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INTRODUCTION: 

Identifying factors associated with patient outcomes in clinical studies and in retrospective data 
analysis informs further targeted clinical studies and basic science research. Classical regression-
based statistical models such as linear regression, logistic regression, etc. were typically applied to 
establish and quantify these relationships between risk factors and patient outcomes through 
statistical inference.[1] However, these analyses were usually performed with hypothesis-
constrained datasets where candidate variables were limited by research questions of interest (and 
therefore selection of variables to measure in studies) which in turn were informed by clinical 
observations or prior studies. [2] Therefore, factors with unknown/unanticipated associations will 
be missed using this approach, and may never be discovered. 

An Electronic Health Record (EHR) is a digital version of a patient’s paper chart. EHRs contain 
comprehensive patient data including medical history, diagnoses, medications, treatment plans, 
immunization dates, allergies, radiology images, and laboratory and test results which provide a 
more complete picture of patients’ health status. [3] Large volumes of data are readily available 
within EHRs and can be analyzed in a non-hypothesis constrained way. This data-driven approach 
may discover novel risk factors of patient outcomes, which may be superior to hypothesis-driven 
approaches. However, it is challenging to analyze the large volumes of data using classical 
statistical models, especially when the sample size is relatively small compared to the number of 
predictors. In classical regression analysis, the common approach to statistical model building is to 
minimize the number of variables until the most parsimonious model that describes the data is 
found, which also results in numerical stability and generalizability of the results. [4][5] With a big 
number of predictor variables, it is hard to weed out irrelevant and redundant variables to identify 
predictors truly likely to be contributing to the outcome. [6] 

One logical first approach to deal with the big number of predictor variables is to start with 
screening tests of these variables, retaining those that meet a pre-specified criterion. One of the 
most commonly used methods is to do univariate analyses such as t-test or Chi-squared test or 
bivariate regression models to look for independent associations (i.e. without consideration of other 
covariates) with the outcome. [4] Variables that meet a criterion, such as p-value less than 0.05, are 
retained in the data for further multivariate regression analysis. Multivariate regression models 
allow for the estimation of marginal effects of multiple variables at the same time, after controlling 
for the effects of other variables on the outcomes.[1] In the meantime, variables that do not meet the 
criterion are discarded.  However, when the predictor variables have large interaction effects but 
small marginal effects, they might not be found to be statistically significant in the univariate 
analysis and are likely to be missed for further analysis. [7] This might be remedied by ‘forcing’ 
variables into the multivariate models usually based on prior studies and/or clinical suspicion. [4] 

But when there is no such information available for these variables, they are unlikely to ever be 
evaluated as risk factors. On the other hand, when the sample size is large, many variables may be 
found to be statistically significant in the univariate analysis, even though the strength of their 
association with patient outcomes may not be clinically significant. [8] These variables are usually 
nuisance variables which may create noise and distort the strength of association between true risk 
factors and patient outcomes in the final multivariate regression models. [9] 
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Another method of screening for candidate variables for the final model is to use stepwise 
regression to search a large space of possible models for the best subset of variables through 
exhaustive searches of all possible combinations of these variables. [10] However, this method is 
computationally intensive, in particular when analyzing large datasets with thousands of variables, 
such as is now possible with electronic health record data. 

Machine learning techniques such as Random Forest, use computation methods to “learn” 
information directly from data and mainly focus on prediction of a certain outcome. [11] In clinical 
studies, they are applied to predict patient outcomes with large datasets including EHR data. [12] 
Unlike classic regression analysis, it is usually not straightforward to summarize the relationship 
between the predictors and outcome into a single parameter using these techniques. Therefore, they 
are often referred to as “a black box” ”due to lack of interpretability of the relationship between the 
risk factors and patient outcomes. [13]However, many machine-learning methods summarize the 
impact of individual variables into metrics referred to as variable importance, taking into account 
variable interactions without model specification required. [14] These techniques include Random 
Forest, [15] Support Vector Machine, [16] Gradient Boosting, [17] Lasso and Ridge regression. [18] The 
measure of variable importance can be ranked to indicate how important they are to the fitted model. 
Variables with high importance are potential drivers of the outcome and their values have a likely 
real impact on the outcome values. [15] 

In the current study, we aimed to leverage these machine learning techniques of variable ranking, 
applied to a large EHR dataset, to identify variables most likely to be associated with patient 
outcomes for further multivariate analysis. We sought to explore: 1) whether there are differences 
in the candidate variables identified for multivariable analysis using machine learning methods, 
versus classic univariate analysis methods, versus a combination of machine learning methods and 
classic univariate analysis (i.e. application of classic univariate analysis to machine learning 
method identified top ranked variables) ; 2) After variable selection among the candidate variables 
identified using the three approaches above, whether there are differences in the variables included 
in the final multivariate models and whether the performances of these final models are different. 
Different machine learning techniques use different algorithms to make predictions. Accordingly, 
the calculation of variable importance in predictions of outcomes varies by different techniques. 
Different rank orderings should be expected among these techniques. Furthermore, different 
machine learning techniques sometimes result in similar performances. Therefore, in the initial 
variable screening step, instead of relying on variable importance ranks based on only one of the 
machine-learning techniques, we proposed to retain the predictor variables ranked high on average 
across these techniques, which is expected to identify potential predictors of the outcome in a more 
comprehensive way.  

We used an EHR dataset for patients with severe Acute Respiratory Distress Syndrome (ARDS) to 
illustrate our proposed methodology and to explore our questions about differential outcomes. 
Hospital mortality for patients with severe ARDS remains high and new knowledge about unknown 
risk factors associated with hospital mortality could inform future targeted basic science and 
clinical studies.  

METHODS:  

Cohort and data structuring: 

We retrospectively identified 246 patients with severe ARDS during the flu season (October to 
April) between 2016 and 2018 from EHR system across the multi-hospital Northwell Health system. 
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The criteria of diagnosis of severe ARDS of intubated patients included: age ≥ 18; diagnosis of 
severe acute respiratory failure requiring invasive mechanical ventilation via endotracheal tube or 
tracheostomy (PEEP ≥ 5 cm H2O); PaO2/FiO2 ratio (P : F ratio) ≥ 150; current or planned 
admission to an ICU; bilateral opacities on chest radiograph or computed tomography scan not 
fully explained by effusions, lung collapse or nodules; and respiratory failure not fully explained 
by cardiac failure or fluid overload based on the imaging studies completed close to the time when 
patient met P: F ratio. These criteria were manually screened by two physicians.  The research 
project was approved by the Northwell Health institutional IRB.  

We used patient information during the first 24 hours from severe ARDS diagnosis for this 
illustrative analysis, which included 107 baseline variables.  The baseline patient information 
included demographics, comorbidities, ARDS risk factors and number of days between hospital 
admission and severe ARDS diagnosis. Other patient information included laboratory tests, 
medications, ventilation modes and adjuvant therapies. For lab tests, since multiple tests were 
usually performed, we calculated the median, minimum and maximum of the recorded values. For 
medications, we chose the highest dosage on a given day to represent the daily value. The primary 
response variable was hospital mortality (whether a patient died during the current hospitalization), 
encoded in a binary variable (1=Yes, 0=No). Regarding to the missing values, a missing category 
was created for categorical variables with missing data, and median of the available data was used 
to impute the missing values of continuous variables.  

Analysis: 

Three approaches to find the candidate variables for the final multivariate model were explored in 
our study:  

1) Classic univariate analysis candidate variable selection 

Classic univariate (bivariate logistic regression) analysis was performed among all the 107 
variables in the data. Variables that were found statistically significant (p-value<0.05) in the 
univariate analysis were chosen as the candidate variables in the final multivariate logistic 
regression model. 

2) Machine learning methods candidate variable selection 

We used machine learning techniques to preliminarily screen candidate variables associated with 
hospital mortality (whether a patient died during the current hospitalization), encoded in a binary 
variable (1=Yes, 0=No)) by ranking variable importance among all the 107 variables. These 
techniques included random forests (RF), support vector machine (SVM), gradient boosting (GB), 
Lasso regression and Ridge regression.  

For each of the machine learning techniques, the data was randomly split into a training set (80%) 
and a test set (20%).  Within the training set, the data was split randomly into a sub-training set 
(70%) and a validation set (10%) for five times. Tuning parameters that impact the overall 
complexity of the final model and the final bias-variance trade-off were optimized by maximizing 
the average validation AUC (area under the Receiver Operating Curve) across the five validation 
sets. After the model was trained using the training set, it was applied to the test set. The test AUC 
was calculated with a 95% confidence interval using the DeLong method. The above process was 
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iterated for one hundred times within each machine learning technique. And, accordingly, the 
variable importance ranking was based on the model with the highest test AUC within each 
technique. We chose to calculate the final ranking of importance of these variables using the 
average rank across these five machine learning techniques. 

Top ranked variables across model techniques were retained as the candidate variables in the 
subsequent multivariate analysis using classic logistic regression models, to identify risk factors 
highly associated with the outcome variable, and to determine whether the associations were 
protective or harmful. Given that there is no established cutoff for ranks of the variables to be 
included in multivariate models, we used the top 15% (17 variables), 20% (22 variables) and 25% 
(27 variables) separately. 

3) Combination of machine learning methods and classic univariate analysis for candidate 
variable selection 

Classic univariate (bivariate logistic regression) analysis was performed among all the top-ranked 
variables: 17 variables if ranked top 15%, 22 variables if ranked top 20%, and 27 variables if ranked 
top 25%. Variables that were found statistically significant (p-value<0.05) in the univariate analysis 
were chosen as the candidate variables in the final multivariate logistic regression model.  

In all these three approaches, the final model for the multivariate analysis was constructed using 
backward selection among the candidate variables. 

RESULTS: 

Overall, among 246 patients identified with severe ARDS, 150 (60.98%) died during their 
hospitalization. 107 predictor variables were available for the analysis. Patient characteristics 
including demographics, comorbidities, ARDS risk factors and total SOFA scores of the study 
samples were are presented in Table 1. Among these variables, the variables that were associated 
with increased risk of in-hospital death included: age, and total SOFA score at baseline, and race; 
the variables that were associated with decreased risk of in-hospital death included: having 
diagnosis of pancreatitis and drug overdose. Specifically, compared to the patients who were 
discharged alive, patients who died in the hospital were older (65.58 ±16.85 vs. 53.85 ±17.82, 
p=0.0001), more likely not to have race reported (20.0% vs. 8.33%, p=0.02), had relatively higher 
total SOFA score at baseline (11.80 ±3.75 vs. 9.02 ±3.11, p=0.0001), less likely to have pancreatitis 
(2.67% vs. 10.42%) and less likely to have drug overdose (2.0% vs. 11.46%, p=0.002). 

The five machine learning techniques performed similarly (Table 2), among which gradient 
boosting achieved highest test AUC of 0.84 (0.73, 0.95), followed by support vector machine and 
ridge regression, both with an AUC of 0.83 (0.72, 0.94), random forest with an AUC of 0.81 (0.70, 
0.93), and Lasso regression 0.79 (0.66, 0.92). The variable importance of each of the 107 variables 
was ranked within each machine learning model and then averaged across the machine learning 
models. 

The candidate variables primarily screened for the final multivariate model through the three 
approaches are listed in table 3. These variables are listed by rank based on the average ranking of 
variable importance across the five machine-learning techniques. There are a total of 33 variables 
listed in table 3. These variables include all the 26 variables among the 107 variables that were 

 
1929



found to be statistically significant in the univariate analysis, and all the 27 top-ranked variables 
(top 25%) based on average ranking of variable importance. There is a big overlap between these 
two lists of variables. Specifically, among the 26 variables that were found to be statistically 
significant in the univariate analysis, 22 variables (70%) ranked high (up to top 25%); and among 
the 27 top-ranked variables, 20 variables (74%) were also found to be statistically significant. 

Table 4 shows the three final multivariate models constructed using the three approaches. The final 
models using approach #1 (classic) and #3 (combination) included exactly the same variables, 
while the final model using approach #2 (machine learning) included an additional variable (1st 
PEEP Value on Day 1) that was not captured by approach #1 and #3. This variable ranked high 
with machine learning methods (rank 11th, among top 15%) yet was not statistically significant in 
the univariate analysis, but it was found to be statistically significant in the multivariate analysis 
after controlling for the other variables. The final model using approach #2 performed marginally 
better than the final model using approach #1 and #3 with C-statistic of 0.84 compared to 0.83. 

DISCUSSION: 

Machine learning techniques are typically applied in the prediction of the clinical outcomes with 
the capacity to analyze large datasets. However, due to the lack of transparency regarding to the 
mechanism of the risk factors identification, these techniques have limitations when quantifying 
the relationship between risk factors and clinical outcomes. [13] Traditional statistical modelling can 
help to further explain these associations. Our study leveraged these techniques to narrow candidate 
variables from a large dataset for further multivariate analysis, and compared the results with classic 
univariate analysis identification to see 1) if the variables ranked highly (up to 25%) could capture 
majority of variables that were found to be statistically significant in the classic univariate analysis, 
and further 2) if these variables could also capture variables that were not statistically significant 
in the classic univariate analysis, while found to be statistically significant in the multivariate 
analysis, so that unknown risk factors that might be missed through classic approach could be 
discovered. 

Our findings using a sample dataset of severe ARDS patients demonstrated that in terms of the 
candidate variables for the final multivariate analysis, there was a big overlap between the list of 
variables that were found statistically significant in the classic univariate analysis (approach #1) 
and the list of variables that were ranked high (up to 25%) through machine learning method 
(approach #2). In other words, the machine learning method (approach #2) has the ability to capture 
majority of variables that were identified through classic univariate analysis (approach #1). In the 
meantime, although the final multivariable models constructed based on the three approaches were 
very similar, it was shown that the final model based on approach #2 (machine learning) captured 
one additional statistically significant variable that was not present in approach #1 (classic) and 
approach #3 (combination). This variable ranked high through machine learning variable ranking, 
while was found to be not statistically significant in the univariate analysis, so that it was missed 
by approach #1 and approach #3. This could be due to the fact that when the predictor variables 
have large interaction effects but small marginal effects, they might not be found to be statistically 
significant in the univariate analysis and are likely to be missed for further analysis. [16] Furthermore, 
the addition of this machine learning identified candidate variable in approach #2, marginally 
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improved the performance of the final model in approach #1 and approach #3 with C-statistic 0.84 
vs. 0.83. 

Overall, our findings showed that there are potential benefits of using average variable importance 
ranking in machine learning techniques to preliminarily screen candidate variables for further 
multivariate analysis in traditional statistical modelling. This approach may help identify variables 
that would have been missed/never have been discovered in the classic univariate analysis for 
further risk factor identification in the multivariate analysis. Also it might improve the performance 
of the final multivariable model compared to the approaches that are based on the classic univariate 
analysis. 

However, the findings of this study was were only based on one illustrative data for exploratory 
purposes. Formal simulation study needs to be performed to compare these three approaches and 
see whether the machine learning candidate variable selection approach are superior to the other 
two approaches. Through the simulation study, we would like to see 1) what is the optimal cutoff 
of the ranks of the variables i.e. the percentage of the top ranked variable to be selected as the 
candidate variables for further multivariate analysis. This cutoff should capture majority of the 
variables that are found to be statistically significant in the classic univariate analysis, while 
retaining minimum numbers of variables for further multivariate analysis; 2) whether this approach 
can constantly identify variables that would have been missed/never have been discovered in the 
classic univariate analysis while turning out to be in the final multivariate model; 3) whether the 
final model constructed through this approach performs better or at least equally better compared 
to the other two approaches; 3) if the final model will perform better using approach #2 if different 
weights are given on the ranks of the variables among different machine learning techniques 
according to the performance for each individual technique, and how to define these weights. 
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Table 1: Characteristics of study sample 

Variable Discharged 
Alive 
(N=96) 
 

Death at hospital 
(N=150) 
 

Combined 
(N=246) 

p-value 

Age, (mean ± SD) 53.85 ±17.82 65.58 ±16.85 61.0 ±18.13 0.0001 

Sex (Female), n (%) 42 (43.75%) 61 (40.67%) 103 (41.87%) 0.63 

Race, n (%)     

American Indian or 
Alaskan Native 

1 (1.04%) 0 (0%) 1 (0.41%) 0.39 

Asian 7 (7.29%) 14 (9.33%) 21 (8.54%) 0.58 

Black or African American 19 (19.79%) 22 (14.67%) 41 (16.67%) 0.29 

Native Hawaiian or other 
Pacific Islander 

0 (0%) 1 (0.67%) 1 (0.41%) 1.0 

White 61 (63.54%) 83 (55.3%) 144 (58.54%) 0.20 

Not reported 8 (8.33%) 30 (20.0%) 38 (15.45%) 0.02 

Ethnicity, n (%)     

Hispanic 13 (13.54%) 12 (8.0%) 25 (10.16%) 0.16 

Not Hispanic 73 (76.04%) 125 (83.33%) 198 (80.49%)  

Not reported 10 (10.42%) 13 (8.67%) 23 (9.35%) 0.65 

Comorbidities, n (%)     

Cirrhosis  5 (5.21%) 9 (6.0%) 14 (5.69%) 0.79 

Hepatic Failure  1 (1.04%) 5 (3.33%) 6 (2.44%) 0.41 

End Stage Renal Disease 
requiring Hemodialysis  

3 (3.13%) 14 (9.33%) 17 (6.91%) 0.06 

Metastatic Carcinoma  1 (1.04%) 9 (6.0%) 10 (4.07%) 0.09 

Lymphoma  3 (3.13%) 1 (0.67%) 4 (1.63%) 0.30 

Leukemia  4 (4.17%) 9 (6.0%) 13 (5.28%) 0.53 

Myeloma  0 (0%) 5 (3.33%) 5 (2.03%) 0.20 

AIDS  0 (0%) 1 (0.67%) 1 (0.41%) 1.0 

Immunosuppression  10 (10.42%) 13 (8.67%) 23 (9.35%) 0.65 

Chronic lung disease  17 (17.71%) 29 (19.33%) 46 (18.70%) 0.75 

Diabetes Mellitus  27 (28.13%) 30 (20.0%) 57 (23.17%) 0.14 

Chronic Heart Failure  8 (8.33%) 15 (10.0%) 23 (9.35%) 0.66 

Bone Marrow Transplant  0 (0%) 3 (2.0%) 3 (1.22%) 0.28 
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ARDS risk factors, n (%) 

    

Sepsis  66 (68.75%) 93 (62.0%) 159 (64.63%) 0.28 

Pneumonia  68 (70.83%) 95 (63.33%) 163 (66.26%) 0.22 

Aspiration  23 (23.96%) 36 (24.0%) 59 (23.98%) 0.99 

Smoke Inhalation Injury    0 N.A. 

Trauma  1 (1.04%) 2 (1.33%) 3 (1.22%) 1.0 

Near drowning    0 N.A. 

Pancreatitis  10 (10.42%) 4 (2.67%) 14 (5.69%) 0.01 

Burn    0 N.A. 

Shock  26 (27.08%) 58 (38.67%) 84 (34.15%) 0.06 

Drug Overdose  11 (11.46%) 3 (2.0%) 14 (5.69%) 0.002 

Blood Product 
Transfusion  

17 (17.71%) 34 (22.67%) 51 (20.73%) 0.34 

Other ARDS Risk Factors 6 (6.25%) 12 (8.0%) 18 (7.32%) 0.61 

Total Sofa Scores, 
(mean ± SD) 

9.02 ±3.11 11.80 ±3.75 10.72 ±3.76 0.0001 

 

Table 2: Summary of model performance of each machine learning techniques (approach #2) 

Machine 
Learning 

Techniques 

Test AUC 
(95% CI) 

Accuracy Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

PPV 
(95% CI) 

NPV 
(95% CI) 

Random 
Forest 

0.81 
(0.70, 
0.93) 0.74 

0.73 (0.54, 
0.87) 

0.76 (0.50, 
0.93) 

0.86 (0.67, 
0.96) 

0.59 (0.36, 
0.79) 

Support 
Vector 
Machine 

0.83 
(0.72, 
0.94) 0.74 

0.73 (0.54, 
0.87) 

0.76 (0.50, 
0.93) 

0.86 (0.67, 
0.96) 

0.59 (0.36, 
0.79) 

Gradiant 
Boosting 

0.84 
(0.73, 
0.95) 0.74 

0.74 (0.55, 
0.88) 

0.74 (0.50, 
0.91) 

0.82 (0.63, 
0.94) 

0.64 (0.41, 
0.83) 

Lasso 
Regression 

0.79 
(0.66, 
0.92) 0.72 

0.72 (0.53, 
0.86) 

0.72 (0.47, 
0.90) 

0.82 (0.63, 
0.94) 

0.59 (0.36, 
0.79) 

Ridge 
Regression 

0.83 
(0.72, 
0.94) 0.74 

0.76 (0.56, 
0.90) 

0.71 (0.48, 
0.89) 

0.79 (0.59, 
0.92) 

0.68 (0.45, 
0.86) 
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Table 3: Candidate Variables primarily screened for the final multivariate model through three 

approaches 

Variables as 
candidate 

variables in the 
final model 

Ranks based on  
average ranking 

of variable 
importance 
across five 
machine-
learning 

techniques 

Approach #1: 
Including 
variables 

statistically 
significant in the 

univariate 
analysis among 
all the variables 

in the data 

Approach #2: 
Including all the 

top ranked 
(15%, N=17; 
20%, N=22; 
25%, N=27) 

variables 
through average 

variable 
importance 

ranking 

Approach #3: 
Including 
variables 

statistically 
significant in the 

univariate 
analysis among 

top ranked 
(25%) variables 

through average 
variable 

importance 
ranking 

age 1 ✓ ✓ ✓ 

Total SOFA Score 2 ✓ ✓ ✓ 
Lowest Platelet 
Count (Day 1) 

3 ✓ ✓ ✓ 

Minimum P:F 
Ratio (Day 1) 

4 ✓ ✓ ✓ 

Median Peak 
Pressure (Day 1) 

5 ✓ ✓ ✓ 

Number of days 
between hospital 
admission and 
ARDS diagnosis 

6  ✓  

Minimum Peak 
Pressure (Day 1) 

7 ✓ ✓ ✓ 

Median Total 
Respiratory Rate 
(Day 1) 

8 ✓ ✓ ✓ 

Highest 
Creatinine (Day 
1) 

9 ✓ ✓ ✓ 

Median P:F Ratio 
(Day 1) 

10 ✓ ✓ ✓ 

1st PEEP Value 
(Day 1) 

11  ✓  

Race Not 
Reported 

12 ✓ ✓ ✓ 

Median Tidal 
volume (cc) per 
kilogram of ideal 

13  ✓  
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body weight 
(IBW) 

Maximum Total 
Respiratory Rate 
(Day 1) 

14 ✓ ✓ ✓ 

Maximum P:F 
Ratio (Day 1) 

15 ✓ ✓ ✓ 

Pancreatitis  16 ✓ ✓ ✓ 
Maximum Peak 
Pressure (Day 1) 

17 ✓ ✓ ✓ 

Minimum Set 
Respiratory Rate 
(Day 1) 

18    

Median Total 
Minute 
Ventilation (Day 
1) 

19 ✓ ✓ ✓ 

Drug Overdose  20 ✓ ✓ ✓ 
Received 
Norepinephrine 
(Day 1) 

21 ✓ ✓ ✓ 

Maximum Total 
Minute 
Ventilation (Day 
1) 

22 ✓ ✓ ✓ 

Sepsis  23  ✓  

Influenza test 
result  (negative) 

24  ✓  

Lowest GCS Score 
(Day 1) 

25 ✓ ✓ ✓ 

Received HFNC 
prior to 
intubation 

26 ✓ ✓ ✓ 

Race: White 27  ✓  

Mean Arterial 
Pressure (Day 1) 

28 ✓   

Received 
Vasopressors 
(Day 1) 

30 ✓   

Median Mean 
Airway Pressure 
(Day 1) 

31 ✓   
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Minimum Total 
Respiratory Rate 
(Day 1) 

34 ✓   

Received 
Epinephrine (Day 
1) 

56 ✓   

Maximum Mean 
Airway Pressure 
(Day 1) 

67 ✓   

 

 

Table 4: Final multivariate logistic models based on three variable screening approaches 

Variable                     Multivariate Analysis: Classic Logistic Regression 
Outcome: Hospital Mortality 

Approach #1:  
Adjusted Odds 
Ratio 

Approach #2 
Adjusted Odds 
Ratio 

Approach #3:  
Adjusted Odds 
Ratio 

age 
1.042 (1.024, 
1.061) 

1.043 (1.023, 
1.063) 

1.042 (1.024, 
1.061) 

Total SOFA Score 
1.265 (1.148, 
1.393) 

1.307 (1.178, 
1.449) 

1.265 (1.148, 
1.393) 

Median Peak 
Pressure (Day 1) 

1.079 (1.026, 
1.135) 

1.115 (1.053, 
1.180) 

1.079 (1.026, 
1.135) 

Median P:F Ratio 
(Day 1) 

0.992 (0.986, 
0.998) 

0.992 (0.986, 
0.998) 

0.992 (0.986, 
0.998) 

1st PEEP Value 
(Day 1) 

 0.809 (0.713, 
0.918) 

 

    

C statistic 0.83 0.84 0.83 
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