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Abstract 

For many National Statistical Organizations, imputation is the preferred treatment for 
item non-response. Consequently, the choice of imputation strategy can have a significant 
impact on resulting statistical estimates. Recently, a generalized framework to evaluate 
and improve imputation strategies at Statistics Canada was proposed and used to examine 
the choice of imputation strategies within the confines of the Canadian Census Edit and 
Imputation System (CANCEIS). The goal now is to develop a generalized, user-friendly 
tool for survey methodologists, managers and statisticians, allowing them to assess and 
compare imputation strategies on existing datasets. The focus of this paper is on the 
development of the tool itself, in particular the choice of simulation parameters and 
output measures. Finally, we explore how best to present results, including data 
visualization, to facilitate data-driven decision-making in survey design. 
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1. Introduction 

 
Missing data is an issue affecting all National Statistical Organizations (NSOs). In 
general, missing data for statistical products can be classified as either unit non-response 
(all data associated with a record is missing) or item non-response (some data associated 
with a record is missing). Imputation is a common method for combating missing data, in 
particular item non-response; for a general discussion on the topic, and statistical data 
editing in general, we refer the reader to De Waal, Pannekoek & Scholtus (2011). 
 
Statistics Canada has developed two generalized tools for statistical data editing and 
imputation: Banff (Statistics Canada, 2017), designed primarily for economic statistics 
and numerical variables, and the Canadian Census Edit and Imputation System 
(CANCEIS), designed for the Census as well as household and social surveys. This 
project is motivated by the author’s role in the support of Banff users, and research into 
imputation methods. 
 
In a Banff support role, we frequently encounter questions about imputation methods, 
design, and strategies, and how these can and should be tested. Common questions fall 
along these lines: 
 

 Which imputation method is most effective? 
                                                 
1 The content of this paper represents the position of the author and may not necessarily represent 
that of Statistics Canada. 
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 How should parameters be chosen? 
 What effect does non-response and imputation have on the quality of statistical 

estimates? 
 
More recently, modernization efforts at Statistics Canada have led to new questions 
regarding non-response and imputation. These include an increased interest in assessing 
the quality of administrative datasets that have undergone editing, and curiosity about 
third-party open-source imputation software, including popular R packages such as 
missForest (Stekhoven, 2015) and mice (van Buuren & Groothuis-Oudshoorn, 2010). 
 
To meet these demands, we envision a generalized tool allowing users to assess and 
compare imputation strategies, with the goal of facilitating data-driven decision-making 
in survey design. Importantly, such a tool should be general enough to meet the following 
objectives: 
 

 A simple, intuitive, and reproducible framework for evaluating methods 
 The ability to investigate and assess arbitrary imputation methods, including 

“black boxes” 
 A suite of analysis tools suitable for a wide variety of intended data uses 

 
2. A Framework for Assessing Imputation 

 
As missing data has long been a thorn in the side of statisticians, there is a long history of 
imputation methods and various criteria for evaluating them. Chambers (2001) laid out 
the following five “Performance measurements for imputation”: 
 

1. Predictive Accuracy: The imputation procedure should maximise preservation 
of true values. That is, it should result in imputed values that are ‘close’ as 
possible to the true values. 

2. Ranking Accuracy: The imputation procedure should maximise preservation of 
order in the imputed values. That is, it should result in ordering relationships 
between imputed values that are the same (or very similar) to those that hold in 
the true values. 

3. Distributional Accuracy: The imputation procedure should preserve the 
distribution of the true data values. That is, marginal and higher order 
distributions of the imputed data values should be essentially the same as the 
corresponding distributions of the true values. 

4. Estimation Accuracy: The imputation procedures should reproduce the lower 
order moments of the distributions of the true values. In particular, it should lead 
to unbiased and efficient inferences for parameters of the distribution of the true 
values (given that these true values are unavailable). 

5. Imputation Plausibility: The imputation procedure should lead to imputed 
values that are plausible. In particular, they should be acceptable values as far as 
the editing procedure is concerned. 

 
Chambers goes on to define “imputation performance measures” for various variable 
types. A key caveat of the measures are that they are designed to assess “the performance 
of an editing and imputation method when the ‘true’ values underpinning either the 
incorrect or missing data items are known”. 
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One method to compare imputed values to true values, is by starting with the true values 
and simulating non-response.  
 
Previous work of this type at Statistics Canada includes simulation tools developed by 
Haziza (2003) and Stelmack (2018). Our contribution builds on the work of Haziza and 
Stelmack but aims to further generalize the work by increasing the options available for 
generating non-response, and a wider array of analysis options. In particular, whereas 
Chambers, Haziza and Stelmack analyze imputation results using numerical measures, 
we focus on the benefits of data visualization analysis. 
 
Section 3 gives an overview of the non-response and imputation process. In Section 4 we 
discuss the analysis modules available, with examples. 
 

3. Non-Response and Imputation 

 
Let the original data consist of a numerical variable of interest, 𝑦 = {𝑦1, … , 𝑦𝑛}, along 
with any auxiliary data that may be required for either imputation or analysis. For the 
purposes of assessing imputation performance, the 𝑦 variable must consist only of ‘true’ 
values, i.e., non-missing and without error. 
 
Let 𝑗 = {1, … , 𝑚} be the index of simulations we intend to run. Within each simulation, 
we select a sub-sample of units and set the corresponding 𝑦-values to missing. We use 
the binary indicator 𝛿𝑖𝑗 to denote missingness: 𝛿𝑖𝑗 = 1 if 𝑦𝑖 is missing in simulation 𝑗 and 
zero otherwise. 
 
The choice of non-response matrix, [𝛿𝑖𝑗], and the method in which it is generated, will 
impact any conclusions that can be made at the analysis phase. In the tools developed by 
Haziza and Stelmack, the set of missing data in each individual simulation is generated 
via a Poisson sampling process with each unit having an independent probability of non-
response, 𝑝𝑖, set by the user, or constructed by the simulation tool. Various non-response 
mechanisms can be modelled by the simulation, depending on how the 𝑝𝑖  values are 
assigned: 
 

 Missing Completely at Random (MCAR): The probability of non-response is 
constant for each unit. 

 Missing at Random (MAR): The probability of non-response depends on 
observed data. 

 Missing Not at Random (MNAR): The probability of non-response depends on 
unobserved data. 

 
A common approach for simulation studies is to define 𝑝𝑖 as a function of auxiliary data 
(for MAR) or the variable of interest itself (for MNAR). 
 
Under Poisson sampling, the number of missing values can vary in each simulation. 
Additionally, as each simulation independently selects a Poisson sample, there is no 
control over the number of times each unit is imputed over all simulations. Rosen (1997a, 
1997b) introduced Pareto sampling as a method of variable-inclusion probability 
sampling with a fixed sample size; in this respect it is similar to Conditional Poisson 
sampling but more efficient for our purposes. The current tool also provides a k-fold 
cross-validation module, which fixes the number of times each unit is imputed over all 
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simulations. In total, the current tool includes the following five sampling methods for 
generating the non-response indicators 𝛿𝑖𝑗: 
 

 Poisson sampling 
 Bernoulli sampling 
 Pareto sampling 
 Simple random sampling without replacement (SRSWOR) 
 k-fold cross-validation 

 
Bernoulli sampling and SRSWOR are simply special cases of Poisson and Pareto 
sampling when the non-response probabilities are constant; they are included for user 
convenience. 
 
After generating non-response, users are responsible for imputing the resulting dataset. 
The resulting values are denoted 𝑦̂𝑖𝑗; we note that by design 𝑦̂𝑖𝑗 = 𝑦𝑖  when 𝛿𝑖𝑗 = 0. The 
only imputation requirements are as follows: 
 

 For inferential purposes, imputation must be performed independently on each 
simulation. 

 Each missing value must be imputed with a single numerical value. 
 
In particular, users must make sure that all values requiring imputation are imputed; this 
is a requirement for the analysis portion of the simulation. 
 
The tool includes only one built-in imputation method: random hot deck donor 
imputation. This simple imputation may or may not be appropriate in practice, but is 
included in the tool as an optional baseline test for comparison purposes. 
 

4. Analysis 

 
Before analysis, it is important to determine an evaluation criteria for assessing 
imputation methods. According to the Generic Statistical Data Editing Model (United 
Nations Economic Commission for Europe, 2019), the primary goal of statistical data 
editing is the “treatment of the data to achieve fitness for use”. Chambers, when 
discussing the five performance measures for imputation referenced in Section 2, argues 
a similar point: 
 
“Nor are the properties themselves mutually exclusive. In fact, in most uses of imputation 
within NSIs the aim is to produce aggregates estimates from a data set, and criteria (1) 
and (2) below will be irrelevant. On the other hand, if the data set is to be publicly 
released or used for development of prediction models, then (1) and (2) become rather 
more relevant.” 
 
Along those lines, the current tool includes three analysis modules: 
 

1) Univariate Distribution Analysis 
2) Estimator Analysis 
3) Predictive Analysis 
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These three analysis modules are suitable for a variety of data needs. We note that they 
correspond to three of the five imputation performance measurements proposed by 
Chambers. 
 
While Chambers, Haziza, and Stelmack all propose numerical assessment measures, we 
have instead decided to focus on data visualization for our analysis. We believe that the 
concepts these aim to measure can be sufficiently captured by data visualization 
techniques. Additionally, data visualization offers some of the following benefits over 
numerical outputs: 
 

 A well designed visual output is intuitive. We want users to make appropriate 
inferences and ultimately, data-driven decisions based on the simulation studies. 
When done appropriately, visuals can highlight and convey information to the 
user much more efficiently than tables of numerical outputs. 

 Visualization is comprehensive. Numerical outputs have the benefit of brevity, 
but come with a degree of information loss. For certain types of information, this 
trade-off is unnecessary. 

 Visualization allows for exploratory analysis. In particular, visualization may 
reveal patterns in the data that summary statistics do not – one of the reasons 
statisticians are expected to plot residuals when fitting a model. 

 
To demonstrate these benefits, we include three examples in this paper. For the purpose 
of these examples, we’ve selected a publicly available data set from the University of 
California, Irvine (UCI) Machine Learning Repository (Dua & Graff, 2019). The 
Residential Building Data Set (Rafiei & Adeli, 2015) consists of 372 records and 105 
variables. From this data set we chose a single variable of interest, and a selection of 
auxiliary variables for imputation purposes. 
 
4.1 Univariate Distribution Analysis 

 
The objective of this module is to determine the effectiveness of an imputation method at 
preserving the univariate distribution of the variable of interest. Visual comparison is an 
intuitive choice for comparing univariate distributions. 
 
For the accompanying example we’ve run 100 simulations, generating non-response 
using Bernoulli sampling with unit non-response probabilities of 25%. Imputation was 
performed using the missForest R package on default settings. 
 
Chart 1 includes the kernel density curve of the original data (in black) and additional 
curves for each simulation. Visual inspection shows that the general shape of the 
distribution is preserved, although there does seem to be some shifting of data towards 
the middle of the distribution. The chart also includes a fringe plot (also referred to as a 
rug plot) with individual data points plotted as semi-transparent vertical line segments. 
The fringe plot does not convey as much information about the overall distribution, but 
does highlight where the imputation method is introducing new values. 
 
Additional analysis features in the tool include the option to plot histograms instead of 
density curves, and jitter-and-box plot combinations instead of fringe plots. Additionally, 
users can choose to overlay asymptotic information (distributions derived from the 
complete set of simulations) or inspect individual simulations. Finally, users can choose 
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to filter the data so as to focus only on the distribution of missing data, instead of the 
complete data set. 
 

Chart 1: Univariate Distribution Analysis (Example) 
 

 
 
 
4.2 Estimator Analysis 

 
Let 𝜃 be an estimator derived from the original data set (as a function of the variable 𝑦 
and possibly auxiliary variables). Let 𝜃𝑗 be that same estimator derived from simulation 𝑗. 
Previous work in this field has focused on numerical measures such as relative bias (RB) 
and relative root mean square error (RRMSE) to assess imputation strategies: 
 

𝑅𝐵(𝜃) =
1

𝑚
∑

( 𝜃𝑗 −  𝜃)

𝜃

𝑚

𝑗=1

 

 

𝑅𝑅𝑀𝑆𝐸(𝜃) =
√ 1

𝑚
∑ (𝜃𝑗 −  𝜃)

2𝑚
𝑗=1

𝜃
 

 
The underlying concepts of these measures can be suitably captured simply by plotting 
the set of individual simulation estimators {𝜃𝑗} against the true value 𝜃. 
 
The following example compares the effectiveness of four imputation methods across 
two non-response mechanisms: MCAR and MNAR. We again generated 100 simulations 
under each mechanism. We used SRSWOR and Pareto sampling so as to fix the overall 
non-response rate in each simulation at 25%. The results are given in Chart 2. This chart 
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includes a jitter plot of all simulations, in addition to summary boxplots. The true value 𝜃 
of the estimator is plotted as a horizontal dotted line. 
 
Under the MCAR simulation, it is clear that the missForest imputation method (blue) 
performs best – it is unbiased and produces the smallest variance across simulations. The 
two donor-based methods (red and green) perform similarly, while ratio imputation 
(brown) is more robust but introduces some bias. Under the MNAR simulation, 
missForest arguably performs the worst, although all four methods produce a bias in the 
resulting estimator. We refer to this type of test – comparing results over different 
hypothetical non-response mechanisms – as a sensitivity test. As many imputation 
methods rely on the assumption that data is either MCAR or MAR, this type of test 
highlights the importance of investigating potential outcomes when these assumptions 
fail. 
 

Chart 2: Estimator Analysis (Example) 
 

 
 
 
4.1 Predictive Analysis 

 
Predictive measures assess the imputation effectiveness with respect to individual units. 
Ideally, an imputation method would perfectly reproduce missing values. Short of this 
goal, we would like to see small imputation errors, i.e., the difference between an 
imputed value and its original value. Numerical measures of predictive analysis include 
mean average error (MAE) and root mean square error (RMSE). We instead propose 
plotting the errors in a scatterplot. Plotting them against the original data {𝑦𝑖} , the 
imputed data {𝑦𝑖𝑗} , or auxiliary data can provide insight into such issues as 
heteroskedascity and imputation model misspecification. 
 
For this example, we used leave-one-out cross-validation (LOOCV), repeated ten times. 
LOOCV is a special case of cross-validation: in each simulation, exactly one record is set 
to missing and imputed. As there are 372 records in our test data, and each one is imputed 
exactly ten times, this generates 3720 simulations. 
 
LOOCV is a good place to start when investigating the predictive performance of an 
imputation method because it tests the method’s performance on each record under a 
best-case scenario: when all information (except for the record in question’s value) is 
available. Additionally, because each unit is imputed the same number of times, there is 
no need to encode non-response rates associated with each record into the visual outputs. 
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(It might otherwise be difficult to visually distinguish between records with poor 
predictive imputation results and records with high non-response rates.) 
 
Repeating each simulation multiple times is an additional feature offered by the tool, and 
is designed to help users estimate the variance due to imputation conditioned on a non-
response pattern. Given a non-response pattern, some imputation methods will always 
produce the same imputed values. For example, a nearest-neighbour donor imputation 
will behave this way, as long as there are no distance ties between donors. Other 
imputation methods such as stochastic regression imputation will introduce a random 
term into the imputation process. Repeating the same non-response pattern multiple times 
is a way of examining this property. 
 
We tested the same four imputation methods (missForest, ratio imputation, nearest-
neighbour donor imputation, and random hot-deck donor imputation) as in the previous 
example. For the first three, we used auxiliary variable V28 as part of the imputation 
process. 
 

Chart 3: Predictive Analysis (Example) 
 

 
 
In Chart 3 we plot the imputations errors {𝑒𝑖𝑗 = 𝑦̂𝑖𝑗 − 𝑦𝑖|𝛿𝑖𝑗 = 1}  against auxiliary 
variable V28 in the horizontal axis. As each of 372 records were imputed ten times, this 
represents 3720 data points; they are plotted as semitransparent blue dots. Overlaid on top 
of the errors, we plot the average error 
 

𝑒̅𝑖 =
∑ 𝑒(𝑖)𝑗𝑗

∑ 𝛿(𝑖)𝑗𝑗
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in yellow (372 data points). The average can be viewed as an approximation of the 
asymptotic error of the imputation method, albeit over only ten iterations. 
 
By looking at the yellow scatterplot, we can examine the relationship between the 
average imputation errors and the auxiliary variable V28. As V28 was the auxiliary 
variable used for imputation purposes in three of the four methods (random donor does 
not use any auxiliary information), the average error can be viewed as an approximation 
of the imputation model residuals. In this case we are looking for a random distribution of 
the residuals around V28. While this appears to hold true for missForest and Nearest 
Neighbour methods, there is a clear pattern to the residuals generated by the Ratio 
Imputation method. Using this evidence, a user might choose to remove this methods 
from consideration, or add additional explanatory variables that could improve the 
imputation model. 
 
Additionally, from the presence of blue data points, we can see that both donor methods 
(nearest neighbour and random hot-deck) introduce a degree of variance within the 
imputation method itself, while the other two methods do not. 
 

5. Conclusion 

 
In this paper we’ve presented a framework for assessing and comparing imputation 
methods on a known data set. We introduced some new methods for generating non-
response and analysing results using data visualization, alongside examples. These 
examples are intended only to demonstrate the potential application of the assessment and 
comparison tool, not as a commentary on the imputation methods themselves. 
 
This tool is designed for users to assess and compare one or more imputation methods in 
a controlled simulation environment. From an inferential standpoint, the accuracy of any 
conclusions depends on how well the simulation mimics the targeted, real-world process. 
This depends on two factors: 
 

 How well does the training data – in this case the original data {𝑦𝑖} – represent 
the true target data? 

 How well does the simulated non-response mechanism mimic the true 
mechanism? 

 
In general, the true non-response mechanism is unknown. By investigating various non-
response mechanisms, as demonstrated in our second example, users may at least test an 
imputation method’s sensitivity to non-response mechanism type. 
 
On the other hand, it is generally stated that for simulation scenarios, and other data-
driven learning experiments, that conclusions are only as good as the training data. In 
other words, if the training data is not representative, it is difficult to make any resulting 
inferences. One issue for this particular type of experiment is that in many cases, we 
expect users to construct the training data from data that has already undergone non-
response. If the pre-simulation non-response mechanism is MAR or MNAR, then the 
training data will not be representative. Nonetheless, much can still be learned about the 
behaviour of an imputation method under simulation, making it a worthwhile 
undertaking. 
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While the current version of the tool only assesses imputation performance on a 
univariate numerical variable, future work is planned for categorical and multivariate data 
as well. 
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