPB

35 STB :PosO,rONE,rTMPB

36 SUBU rTMPB,rTMPB,1

37 Zero STB rTMPA,rONE,rTMPB

38 STB rTMPA,rZER,rTMPB

39 SUBU rTMPB,rTMPB,1

40 CMP rCMP,rTMPB,8

41 PBNN rCMP,Zero

1944

42 SET rTMPB,rIN

43 SET rTMPC,rID

44 SET rTMPD,rXXN

45 SET rTMPE,rXXD

46 PUSHJ rTMPA,:pqicstat:RAC:pqicRREC:Start

47 LDB rTMPA,rXXN,0

48 CMP rCMP,rTMPA,0

49 BNZ rCMP,NonI

50 SET rTMPB,rXXN

51 SET rTMPC,rON

52 PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start

53 SET rTMPB,rONE

54 SET rTMPC,rOD

55 PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start

56 JMP Quit

57 NonI BP rCMP,NonN

58 STB :NegO,rON,0

59 STB :PosO,rOD,0

60 JMP @+4*3

61 NonN STB :PosO,rON,0

62 STB :PosO,rOD,0

63 SET rTMPB,rXXN

64 SET rTMPC,rXXD

65 SET rTMPD,rRO

66 SET rTMPE,rRT

67 PUSHJ rTMPA,:pqicstat:RAC:pqicXDIV:Start

68 SET rTMPB,rRT

69 SET rTMPC,rZER

70 PUSHJ rTMPA,:pqicstat:RAC:pqicXCMP:Start

71 CMP rCMP,rTMPA,0

72 BNZ rCMP,RndOff

73 SET rTMPB,rRO

74 SET rTMPC,rON

75 PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start

76 JMP Finish

77 RndOff LDB rTMPA,rON,0

78 CMP rCMP,rTMPA,0

79 BN rCMP,DecrN

80 SET rTMPB,rRO

81 SET rTMPC,rON

82 PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start

83 JMP Finish

84 DecrN SET rTMPB,rRO

85 SET rTMPC,rONE

86 SET rTMPD,rRT

87 PUSHJ rTMPA,:pqicstat:RAC:pqicXSUB:Start

88 SET rTMPB,rRT

89 SET rTMPC,rON

90 PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start

91 Finish SET rTMPB,rONE

92 SET rTMPC,rOD

93 PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start

94 Quit PUT :rJ,rJ

95 POP 0,0

1945

3.2 RAC Multiplication

1 ; Calculates the product of two RAC structures rUN/rUD and

2 ; rVN/rVD and stores the results in RAC structure rRN/rRD

3 rUN IS $0

4 rUD IS $1

5 rVN IS $2

6 rVD IS $3

7 rRN IS $4

8 rRD IS $5

9 rTAN IS $6

10 rTAD IS $7

11 rTBN IS $8

12 rTBD IS $9

13 rKK IS $10

14 rNN IS $11

15 rMM IS $12

16 rRR IS $13

17 rJJ IS $14

18 rCMP IS $15

19 rJ IS $16

20 rTMPA IS $17

21 rTMPB IS $18

22 rTMPC IS $19

23 rTMPD IS $20

24 rTMPE IS $21

25

26 Start GET rJ,:rJ

27 SET rTAN,:RMA

28 SET rTAD,:RMB

29 SET rTBN,:RMC

30 SET rTBD,:RMD

31 SET rKK,:RME

32 SET rNN,:RMF

33 SET rMM,:RMG

34 SET rRR,:RMH

35 SET rJJ,:RMI

36 SET rTMPA,0

37 SET rTMPB,8

38 ADDU rTMPC,:rLMT,7

39 Zero STB rTMPA,rKK,rTMPB

40 ADDU rTMPB,rTMPB,1

41 CMP rCMP,rTMPB,rTMPC

42 PBNP rCMP,Zero

43 STB :PosO,rKK,0

44 STW :PosO,rKK,2

45 SET rTMPB,rUN

46 SET rTMPC,rKK

47 PUSHJ rTMPA,:pqicstat:RAC:pqicXCMP:Start

48 CMP rCMP,rTMPA,0

49 BZ rCMP,PZero

50 SET rTMPB,rVN

51 SET rTMPC,rKK

52 PUSHJ rTMPA,:pqicstat:RAC:pqicXCMP:Start

53 CMP rCMP,rTMPA,0

54 BZ rCMP,PZero

55 SET rTMPB,rUN

1946

56 SET rTMPC,rUD

57 SET rTMPD,rTAN

58 SET rTMPE,rTAD

59 PUSHJ rTMPA,:pqicstat:RAC:pqicRREC:Start

60 SET rTMPB,rVN

61 SET rTMPC,rVD

62 SET rTMPD,rTBN

63 SET rTMPE,rTBD

64 PUSHJ rTMPA,:pqicstat:RAC:pqicRREC:Start

65 LDB rTMPA,rTAN,0

66 LDB rTMPB,rTBN,0

67 MUL rCMP,rTMPA,rTMPB

68 STB :PosO,rTAN,0

69 STB :PosO,rTBN,0

70 SET rTMPB,rTAN

71 SET rTMPC,rTBD

72 SET rTMPD,rKK

73 PUSHJ rTMPA,:pqicstat:RAC:pqicGCD:Start

74 SET rTMPB,rTAD

75 SET rTMPC,rTBN

76 SET rTMPD,rRR

77 PUSHJ rTMPA,:pqicstat:RAC:pqicGCD:Start

78 SET rTMPB,rTBN

79 SET rTMPC,rRR

80 SET rTMPD,rNN

81 SET rTMPE,rJJ

82 PUSHJ rTMPA,:pqicstat:RAC:pqicXDIV:Start

83 SET rTMPB,rTAN

84 SET rTMPC,rKK

85 SET rTMPD,rMM

86 SET rTMPE,rJJ

87 PUSHJ rTMPA,:pqicstat:RAC:pqicXDIV:Start

88 SET rTMPB,rMM

89 SET rTMPC,rNN

90 SET rTMPD,rJJ

91 PUSHJ rTMPA,:pqicstat:RAC:pqicXMUL:Start

92 SET rTMPB,rJJ

93 SET rTMPC,rNN

94 PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start

95 SET rTMPB,rTBD

96 SET rTMPC,rKK

97 SET rTMPD,rTAN

98 SET rTMPE,rJJ

99 PUSHJ rTMPA,:pqicstat:RAC:pqicXDIV:Start

100 SET rTMPB,rTAN

101 SET rTMPC,rKK

102 PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start

103 SET rTMPB,rTAD

104 SET rTMPC,rRR

105 SET rTMPD,rTAN

106 SET rTMPE,rJJ

107 PUSHJ rTMPA,:pqicstat:RAC:pqicXDIV:Start

108 SET rTMPB,rTAN

109 SET rTMPC,rRR

110 PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start

111 SET rTMPB,rRR

112 SET rTMPC,rKK

1947

113 SET rTMPD,rMM

114 PUSHJ rTMPA,:pqicstat:RAC:pqicXMUL:Start

115 SET rTMPB,rNN

116 SET rTMPC,rMM

117 SET rTMPD,rTAN

118 SET rTMPE,rTAD

119 PUSHJ rTMPA,:pqicstat:RAC:pqicRRED:Start

120 SET rTMPB,rTAN

121 SET rTMPC,rTAD

122 SET rTMPD,rRN

123 SET rTMPE,rRD

124 PUSHJ rTMPA,:pqicstat:RAC:pqicRREC:Start

125 STB rCMP,rRN,0

126 JMP Quit

127 PZero SET rTMPB,rKK

128 SET rTMPC,rRN

129 PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start

130 ADDU rTMPB,:rLMT,7

131 STB :PosO,rKK,rTMPB

132 SET rTMPB,rKK

133 SET rTMPC,rRD

134 PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start

135 Quit PUT :rJ,rJ

136 POP 0,0

3.3 XNUM Division

1 ; Calculates the integer quotient and remainder of the ratio of two

2 ; XNUM structures rUIN/rUDIV and stores the quotient in XNUM structure

3 ; rDQ and stores the remainder in XNUM structure rDR; the sign of the

4 ; Quotient is the ratio of the signs of rUIN and rUDIV, and the sign

5 ; Of the remainder is the sign of rUIN

6 rUIN IS $0

7 rUDIV IS $1

8 rDQ IS $2

9 rDR IS $3

10 rFLG IS $4

11 rLMT IS $5

12 rMRK IS $6

13 rST IS $7

14 rCMP IS $8

15 rJ IS $9

16 rTMPA IS $10

17 rTMPB IS $11

18 rTMPC IS $12

19 rTMPD IS $13

20 rTMPE IS $14

21

22 Start GET rJ,:rJ

23 ADDU rLMT,:rLMT,8

24 SET rTMPA,8

25 ZeroOut STO :PosZ,:DVQ,rTMPA

26 STO :PosZ,:DVT,rTMPA

27 STO :PosZ,:DVN,rTMPA

28 STO :PosZ,:DVM,rTMPA

29 ADDU rTMPA,rTMPA,8

30 CMP rCMP,rTMPA,rLMT

1948

31 PBN rCMP,ZeroOut

32 STB :PosO,:DVQ,0

33 SET rTMPB,rUIN

34 SET rTMPC,:DVQ

35 PUSHJ rTMPA,:pqicstat:RAC:pqicXCMP:Start

36 CMP rCMP,rTMPA,0

37 BNZ rCMP,Cont

38 STB :PosO,:DVQ,0

39 STW :PosO,:DVQ,2

40 SET rTMPB,:DVQ

41 SET rTMPC,rDQ

42 PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start

43 SET rTMPB,:DVQ

44 SET rTMPC,rDR

45 PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start

46 JMP Quit

47 Cont STB :PosO,:DVQ,0

48 LDW rTMPA,rUIN,2

49 LDW rTMPB,rUDIV,2

50 CMP rCMP,rTMPA,rTMPB

51 BN rCMP,kkp

52 BP rCMP,Regular

53 SUBU rTMPC,rLMT,rTMPA

54 FindSz LDB rTMPD,rUIN,rTMPC

55 LDB rTMPE,rUDIV,rTMPC

56 CMP rCMP,rTMPD,rTMPE

57 BN rCMP,kkp

58 BP rCMP,Regular

59 ADDU rTMPC,rTMPC,1

60 CMP rCMP,rTMPC,rLMT

61 BN rCMP,FindSz

62 LDB rTMPA,rUIN,0

63 LDB rTMPB,rUDIV,0

64 MUL rTMPA,rTMPA,rTMPB

65 STB rTMPA,:DVQ,0

66 STW :PosO,:DVQ,2

67 SUBU rTMPD,rLMT,1

68 STB :PosO,:DVQ,rTMPD

69 STB :PosO,:DVT,0

70 STW :PosO,:DVT,2

71 SET rTMPB,:DVQ

72 SET rTMPC,rDQ

73 PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start

74 SET rTMPB,:DVT

75 SET rTMPC,rDR

76 PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start

77 JMP Quit

78 kkp STB :PosO,:DVQ,0

79 STW :PosO,:DVQ,2

80 SET rTMPB,:DVQ

81 SET rTMPC,rDQ

82 PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start

83 SET rTMPB,rUIN

84 SET rTMPC,rDR

85 PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start

86 JMP Quit

87 Regular LDB rTMPA,rUIN,0

1949

88 LDB rTMPB,rUDIV,0

89 MUL rTMPA,rTMPA,rTMPB

90 STB rTMPA,:DVQ,0

91 STW :PosZ,:DVQ,2

92 STB :PosO,:DVN,0

93 STB :PosO,:DVM,0

94 LDW rTMPA,rUIN,2

95 LDW rTMPB,rUDIV,2

96 STW rTMPB,:DVM,2

97 STW rTMPB,:DVN,2

98 SUBU rTMPA,rTMPA,rTMPB

99 ADDU rMRK,rTMPA,1

100 SUBU rTMPA,rLMT,rTMPB

101 LDW rTMPB,rUIN,2

102 SUBU rTMPB,rLMT,rTMPB

103 FillNM LDB rTMPC,rUIN,rTMPB

104 STB rTMPC,:DVN,rTMPA

105 LDB rTMPC,rUDIV,rTMPA

106 STB rTMPC,:DVM,rTMPA

107 ADDU rTMPA,rTMPA,1

108 ADDU rTMPB,rTMPB,1

109 CMP rCMP,rTMPA,rLMT

110 BN rCMP,FillNM

111 CheckM CMP rCMP,rMRK,0

112 BNP rCMP,F1

113 WhileO SET rTMPB,:DVN

114 SET rTMPC,:DVM

115 PUSHJ rTMPA,:pqicstat:RAC:pqicXCMP:Start

116 CMP rCMP,rTMPA,0

117 BNN rCMP,jjp

118 CMP rCMP,rMRK,1

119 BZ rCMP,MrkM

120 SUBU rMRK,rMRK,1

121 SET rTMPB,:DVT

122 SET rTMPC,:DVN

123 SET rTMPD,1

124 PUSHJ rTMPA,:pqicstat:RAC:pqicXEQT:Start

125 SUBU rTMPA,rLMT,rMRK

126 LDB rTMPB,rUIN,rTMPA

127 SUBU rTMPD,rLMT,1

128 STB rTMPB,:DVT,rTMPD

129 SET rTMPB,:DVT

130 SET rTMPC,:DVN

131 PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start

132 JMP jjp

133 MrkM SUBU rTMPD,rLMT,1

134 STB :PosZ,:DVQ,rTMPD

135 SET rMRK,0

136 JMP CheckM

137 jjp LDW rTMPA,:DVQ,2

138 CMP rCMP,rTMPA,0

139 BNZ rCMP,@+4*2

140 STW rMRK,:DVQ,2

141 LDW rTMPA,:DVM,2

142 SUBU rTMPA,rLMT,rTMPA

143 LDB rTMPB,:DVN,rTMPA

144 LDB rTMPD,:DVM,rTMPA

1950

145 SUBU rTMPA,rTMPA,1

146 LDB rTMPC,:DVN,rTMPA

147 MULU rTMPC,rTMPC,:nTEN

148 ADDU rTMPC,rTMPC,rTMPB

149 DIVU rST,rTMPC,rTMPD

150 SET rFLG,1

151 WLoop CMP rCMP,rFLG,0

152 BNP rCMP,CheckM

153 LDA rTMPB,:SCRH

154 STO rST,rTMPB,0

155 SET rTMPC,:DVT

156 PUSHJ rTMPA,:pqicstat:RAC:pqicNLDX:Start

157 SET rTMPB,:DVT

158 SET rTMPC,:DVM

159 SET rTMPD,:DVX

160 PUSHJ rTMPA,:pqicstat:RAC:pqicXMUL:Start

161 SET rTMPB,:DVN

162 SET rTMPC,:DVX

163 SET rTMPD,:DVT

164 PUSHJ rTMPA,:pqicstat:RAC:pqicXSUB:Start

165 SET rTMPB,:DVT

166 SET rTMPC,:DVM

167 PUSHJ rTMPA,:pqicstat:RAC:pqicXCMP:Start

168 CMP rCMP,rTMPA,0

169 BNN rCMP,EndW

170 LDB rTMPA,:DVT,0

171 CMP rCMP,rTMPA,0

172 BP rCMP,@+4*3

173 SUBU rST,rST,1

174 JMP WLoop

175 SUBU rTMPA,rLMT,rMRK

176 STB rST,:DVQ,rTMPA

177 CMP rCMP,rMRK,1

178 BNP rCMP,RX

179 SET rTMPB,:DVN

180 SET rTMPC,:DVT

181 SET rTMPD,1

182 PUSHJ rTMPA,:pqicstat:RAC:pqicXEQT:Start

183 SUBU rTMPA,rLMT,rMRK

184 ADDU rTMPA,rTMPA,1

185 SUBU rTMPB,rLMT,1

186 LDB rTMPC,rUIN,rTMPA

187 STB rTMPC,:DVN,rTMPB

188 JMP RXC

189 RX SET rTMPB,:DVT

190 SET rTMPC,:DVN

191 PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start

192 RXC SUBU rMRK,rMRK,1

193 SET rFLG,0

194 JMP WLoop

195 EndW ADDU rST,rST,1

196 JMP WLoop

197 F1 SET rTMPB,:DVQ

198 PUSHJ rTMPA,:pqicstat:RAC:pqicXLEN:Start

199 STW rTMPA,:DVQ,2

200 SET rTMPB,:DVN

201 PUSHJ rTMPA,:pqicstat:RAC:pqicXLEN:Start

1951

202 STW rTMPA,:DVN,2

203 SET rTMPB,:DVQ

204 SET rTMPC,rDQ

205 PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start

206 SET rTMPB,:DVN

207 SET rTMPC,rDR

208 PUSHJ rTMPA,:pqicstat:RAC:pqicXCPX:Start

209 LDB rTMPA,rUIN,0

210 STB rTMPA,rDR,0

211 Quit PUT :rJ,rJ

212 POP 0,0

4. The Improved Precision Of A Reciprocal Square Root

An interesting feature of calculating the (positive) square root of a RAC, a result commonly

needed in statistical calculations, is found in the choice between calculating its value di-

rectly or through its reciprocal. What at first appears to be an uncontroversial choice is

actually a demonstration of the utility of using rational arithmetic.

Let r
s

be the RAC result for calculating
√

a
b

to within tolerance tol, for a > b > 0. If

the calculation were exact,2 we would have

r

s
=

√

a

b
=⇒ s

r
=

√

b

a

so that the use of s
r

is also an errorless calculation of

√

b
a

.

Now suppose the absolute difference between r
s

and
√

a
b

is ε, where3 0 < ε <
√

a
b
−

√

b
a

and a > b > 0, i.e., we have

0 <

∣

∣

∣

∣

r

s
−
√

a

b

∣

∣

∣

∣

= ε <

√

a

b
−
√

b

a
, a > b

If r
s
>
√

a
b
, then we have

0 <
r

s
−
√

a

b
= ε <

√

a

b
−
√

b

a
, a > b

and
√

b

a
− s

r
> 0

which means

r

s
=

ε
√
b+

√
a√

b
=

ε

√

b
a
+ 1

√

b
a

2This result is only possible when a

b
is a perfect square of a rational number. However, the purpose here is

to show that an errorless calculation of any rational number is an errorless calculation of its reciprocal.

3The calculations in this section show that the upper bound of ε needs to be
√

a

b
−

√

b

a
, rather than an

arbitrary small value, to ensure the conclusion when r

s
underestimates

√

a

b
. As a practical matter, when a

is significantly larger than b, we have
√

a

b
−

√

b

a
is significantly larger than 1. Since ε > 0 is meant to be

small (representing the number of significant digits of r

s
representing

√

a

b
), then this condition only becomes

questionable when a is only slightly larger than b, i.e., when
√

a

b
is close to 1. It shall be the responsibility

of the implementing analyst to check this condition before accepting the results from the RAC square root

module.

1952

s

r
=

√

b
a

ε

√

b
a
+ 1

However, we also have

(

ε

√

b

a
+ 1

)(

−ε+

√

b

a

)

=
(

1− ε2
)

√

b

a
− ε

(

1− b

a

)

<

√

b

a
(1)

since b
a
< 1 and ε > 0, which means

s

r
=

√

b
a

ε

√

b
a
+ 1

> −ε+

√

b

a

or

0 <

√

b

a
− s

r
< ε

Likewise, if r
s
<
√

a
b
, then we have

0 < −
(

r

s
−
√

a

b

)

= ε < 1, a > b

and
s

r
−
√

b

a
> 0

which means

r

s
=

−ε
√
b+

√
a√

b
=

1− ε

√

b
a

√

b
a

s

r
=

√

b
a

1− ε

√

b
a

However, we also have

(

1− ε

√

b

a

)(

ε+

√

b

a

)

=

√

b

a
+ ε

(

1− b

a
− ε

√

b

a

)

>

√

b

a
(2)

since

0 < ε <

√

a

b
−
√

b

a
=⇒ 0 < ε

√

b

a
< 1− b

a

=⇒ 0 <
b

a
< 1− ε

√

b

a

which means

s

r
=

√

b
a

1− ε

√

b
a

< ε+

√

b

a

or

1953

0 <
s

r
−
√

b

a
< ε

This shows

0 <

∣

∣

∣

∣

∣

s

r
−
√

b

a

∣

∣

∣

∣

∣

< ε

which means the absolute difference of s
r

from

√

b
a

is necessarily less than the absolute

difference of r
s

from
√

a
b
.

Note that (1) and (2) give the exact extent to which the error of

∣

∣

∣

∣

s
r
−
√

b
a

∣

∣

∣

∣

differs from

the error of
∣

∣

r
s
−
√

a
b

∣

∣ in both over- and under-estimation circumstances, respectively.

There is necessarily less error calculating the square root of a number less than 1 (under

the FISOC-compliant RAC methods) than when the number is greater than 1. This follows

from the fact that the square root of a rational number between 0 and 1 is also between 0 and

1 (which bounds the absolute error to a rapidly decreasing value with each approximating

iteration – see [3]). This provides for a simple solution when the operand of the square root

is significantly large: Calculate the (positive) square root of the reciprocal of the operand

as a RAC, and then use the reciprocal of that RAC as the final answer. Whatever tolerance

was used, the final answer will be closer (in absolute value) to the exact value than would

have been found if the reciprocals had not been used (for the same tolerance).

REFERENCES

[1] Hall, T. (2017), “Statistical Calculations Through Rational Arithmetic And Conversions,” Proceedings of the

2017 Joint Statistical Meetings, Section on Statistical Computing, Alexandria, VA: American Statistical

Association, pp. 876-893.

[2] Knuth, D. E. (2003), MMIXware: A RISC Computer for the Third Millennium, Berlin: Springer Verlag, Lecture

Notes in Computer Science Series.
[3] Hall, T. (2015), “PQIC Mathematical Notes, Operations Research Series, Number 2: PQICSTAT Rational

Arithmetic And Conversion Operators,” Cambridge, MA, USA: Proprietary PQIC Technical Memoran-
dum.

1954

