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Abstract 
Longitudinal microbiome studies provide valuable information about dynamic 
interactions between the microbiome and host, by capturing both between-individual 
differences and within-subject dynamics. As the costs of DNA sequencing have 
decreased, microbiome researchers have a greater opportunity to perform longitudinal 
studies to better understand microbial changes in response to an intervention in real time. 
However, microbial communities can change abruptly in response to small perturbations. 
Current approaches for longitudinal microbiome analysis are not sufficient to capture this 
dynamic temporal variation, especially with the additional challenges of irregular 
sampling intervals, limited sample size, missing values and dropouts. We developed a 
Bayesian Sparse Functional Principal Components Analysis (SFPCA) methodology to 
meet the growing need to model dynamic temporal change and to detect its dependence 
on biological covariates in longitudinal microbiome analysis. We show in simulations 
and in real data applications that Bayesian SFPCA is able to overcome the above 
challenges in longitudinal microbiome analysis, and is more sensitive for capturing 
temporal variations and detecting differences due to biological covariates than existing 
methods. We therefore expect Bayesian SFPCA to be a valuable tool to the microbial 
community for longitudinal analysis. 
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1. Introduction 
 
The microbiome is inherently dynamic, driven by interactions among microbes, with the 
host, and with the environment. These complex dynamics begin at birth, as the infant is 
colonized with microbes (1, 2), and continue in the healthy adult as microbial populations 
vary with hormonal and seasonal cycles (3–5) and a myriad of other host and 
environmental factors such as geography, diet and aging (6–8). At any point in life, 
human microbiome can be dramatically altered, either transiently or long term, by 
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diseases such as infections (1), medical interventions such as antibiotics (9) or even daily 
routines such as handwashing (10). Since the human microbiome is highly dynamic and 
personalized, longitudinal microbiome studies that sample human-associated microbial 
communities repeatedly over time provide valuable information for researchers to 
observe both inter- and intra-individual variability, or to measure changes in response to 
an intervention in real time (5, 11–16). 
 
As the costs of DNA sequencing have decreased, microbiome researchers have a greater 
opportunity to perform longitudinal studies. While longitudinal data with multiple 
timepoints provide more information than cross-sectional (single-timepoint) data, the 
computational tools to analyze longitudinal microbiome studies still lag behind, despite 
recent developments such as q2-longitudinal package (17). To perform proper 
longitudinal microbiome analysis, researchers need to overcome the following 
challenges: temporal changes are highly dynamic and may follow arbitrary curves, time 
points are usually sampled irregularly to better capture biological variation at certain time 
intervals, sample size is limited and can be highly unbalanced between compared groups, 
and missing values and dropouts are common due to sequencing error or sample 
collection. In some studies, researchers have collapsed samples across time points to 
average individual’s signals or they have summarized first with multivariate approaches 
that condense the initial observations (e.g., (18, 19)). Although several studies were able 
to make important discoveries using these approaches, statistical power can be increased 
by using additional information content and directionality of the temporal axis. 
Frequently, microbiome researchers apply classic longitudinal methods, such as the 
Linear Mixed Effects Model, to analyze their data (17, 20), neglecting the highly non-
linear temporal variation. To address this gap in data analysis, a new longitudinal method 
called splinectomeR has been recently introduced (21), which used a loess spline to 
model the data that may not follow any classical model or shape, and then perform 
hypothesis testing of categorical variables in longitudinal studies with permutation test. 
However, we find that splinectomeR tends to over-linearize the dynamic temporal 
variation, has limited capacity to detect group differences over time, and its results can be 
impacted by outliers, particularly in sparse datasets. 
 
To meet the growing need of longitudinal analysis in microbiome studies and overcome 
the challenges mentioned above, we developed Bayesian Sparse Functional Principal 
Components Analysis (SFPCA), a particularly useful method to model the highly flexible 
temporal change, and capture the dominant patterns of variation, even when data are 
sparse with measurements for individuals occurring at possibly differing time points. 
Bayesian SFPCA is a nonparametric method that requires very limited assumptions to be 
made about the data and is therefore widely applicable to various longitudinal 
microbiome studies. We model individual trajectories over time under the framework of 
functional data analysis (FDA), which is to express discrete observations arising from 
time series in the form of a function that represents the entire measured curve as a single 
observation (22). Sparse Functional Principal Components Analysis (SFPCA) is to use 
dimension reduction via principal components to model curves that are observed 
longitudinally over irregular and sparse set of time points (23). We implemented the 
SFPCA model in a Bayesian framework by specifying priors on the parameters and using 
Hamiltonian Markov Chain Monte Carlo (MCMC) sampling algorithm. This Bayesian 
model allows researchers to perform model selection using leave-one-out cross-validation 
with Pareto-smoothed important sampling (PSIS-LOO) (24) and assess model fit with 
posterior predictive checking (25). We demonstrate in both simulations and experimental 
microbiome data that Bayesian SFPCA is better at modeling dynamic temporal variation 
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and thus more sensitive in detecting dependence of longitudinal observations on 
biological covariates of interest than splinectomeR. 
 
 

2. Bayesian SFPCA model for longitudinal microbiome data 
 
The basic idea behind Functional Data Analysis (FDA) is to express discrete observations 
arising from time series in the form of a smooth function that represents the entire time 
course as a single observation, to represent this function as a linear combination of a low-
dimensional but flexible set of basis functions, and then to applying statistical concepts 
from multivariate data analysis to this representation (22). This approach is highly 
flexible in the sense that temporal patterns can be described by continuous smooth 
dynamics, and the timing intervals for data observations can vary across individuals. 
Moreover, the FDA approach requires limited assumptions to be made about the data: it 
makes no parametric assumptions about mean time effects or subject-level deviations 
from the mean trend. Therefore, the FDA approach is widely applicable to a variety of 
scenarios. Goals for FDA on longitudinal data may include describing the major modes 
of variation in the data, exploring the individual variation of curves from overall mean 
trajectories, and characterizing the dependence of curves on covariates of interest (26).  
 
The classical assumption of FDA is that each curve or function has been measured at all 
time points or, more realistically, over a densely sampled grid. However, in practice, 
especially in microbiome studies, curves are often measured at an irregular and sparse set 
of time points which can differ widely across individuals. James et al (23) proposed 
Sparse Functional Principal Components Analysis (SFPCA), a principal component 
model for handling this more difficult scenario of sparse functional data using a reduced 
rank mixed effects framework. Let 𝑌"(𝑡) be the measurement at time t for the 𝑖 th 
individual or curve. Let 𝜇(𝑡) be the overall mean function, let 𝑓)  be the 𝑗th principal 
component function and let 𝑓 = 	 (𝑓-, 𝑓/, … , 𝑓1)2 , where 𝑘  is the number of principal 
components. Then,  

𝑌"(𝑡) = 	𝜇(𝑡) + 	5𝑓)(𝑡)	𝛼")

1

)7-

+	𝜀"(𝑡), 𝑖 = 1,… , 𝑁 

																																																	= 	𝜇(𝑡) + 	𝑓(𝑡)2𝛼" +	𝜀"(𝑡) ,  𝑖 = 1,… ,𝑁 
 
subject to the orthogonality constraint ∫ 𝑓)	𝑓< = 	 𝛿)<	, the Kronecker 𝛿. The random vector 
𝛼" gives the relative weights on the principal component functions for the 𝑖th individual 
and  𝜀"(𝑡) is random measurement error. Since the data are measured at only a finite 
number of time points, 𝜇 and 𝑓 are represented using a basis of spline functions in order 
to place some restrictions on the form of the mean and the principal component curves. 
Let 𝑏(𝑡) be a spline basis with dimension 𝑞. Let Θ and 𝜃B  be, respectively, a 𝑞 by 𝑘 
matrix and a 𝑞- dimensional vector of spline coefficients. The resulting restricted model 
has the form 

𝑌"(𝑡) = 	𝑏(𝑡)2𝜃B +	𝑏(𝑡)2Θ𝛼" +	𝜀"(𝑡), 𝑖 = 1,… ,𝑁 
 
For each individual 𝑖, let 𝑡"-, 𝑡"/, … , 𝑡"CD 	be the possibly different time points at which 
measurements are available. Then  

𝑌" = (𝑌"(𝑡"-), … , 𝑌"(𝑡"CD))
2, 

                        𝐵" = (𝑏(𝑡"-), … , 𝑏(𝑡"CD))
2 subject to the orthogonality constraint B2B = I 
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The final model can be simplified as  
𝑌"(𝑡) = 	𝐵"𝜃B +	𝐵"Θ𝛼" + 	𝜀", 𝑖 = 1,… ,𝑁, 
Θ2Θ = I, 𝜀"	~	𝑁(0, 𝜎/𝐼), 𝛼"	~	𝑁(0, 𝐷) 

 
We implemented this SFPCA model in a Bayesian framework to allow direct model 
selection and model assessment. A difficulty in implementing the Bayesian SFPCA 
model is that there is no unique set of FPC loadings Θ. For any 𝑘 by 𝑘 orthogonal 
rotation matrix 𝑃, if Θ∗ = Θ𝑃2, then Θ∗2Θ∗ = 	P	Θ2	Θ𝑃2 = 𝐼, and hence the loadings are 
unidentifiable. A technique to identify loadings is to sample from the communality and 
derive loadings from it (27). The communality defined as W = 	Θ2	Θ is identified, but the 
loadings Θ are not. Because the communality is not full rank, standard conjugate or other 
widely used priors from random positive definite symmetric matrices cannot be used. We 
therefore place exchangeable prior distributions on the elements of the loading matrix Θ, 
ensuring the induced prior for W invariant to permutations of the data dimensions (27). 
Then we apply post-hoc rotation to recover loadings matrix Θ and scores 𝛼", with Θ be 
the matrix of the first 𝑘 eigenvectors of the communality W. We implemented this 
Bayesian model using Hamilton Markov Chain Monte Carlo (MCMC) sampling 
algorithm in Stan (28). This enables researchers to use leave-one-out cross-validation 
with Pareto-smoothed important sampling (PSIS-LOO) (24) to perform model selection 
on the number of principal components 𝑘, the number of basis functions 𝑞, and the 
placement of knots in the spline bases. Moreover, we can simulate posterior predictive 
replicated data to assess model fit with posterior predictive checking (25). Given that 
SFPCA model can capture the highly non-linear temporal variation in sparse longitudinal 
microbiome data, and our Bayesian implementation provides additional model selection 
and assessment procedures, this Bayesian SFPCA method is particularly useful for 
longitudinal microbiome analysis. The R code of this method is available on GitHub 
(https://github.com/knightlab-analyses/bayesianSFPCA). 
 
 

3. Simulations 
 
The ideal longitudinal methods for microbiome studies should be able to capture the 
highly non-linear temporal patterns in the data, and be sensitive to detecting the 
relationship between temporal variations and biological covariates of interest, under the 
challenges of irregularly- and sparsely-sampled time points, missing values and dropouts, 
and potentially limited sample size. To demonstrate how usefully Bayesian SFPCA can 
model the dynamic microbial temporal patterns with the practical complications listed 
above, we first adopted the simulated data set from splinectomeR to assess its 
performance in modeling time series data with different perturbations, and then simulated 
data with various numbers of samples and proportions of missing data to evaluate its 
robustness in obtaining proper inference regardless of small sample size and missing 
data. In both scenarios, Bayesian SFPCA was better at capturing the internal temporal 
dynamics, and more sensitive in discovering its association with covariates of interest 
than splinectomeR. 
 
3.1 Simulated data with perturbations 
 
In the simulations of splinectomeR, the response variable was perturbed at one or two 
regions of the time series, and at three magnitudes of change (Figures 1a, c). When 
comparing the baseline with the perturbed data, SplinectomeR failed to detect the 
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difference between shift_1x and baseline in the single region perturbed data (p-value = 
0.3; Figure 1b), and the difference between shift_1x or shift_2x with baseline (p = 0.79, p 
= 0.36 for 1x, 2x shifts respectively; Figure 1d) in the double region perturbed data. The 
estimated mean curves for each version were trimmed from the beginning and the end 
because the spline that splinectomeR fits at the two ends are susceptible to outliers 
(Figure 1b, d). Moreover, the mean curves for baseline in the singled region perturbed 
data, and for baseline, 1x and 2x shifts in the double region perturbed data were over-
linearized, thus losing the underlying dynamic patterns (Figure 1b, d). 
 

 
Figure 1: Results of splinectomeR on simulated data with perturbations (a) A spaghetti 
plot showing the simulated trajectories of single region perturbed data with loess mean 
curves for each version. (b) Estimated mean curves of splinectomeR on simulated single 
region perturbed data points. (c) A spaghetti plot showing the simulated trajectories of 
double region perturbed data with loess mean curves for each version. (d) Estimated 
mean curves of splinectomeR on simulated double region perturbed data points. 
 
 
The Bayesian SFPCA approach utilizes PC (principal component) functions to describe 
the major modes of temporal variation in the data, and PC scores to estimate weights of 
each individual on major modes of variation, and then to examine associations between 
temporal patterns and biological covariates of interest. Therefore, Bayesian SFPCA is 
able to capture temporal patterns beyond the typical mean trajectories that researchers 
often look at and has more power in detecting temporal associations. For example, there 
was more variation than the observed mean curve (“bell” shape) in single region 
perturbed data, and the “S” shape in double region perturbed data, as indicated by the 
observed trajectories of different shapes shown in Figure 1a, c. Specifically, patient 3 and 
5 exhibited more variation between time point 5 and 15 than the “bell” shaped mean 
curve (Figure 2a, b); patient 4 had dramatic decrease and increase at the two ends (Figure 
3a), and patient 8 had more ups and downs between time point 5 and 10, which were both 
not shown in the “S” shaped mean curve (Figure 3b). The PC curves estimated by 
Bayesian SFPCA were able to capture all these various patterns and the statistical 
inference based on the PC scores were sensitive enough to detect associations between 
temporal patterns and relevant covariates. For the simulated data with single region 
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perturbations, the PC 1 curve represented a similar pattern as the mean bell curve but 
with different magnitudes and slight variation at the end, which explained 68.64% of the 
variation in the data (Figure 2c). The PC 2 curve explained 31.36% of the variation and 
emphasized variations between time point 5 and 15 (Figure 2d), capturing the patterns as 
seen in patient 3 and 5 (Figure 2a, b).  The boxplot of PC scores demonstrated a 
statistically significant increasing magnitude of perturbation in PC1 with p-values of 
3.6e-06 for 1x shift and of less than 2.2e-16 for 2x and 4x shifts (versus p = 0.3, 0.005, 
0.001 for 1x, 2x, and 4x shifts from splinectomeR) (Figure 2e). The PC 2 scores showed 
a decreasing trend, which was statistically different between baseline and 2x or 4x shifts 
(Figure 2f). For the double region perturbed data, the mean curves for all versions were 
almost flat with little curvature, due to the different magnitudes of perturbations in each 
version. The PC 1 curve characterized the observed “S” shape of the mean curve and 
explained 72.81% of the variation (Figure 3c), and the PC 2 curve explained 27.19% of 
the variation and captured the patterns deviating from the “S” shape (Figure 3d), as 
observed in patient 4 and 8 (Figure 3a, b). The PC scores perfectly captured a statistically 
significant increasing magnitude of perturbation in PC1 with p-values of 0.0013 for 1x, 
3e-10 for 2x and less than 2.22e-16 for 4x shifts (versus p = 0.79, 0.36, 0.002 for 1x, 2x, 
and 4x shifts from splinectomeR) (Figure 3e). The PC2 scores indicated that the PC 2 
pattern was shared among different versions (Figure 3f). These results demonstrate that 
Bayesian SFPCA can have much greater power in unveiling temporal patterns beyond the 
typical mean shape, and in detecting the association between temporal variation and 
covariates of interest, compared to other methods like splinectomeR. 
 

 
 
Figure 2: Results of Bayesian SFPCA on simulated single region perturbed data (a) 
Observed trajectories for patient 3 with different magnitude of perturbations. (b) 
Observed trajectories for patient 5 with different magnitude of perturbations. (c) Mean 
response curve and the effects of adding (red) and subtracting (green) PC 1 function. (d) 
Mean response curve and the effects of adding (red) and subtracting (green) PC 2 
function. (e) Boxplot of estimated PC 1 scores with p-values from two-sample t tests. (f) 
Boxplot of estimated PC 2 scores with p-values from two-sample t tests. 
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Figure 3: Results of Bayesian SFPCA on simulated double region perturbed data (a) 
Observed trajectories for patient 3 with different magnitude of perturbations. (b) 
Observed trajectories for patient 5 with different magnitude of perturbations. (c) Mean 
response curve and the effects of adding (red) and subtracting (green) PC 1 function. (d) 
Mean response curve and the effects of adding (red) and subtracting (green) PC 2 
function. (e) Boxplot of estimated PC1 scores with p-values from two-sample t tests. (f) 
Boxplot of estimated PC 2 scores with p-values from two-sample t tests. 
 
 
3.2 Simulated data with missing values and varied sample size 

Due to potential sequencing error and sample collection procedures, missing data and 
dropouts are the norm rather than the exception in longitudinal microbiome studies. 
Moreover, despite large-scale cross-sectional microbiome studies such as the Human 
Microbiome Project (29, 30) and American Gut Project (5), studies characterizing human 
associated microbial communities over time often have relatively small sample size (9, 
11, 31). Hence, it is important to assess the performance of Bayesian SFPCA in 
simulations with various sample size and different proportions of missing data.  
 
Using the PC functions and population mean curve from a real microbiome dataset (32), 
we simulated longitudinal trajectories for two groups of subjects by arbitrarily assigning 
group one and two to have positive and negative PC scores on PC 1 respectively and no 
difference on PC 2 (supplemental Figure S1). We varied the total number of subjects at 
100, 50, 25, 10, and the proportion of missing values at 0%, 20%, 50% and 80%. The 
estimated mean curves for each group from splinectomeR are highly susceptible to the 
decreasing sample size and increasing loss of information (Supplemental Figure S2).  
 
To fully evaluate the performance of Bayesian SFPCA, we wanted to examine how well 
it could recover the underlying temporal patterns (including both the population mean 
trajectory and two PC functions) and distinguish the two groups based on PC 1 yet not on 
PC 2 scores. With 100 total samples, even though the proportion of missing data 
increases from 0% to 80%, the estimated overall mean curves and PC curves almost 
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perfectly recovered the ground truth in both scenarios (Figure 4a, b, d, e), and the two 
groups were accurately separated based on PC 1 scores yet not on PC 2 (Figure 4c, f). 
Concerning the scenarios with 50 or 25 total samples with 80% missing data, the 
estimated mean curves were close to the true ones, except for the slight deviation toward 
the end due to the large portion of missing data there (Figure 5a, d). The PC curves were 
estimated well for the case of 50 samples on both PCs (Figure 5b), but good on only PC1 
for the case of 25 samples (Figure 5d). An artificial curvature occurred on the estimated 
PC 2 curve for the case of 25 samples (Figure 5e), because few data existed at the 
beginning (Figure 5d). Despite these small defects, the ability to distinguish between the 
two groups based on PC scores was still maintained (Figure 5c, f). As for the challenging 
scenarios of 5 samples per group with 50 or 80% missing data, the estimated mean curves 
in both scenarios and the PC curves for the scenario with 50% missingness were still 
robust (Figure 6 a, d, b). However, for the case with 80% missing data, the estimated PC 
1 curve was a vertical shift from the true PC 2 (not PC 1) curve, and the estimated PC 2 
curve exhibited a different shape from the ground truth (Figure 6e). A close look at the 
simulated trajectories (Figure 6d) indicated that few trajectories exhibited the increasing 
trend in PC 1 due to the loss of data, hence the deviated estimation were caused by the 
limitation of the underlying data; but these did not affect the separation of groups based 
on estimated PC scores in both scenarios (Figure 6c, f). In summary, the performance of 
Bayesian SFPCA is extremely robust to limited sample size and a high proportion of 
missing data. 
 

 
 
Figure 4: Results of Bayesian SFPCA on simulated data with 100 total samples of 0% vs. 
80% missing data (a) Estimated (red) vs. true (blue) overall mean curve on simulated 
trajectories (black) with 0% missing data. (b) Estimated (red) vs. true (black) PC curves 
on simulated data with 0% missing data. (c) Estimated PC scores for two groups on 
simulated data with 0% missing data. (d) Estimated (red) vs. true (blue) overall mean 
curve on simulated trajectories (black) with 80% missing data. (e) Estimated (red) vs. 
true (black) PC curves on simulated data with 80% missing data. (f) Estimated PC scores 
for two groups on simulated data with 80% missing data. 
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Figure 5: Results of Bayesian SFPCA on simulated data with 50 vs. 25 total samples of 
80% missing data (a) Estimated (red) vs. true (blue) overall mean curve on simulated 
trajectories (black) with 50 samples. (b) Estimated (red) vs. true (black) PC curves on 
simulated data with 50 samples. (c) Estimated PC scores for two groups on simulated 
data with 50 samples. (d) Estimated (red) vs. true (blue) overall mean curve on simulated 
trajectories (black) with 25 samples. (e) Estimated (red) vs. true (black) PC curves on 
simulated data with 25 samples. (f) Estimated PC scores for two groups on simulated data 
with 25 samples. 
 

 
 
Figure 6: Results of Bayesian SFPCA on simulated data with 10 total samples of 50% vs. 
80% missing data (a) Estimated (red) vs. true (blue) overall mean curve on simulated 
trajectories (black) with 50% missing data. (b) Estimated (red) vs. true (black) PC curves 
on simulated data with 50% missing data. (c) Estimated PC scores for two groups on 
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simulated data with 50% missing data. (d) Estimated (red) vs. true (blue) overall mean 
curve on simulated trajectories (black) with 80% missing data. (e) Estimated (red) vs. 
true (black) PC curves on simulated data with 80% missing data. (f) Estimated PC scores 
for two groups on simulated data with 80% missing data. 
 
 

4. Real data applications 
 
To demonstrate the value of Bayesian SFPCA in analyzing real longitudinal microbiome 
studies, we present a re-analysis of data from the early childhood and the microbiome 
(ECAM) study (20). This study tracked the microbiota compositions, as measured by 16S 
rRNA gene amplicon profiling, of 43 infants in the United States sampled at irregular 
intervals from birth to two years of age and associations between antibiotic exposure, 
delivery mode, and predominant diet on microbiota composition and development. Here, 
we focus on modeling the maturation of the gut microbiome based on Shannon alpha 
diversity, as well as its associations with antibiotics, delivery modes and diets. 
 
 
4.1 Maturation of the gut microbiome 
 
Shannon diversity exhibits a steadily increasing trend during infants’ first two years of 
life, despite drastic interpersonal differences at the first 3 months (Figure 7a). The 
estimated mean curve from Bayesian SFPCA nicely captured a temporal pattern of 
microbial maturation, as well as three different stages of increase: slowest growth rate 
from birth to 5 month, most rapid increase between 5 and 10 month (probably due to the 
introduction of solid foods), and intermediate growth after 10 month (Figure 8a). 
Moreover, the PC curves featured three major patterns of temporal variation in the data. 
PC 1 curve explained 62.37% of the variation and captured variation from the mean 
Shannon curve before 5 month and after 15 month (Figure 8b). An infant with a positive 
score on this component experienced an initial drop of bacterial diversity in the first 5 
months, increasing diversity afterwards and decelerating after 15 months. In contrast, an 
infant with a negative score had increasing diversity throughout the entire 2 years. PC 2 
curve explained 28.5% of the variation and captured variation from birth until 15 months 
and (Figure 8c). PC 3 captured a strong up and down pattern during the first 10 months 
and explained 9.13% of the variation (Figure 8d). 
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Figure 7: Observed and splinectomeR estimated group mean curves on ECAM data (a) 
Observed Shannon diversity trajectories (b) Observed Shannon diversity with loess mean 
curves on antibiotic exposure. (c) Observed Shannon diversity with loess mean curves on 
delivery mode. (d) Observed Shannon diversity with loess mean curves on diet. (e) 
Observed Shannon diversity with splinectomeR estimated mean curves on delivery mode. 
(f) Observed Shannon diversity with splinectomeR estimated mean curves on diet. 
 

 
 
Figure 8: Estimated overall mean curve and PC curves from Bayesian SFPCA on ECAM 
data (a) Observed Shannon diversity (black trajectories) with estimated overall mean 
curve (blue curve). (b) Mean Shannon diversity curve (black) and the effects of adding 
(red) and subtracting (green) PC 1 function. (d) Mean Shannon diversity curve (black) 
and the effects of adding (red) and subtracting (green) PC 2 function. (e) Mean Shannon 
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diversity curve (black) and the effects of adding (red) and subtracting (green) PC 3 
function. 
 
4.2 Antibiotic exposure 
 
The observed infants’ trajectories of Shannon diversity showed that antibiotic use 
diminished alpha diversity immediately following birth but accelerated their rates of 
increase during the first 5 months of life (Figure 7b). However, infants with antibiotic 
exposure exhibited similar growth trends as those without after 5 months (Figure 7b). 
Since antibiotic exposure was a time-varying covariate, splinectomeR could not perform 
inference in this scenario. Bayesian SFPCA found a trending difference (two sample t-
test p = 0.069) in Shannon diversity between infants with and without antibiotic exposure 
on PC 3 scores (Figure 9a), but not with the other two PCs (p = 0.29 on PC 1 and p = 
0.12 on PC 2). This suggested that the two groups may differ slightly in the PC 3 pattern, 
where the greatest variation occurred before 5 months (Figure 8d), agreeing with the 
difference shown in the loess mean curves of observed data (Figure 7b). 
 

 
 
Figure 9: Significant associates inferred from PC scores of Bayesian SFPCA on ECAM 
data (a) Boxplot of estimated PC 3 scores on antibiotic exposure. (b) Boxplot of 
estimated PC 1 scores on delivery mode.  (c) Boxplot of estimated PC 2 scores on 
delivery mode. (d) Boxplot of estimated PC 1 scores on diet.  (e) Boxplot of estimated 
PC 2 scores on diet. (f) Boxplot of estimated PC 3 scores on diet. 
 
 
4.3 Delivery Mode 
 
Cesarean-delivered infants bypass the microbial exposure in the birth canal; this 
significantly altered the bacterial diversity compared to vaginally-born infants (2, 20), 
and we observed a slower growth rate of Shannon diversity throughout the first two years 
of life (Figure 7c). Although splinectomeR detected this significant difference (p = 0.02), 
estimated mean curves from splinectomeR only captured the difference after 8 months 
and missed the differential trajectories in the earlier period. Bayesian SFPCA found that 
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cesarean-delivered infants were significantly different from vaginally born infants in 
Shannon diversity on both PC 1 and PC 2 modes of variation (p < 2.2e-16 on PC 1, p = 
0.0012 on PC 2; Figure 9b, c). The separation between two groups was clearest on PC 1 
with cesarean-delivered infants having generally positive component scores while 
vaginally born infants negative scores (Figure 9b). This indicated that cesarean-delivered 
infants were most different from vaginal born infants before month 5 (decrease in 
cesarean vs. increase in vaginal) and after month 15 (higher growth rate in vaginal) 
(Figure 8b), which concurred with the observed difference (Figure 7c). 
 
4.4 Infant Diet 
 
Two major dietary groups were compared in this cohort: infants who were predominantly 
(> 50% of feedings) breast-fed or predominantly formula-fed for the first three months of 
life. The growth rate of Shannon diversity was significantly decreased in formula-fed 
children during 12-24 months of life compared to breast-fed ones ((20); Figure 7d). 
However, splinectomeR found no significant difference between the two groups (p = 
0.11; Figure 7f). In contrast, Bayesian SFPCA detected significant difference in all three 
PCs with p-values all less than 0.001 (Figure 9d-f), suggesting that the difference 
between formula- and breastfed- infants can belong to any of the temporal pattern shown 
in three PCs (Figure 8b-d) but with PC 3 the least distinguished. 
 
In summary, Bayesian SFPCA was able to find significant effect of antibiotics exposure, 
delivery mode and infant diets on Shannon diversity in the ECAM study as in the original 
paper (20). Moreover, it provided more insight into the temporal dynamics that drove 
these differences. Similar analyses could be done on beta diversities (e.g. UniFrac 
distance from following time points to birth or Jaccard distance between infants and 
mothers) (20, 33) or specific bacteria taxa using additive or centered log-ratio 
transformations of relative abundance (34).  
 
 

5. Conclusion 
 
In both simulations and real datasets, we have shown that Bayesian SFPCA is a powerful 
tool for capturing dynamic temporal patterns, as well as detecting their associations with 
biological covariates of interest in longitudinal microbiome studies. Furthermore, 
Bayesian SFPCA  performance is robust to irregularly-sampled intervals, limited sample 
size, and missing data or dropouts. Future work to be done includes extending Bayesian 
SFPCA to model multiple longitudinal measurements simultaneously so that it can be 
applied to multi-omics longitudinal studies. 
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Supplemental figures 

 
 
Figure S1: Simulation settings with missing data and varied sample size (a) underlying 
overall mean curve from a real microbiome dataset. (b) true PC curves from a real 
microbiome dataset. (c) assignment of two groups of subjects based on separation of PC 
1 scores but not PC 2 scores. (d) simulated trajectories for subjects in two groups with 
black line indicating the loess mean curves for each group.  
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Figure S2: Performance of splinectomeR on simulated data with varied sample size and 
missingness (a) Estimated group mean curves on simulated observations with 100 total 
samples and 80% missing data. (b) Estimated group mean curves on simulated 
observations with 50 total samples and 50% missing data. (c) Estimated group mean 
curves on simulated observations with 25 total samples and 20% missing data. (d) 
Estimated group mean curves on simulated observations with 25 total samples and 80% 
missing data. (e) Estimated group mean curves on simulated observations with 10 total 
samples and 0% missing data. (f) Estimated group mean curves on simulated 
observations with 10 total samples and 80% missing data.  
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