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Abstract 
Subsampling confidence intervals for parameters of atmospheric time series with the 
actual coverages close to the target are obtained via simulations involving realistic 
approximating models (G-models). 
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1. Introduction 
 
Time series analysis has been successfully applied in many areas of science and 
engineering, especially when data records met strong statistical assumptions underlying 
traditional methods and were long enough for the results obtained by these methods to be 
reliable. In atmospheric and climate studies, however, observed records are often 
prohibitively short with only one record typically available, and the above assumptions 
are rarely met (Ghil et al. 2002). 
 
1.1 Motivating Example 

Figure 1 shows a typical atmospheric record – the vertical velocity of wind in a 
convective boundary layer, taken 29 km across Lake Michigan, 50 m above the lake). For 

 
Figure 1: Record of 20-Hz vertical velocity measurements over Lake Michigan.  
Figure from Gluhovsky (2011). 
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this record, the routinely computed sample mean, variance, skewness, and kurtosis are -
0.04, 1.06, 0.83, 4.10, respectively. The elevated skewness and kurtosis (from values 0 
and 3 specific for a normal distribution) are attributed to the occurrence of coherent 
structures in turbulent flows (Ruppert-Felsot et al. 2005), but to learn how far one can 
trust such numbers, confidence intervals (CIs) are needed.  
 Their coverage probabilities (say, 0.90) are attained only if the assumptions 
underlying the CI construction are met, a common one being that the model generating 
the series is linear. Since for atmospheric time series (produced by the inherently 
nonlinear system) this is rarely the case, the actual coverage probability may differ from 
the target level (0.90), sometimes considerably. Moreover, CIs for the skewness cannot 
be based on linear models, which imply zero skewness. Thus, there is a need for 
nonlinear models, but finding an appropriate one among conventional models is 
problematic. 
 
1.2 Subsampling Confidence Intervals and Approximating Models 

Models could be avoided by employing resampling methods. In subsampling (which is 
especially useful for atmospheric data as it works under the weakest assumptions) the 
record at hand of length  n  is divided in   n− b +1  subsamples, or blocks of consecutive 
observations, all of the same length  b , that retain the dependence structure of the series 
(Politis et al. 1999). Subsampling yields a CI for parameter θ of the series of 
asymptotically correct coverage when 
 

   b→∞ and b / n→∞ as n→∞ , (1) 
assuming the existence of nondegenerate asymptotic distribution for   τ n(Tn −θ )  at some 

known rate  τ n . Typically,   τ n = nβ , β ∈(0,1] , and  β = 0.5  when estimator  Tn of 
parameter θ  is the sample mean, sample variance, etc. (Politis et al. 1999).  
 Atmospheric records, however, are typically too short to satisfy conditions (1), and so 
in practice, approximating models are needed (those sharing statistical properties with the 
series under study) to assess the actual coverage of the subsampling CI and then to fix the 
CI accordingly. For the latter, the empirical convergence rate  τ n = nβ  was introduced 
(Gluhovsky and Nielsen 2012), where the value of exponent β  was different from the 
theoretical one (to make for an insufficient record length and/or to avoid finding the 
theoretical value). 
 

1.2.1 Approximating Model A 
For a subsampling treatment of the series in Figure 1 (Gluhovsky 2011), the following 
model (Lenschow et al. 1994) was used,  

   Xt = Yt + a(Yt
2 −1) , (2) 

referred below to as the approximating Model A). In Eqs. (2),  Yt  is a first order 

autoregressive process AR(1),   Yt =ϕYt−1 + εt ,  0 <ϕ < 1  and  a  are constants, and  εt  is a 

white noise process with mean  0  and variance  σε
2 = 1−ϕ 2  (so that   σY

2 = 1 ). The reason 

behind choosing this model was that the first four moments of  Xt  at   a = 0.145  

 (0,  1.04,  0.84,  3.95 , respectively) were close to the corresponding sample characteristics 
of the series in Figure 1  (0.04,  1.06,  0.83,  4.10) , while setting  ϕ = 0.83  served to fairly 
imitate its dependence structure as characterized by autocorrelation functions. One could 
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then presume that Model A might be adequate for fixing subsampling CIs (but there is no 
guarantee that other statistical properties of the data and the model do not differ to 
considerably affect the intended applications). 
 

 
 

Figure 2: Actual coverage probabilities of 90% subsampling CIs with  β = 0.42  for 
the skewness of nonlinear time series from Model A at   a = 0.145, n = 2048 . 
The figure is adjusted from that in Gluhovsky and Nielsen (2012). 

 
 The black curve in Figure 2 shows the actual coverage probability of subsampling CIs 
for the skewness of model time series (2) at   a = 0.145, β = 0.50  for various block sizes. 
One can see that because of the relatively short record, the CIs are indeed useful only 
within a range of block sizes, and even then the CIs undercover (the coverage is 
considerably below the target of 0.90). Estimating the skewness does require long records, 
and a simple way to improve the coverage is to increase the record length. When this is 
not feasible (which is typically the case), Gluhovsky and Nielsen (2012) suggested 
employing an ”empirical” rate of convergence found via MC simulations with an 
approximating model. 
 The red curve demonstrates that coverage probabilities close to the target can be 
achieved (within a range of block sizes) using  β = 0.42 . For the vertical velocity time 
series in Figure1, the subsampling 90% CI for the skewness with  β = 0.42  is 

 (0.56, 1.10) . 
 

1.2.2 Approximating Model B 

The efficacy of a CI depends on the record length and on how well the data generating 
mechanism (DGM) of the model approximates the true one. The former is given, but the 
DGMs of models borrowed from traditional time series analysis may be very different 
from those generating atmospheric data.  

On the positive side, the so-called G-models, which were developed (Gluhovsky 2006; 
for the formal definition see Gluhovsky and Grady 2016) as physically sound extensions 
of the celebrated Lorenz (1963) model. G-models are derived from the governing 
equations of atmospheric dynamics and thus retain some of their physics. They were used 
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as physically sound low-order models in problems of atmospheric dynamics (see 
Gluhovsky 2006, Gluhovsky and Grady 2016 and references therein) and have drawn 
increasing attention in various physical and mathematical studies (e.g., Bihlo and Staufer 
2011, Souza and Doering 2015, Chen et al. 2017, Bianucci 2017, Majda and Qi 2018). 

G-models were also suggested as alternative time series models for atmospheric 
dynamics (Gluhovsky 2012) since the Lorenz model flow possesses a physical ergodic 
invariant probability measure (Arajo et al. 2009) and satisfies the central limit theorem 
(Holland and Melbourne 2007, Arajo and Varandas 2012).  

 For the following G-model (Gluhovsky 2012, Gluhovsky and Grady 2016), 

 

   

!x1 = −x2x3 + cx3 −α1x1 + f ,
!x2 = x3x1 − x3 −α2x2,
!x3 = x2 − cx1 −α3x3,

 (3) 

which we call Model B, the skewness and kurtosis of   x3  (representing the time series in 
Figure 1) at   c = 0.35  proved close to those of the observed series and Model A (shown in 
Table 1; the results are analytical for Model A (Gluhovsky 2011) and were obtained from 
very long records for Model B). The autocorrelation functions of the three series are also 
close, which was achieved by tweaking parameter ϕ  in Eq. (2) and the sampling rate in 
series generated by Eqs. (3). 
 

Table 1. Skewness and kurtosis of the observed series and those generated by 
Model A and Model B 

 

 Skewness Kurtosis 

Observed series (Figure 1) 0.83 4.1 

Model A 0.84 3.9 

Model B 0.81 4.2 
 
 Note that at   c = 0 , Model B is equivalent to the Lorenz (1963) model (Gluhovsky 
2006). But the latter has failed to serve as an approximating model, since the skewness 
and kurtosis computed from its long records   (S = 0, K = 2.3)  were far off the sample 
characteristics of the observed series. This is because in addition to the Rayleigh-Bénard 
convection as its principal mechanism (described by the Lorenz (1963) model), the 
dynamics over Lake Michigan involves a hoist of others mechanisms, which in Eqs. (3) 
are taken care of by the single term with coefficient   c = 0.35  (this is explained in 
Gluhovsky 2012, Gluhovsky and Grady 2016). 
 
 

2. Simulations Results for Subsampling Confidence Intervals Enhanced via 
Approximating Model B 

In this study, we explore how the subsampling CIs should be fixed to achieve the desired 
target coverage (0.90) using approximating Model B. The results of Monte Carlo 
simulations for the actual coverage of subsampling CIs for the skewness of the 
component   x3  in Eqs. (3) are shown in Figure 3. Different realizations were generated by 
randomly choosing the initial conditions for the runs of Eqs. (3).  
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 In contrast to similar results for Model A shown in Figure 2, where CIs with the 
actual coverage of 0.90 required the empirical rate of convergence  β = 0.42 , for Model B 
it was found that  β = 0.65 . Accordingly, the CI for the skewness of the vertical velocity 
of wind with the actual coverage of 0.90 here was found to be  (0.65, 1.00)  – smaller than 
that resulting from Model A.  
 Still both CIs serve the purpose of confirming that the vertical velocity skewness is 
positive, thus indicating nonlinearity in the series. 
 

 
 

Figure 3: Actual coverage probabilities of 90% subsampling CIs with  β = 0.65  for 
the skewness of nonlinear time series from Model B at   c = 0.35, n = 2048 . 
Horizontal green line denotes the 0.89 level.  

 
 

3. Conclusions 

In this paper, we have considered the construction of confidence intervals (CIs) for 
parameters of atmospheric time series. Their observed records are typically too short to 
employ resampling methods, which necessitates the use of approximating models to 
assess, via Monte Carlo simulations, the actual coverage of the CIs and the extend to 
which the CIs should be modified to achieve the target coverage. 
 The basic statistical characteristics of the two approximating models examined 
(conventional nonlinear time series Model A and a novel time series Model B derived 
from the underlying dynamical equations) are close to those of the observed series. 
However, an important advantage of Model B over Model A is that even this simple G-
model shares some fundamental physics with the original system. This should help (a) to 
better align statistical properties of series generated by the model with those of observed 
series beyond the first moments and autocorrelation function, (b) to avoid a difficult task 
of finding an appropriate approximating model based entirely on statistical characteristics 
estimated with questionable accuracy, and (c) to run meaningful Monte Carlo 
simulations, particularly when estimators are more sensitive to properties of the DGMs. 
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