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Abstract 

Operators in the oil and gas industry are faced with different economic decisions relating 
to unconventional oil wells. With the popularity of data science and big data analytics tools, 
a petroleum engineer applies statistical techniques to analyze oil and gas data. We use 
regression analysis and decision tree in R to evaluate the effect of various well parameters 
on oil production. Our dataset has over 5700 horizontal oil wells located in the six most 
productive counties in North Dakota. Two formations present are Bakken and Three Forks. 
Initial EDA shows that, on average, operators are applying the same drilling and 
completion techniques across both formations as indicated in a comparative boxplot and 
two-sample t-test. Linear and "loess" bivariate fit indicates that higher completion 
parameters lead to higher production. Recursive partitioning trees also support this finding. 
However, we see reduction in oil production with these parameters if we model production 
per the different variables. The average well costs in the Bakken increased from $6 – $6.5 
million in 2008 to over $9 - $10 million in 2011. More stages or proppant does not 
necessarily equate to more oil, but more cost. 
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1.0 Introduction 

In this section, a brief discussion of the terminologies that are important for a good 
understanding of the analytic modeling work done in the paper. This is probably not the 
kind of introduction a statistician would expect, but it is hoped that these descriptions 
would enable the reader who is not familiar with the technical terms follow along.  

In the petroleum industry, oil and gas are usually produced from underground storage 
called reservoir. These reservoirs must have good storage capacity in the form of pore 
spaces, called porosity. In addition, the fluid stored should have the ability to flow to the 
wellbore via flow paths in the formation which is described as permeability (Ahmed, 2010). 
For conventional reservoirs, the permeability values range from 10 milidarcy to more than 
1 Darcy, where 1 Darcy is equivalent to 9.8692 × 10−13 𝑚2. The wellbore is a conduit 
constructed/drilled into the target reservoir, which is necessary to bring the oil and gas to 
the surface. Depending on the thickness of the reservoir, it may be more economical to drill 
either a vertical well or a horizontal well as shown in Figure 1. In unconventional reservoir, 
the permeability is in the lower ranges and as a result, it is very difficult for the oil/gas to 
flow to the wellbore. Typical ranges of permeability for unconventional wells and tight 
formations are anywhere from 0.1 md to a nanodarcy. With such small conduit for oil and 
gas to travel through, production from such reservoir would be challenging and/or 
uneconomical without horizontal drilling and hydraulic fracturing. Hydraulic fractures are 
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artificial pathways created from the wellbore into the formation to remedy or improve the 
natural connection in order to increase the well’s ultimate recovery and enable faster 
production of reservoir fluid (Economides & Nolte, 2000).  

 

Figure 1: Horizontal vs vertical wellbore (source: Seekingalpha) 

 

At the end of the drilling operation, steel casings are set at the total depth of the well and 
cemented in place to prevent the well from collapsing and provide a good seal so that 
formation fluid would not be able to migrate to the surface or adjacent low pressure 
formations. To create a hydraulic fracture, the casing needs to be perforated in stages and 
pump frac fluid to create the hydraulic fractures. This frac fluid is composed primarily of 
water, with the water-based systems accounting for more than 90% of applications and 
percentage of water of more than 99% have been reported (Alalli et al., 2018). We pump a 
mixture of water and other fit-for-purpose chemicals into the formation at a high rate for 
the formation/rock to break down. When this has been achieved, a fracture is created. For 
the fracture to grow longer into the formation, the pumping process is continued. Since 
these formations are at great depths, exceeding 2 miles in a lot of cases, the mass of rock 
from the surface to the bottom of the well will have high enough in-situ stress to close these 
created fractures when the pumping operation is stopped. This will defeat the entire 
purpose of fracturing the well in the first place. To avoid this, while the hydraulic fracture 
is propagating, sand is mixed with frac fluid at the surface and pumped down into the 
fractures to keep the fractures open. The sand pumped are called proppants. 

 

The fracturing operation is done in stages as shown in Figure 2 for a horizontal well. The 
fracturing process begins from the toe of the well towards the heel until the entire lateral 
length or perforated interval is hydraulically fractured. Some important parameters that are 
measured during the fracing operation that, and used as input variables in this analysis, are 
briefly describe below and depicted in Figure 2: 
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1. Stages: This is the total number of frac stages on the well. Several perforations can 
be created in a given stage, but as long as the entire perforations are pumped 
through at the same time, it’s one stage. Figure 2 shows six perforations that are 
completed/pumped at the same time. This well is an example of a 90 stage well. 
 

2. Perforated Interval: This is the length of the horizontal section that was 
perforated. Hence the length from stage 1 to the last stage. It is a measure of the 
area of the well exposed to the formation and is measured in feet. 
 

3. Total Pounds of Proppant: This is the sum of the amount of sand or proppant 
pumped in each stage, measured in pounds. Usually the amount varies per stage 
during implementation of a frac job, although the same amount is specified per 
stage in frac designs. 
 

4. Total Volume of Fluid: This is the volume of water and other chemicals used for 
the fracing operation. Water alone makes up more than 98% of the frac fluid (King, 
2012). This is measured in barrels. Detailed disclosure of chemical composition of 
frac fluid are reported on fracfocus.org.  
 

5. Injection Pressure: The pressure at the surface is usually monitored during a frac 
operation. This generally provides insight into what is happening downhole. The 
pressure builds up until the formation breaks down and a fracture is created and 
begins to propagate. Several authors provide details of the interpretations given to 
pressure-time plots generated from frac jobs (Nolte & Smith, 1981; Pirayesh, et al, 
2013; Soliman, et al, 2014; Wigwe, et al, 2018). The maximum injection pressure 
recorded for each well is used for analysis in this paper. The unit is pounds per 
square inch or psi. 
 

6. Injection Rate: This is the maximum volumetric flowrate at which fluid is being 
injected into the well. It is measured at the surface and the unit is barrels per minute 
or bpm.  

 

 

Figure 2: Wellbore schematics (modified from UOG Training, (Burton, 2013)) 

 

 
1783



1.1 Motivation 

Some portions of this review have been published in a recent paper with SPE (Wigwe, et 
al, 2019). Recent researchers in the oil and gas industry have focused on applications of 
the “newer” data analytics techniques such as decision trees, artificial neural network, 
support vector machines, deep learning and the variations in addition to traditional 
regression analysis. These techniques have thrived due to availability of computational 
resources and generally use more complex algorithms to capture the inherent (non-linear) 
relationship between the dependent variable and the predictor variable(s). The discussion 
by Cunningham, et al (2012) used multiple linear regression (MLS) model for analysis. 
The authors looked at four different areas in the Marcellus formation where EQT 
Production Company has drilled over 124 horizontal wells. They build the regression 
models by area and also combined all 124 observations available for analysis. Another 
paper by a different oil and gas company was presented by Martinez and Wray (2014). 
They showed that using 6 months cumulative production was a good proxy for EUR. Using 
non-linear regression, they were able to optimize completions design and set expectation 
for production performance. One particular paper (Bhattacharya et al., 2013) used the 
classification and regression trees (CART) for analysis (Bhattacharya et al., 2013, p. 13).  

Data mining technologies have been used in the characterization of 187 wells distributed 
over 11 counties in northern West Virginia portion of the Marcellus (Zhou, et al, 2014). 
This was done to identify correlations between gas production performance of the wells 
and attributes of the completion and geological setting and to identify important factors 
useful for predicting gas recovery. The use of data analytic techniques, alongside power-
law exponential decline models (Ilk, et al, 2008) have been investigated and used in 
forecasting water production from the Marcellus (Ettehadtavakkol & Jamali, 2019). 
Several other papers have been presented where data analytics techniques have been used 
to quantify and evaluate completion parameters in the Bakken and Three Forks (Lolon et 
al., 2016; Scanlan et al., 2018; Wang & Chen, 2016), while effects of geomechanical 
properties, interaction of natural fractures, temperature and other frac design parameters 
have been discussed extensively (Kolawole, et al, 2018; Kolawole & Ispas, 2019; Wigwe, 
et al, 2019). 

Some observations made from all the analysis done in these papers are: 

1. Some of the researchers focused on building models with ALL available data 
ONLY 

2. Some others go the extra mile to split the data into training and testing sets 
3. In all the papers, the models were assumed to be deterministic 
4. The models are then evaluated by looking at the goodness-of-fit parameters. 

In this paper: 

1. We have accounted for the inherent variability or probabilistic nature in neural 
network models 

2. We take the modeling process a step further by performing sensitivity analysis on 
the predictor variables. 

1.2 Methodology 

Exploratory data analysis is a great starting point for any data analytic workflow or project. 
It is useful to reveal important characteristics of the data through visualization (Hoaglin, et 
al, 2000). This will be used initially to get a feel of the dataset by recognizing patterns in 
both univariate and bivariate plots (EMC Education Services, 2015; Holdaway, 2014). The 
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other (primary) tool that would be used is artificial neural network (ANN). Artificial neural 
networks were inspired by the way the human brain works. The neuron receives data sent 
by the external senses (vision, smell, feeling, sound, etc.), processes this information and 
sends a response back for an action to be taken. In ANN, the neuron acts as the CPU, where 
all mathematical operations are performed to generate an output from a set of inputs 
(Ciaburro & Venkateswaran, 2017). The inputs form the input layer, the middle layers are 
called the hidden layers while the output forms the output layer. All the computational 
work is done in the hidden layer(s) and requires a knowledge of weights, bias and activation 
function (SAS Institute Inc., 2018; Wigwe, et al, 2019). 

Figure 3 shows the architecture of a neural network and weights and how they are used for 
calculation in the hidden layer. In simple terms, 𝑦 = 𝑓(𝑥) = Σ𝑥𝑖𝑤𝑖 + 𝑏𝑖𝑎𝑠  . It has one 
hidden layer with 5 neurons. If there are several hidden layers (as is the case with deep 
learning), the output from each layer becomes input to the next layer. Some common 
activation functions available are linear, step, logistic, hyperbolic tangent and rectified 
linear unit. The configuration shown in Figure 3 is an example of a feed-forward 
propagation where processing from input layer to hidden layer continues to the output 
layer. In feedback networks, the results of the computation by each neuron is fed back to 
the neuron as inputs and the weights and biases are updated with the error times the 
derivative of the activation function. The goal of this updating sequence is to minimize the 
error, leading to a better fit of the model to the data. 

 

 
Figure 3: ANN Layers showing activation functions and weights (Ciaburro & 

venkateswaran, 2017) 

In summary, an ANN has been described as a universal approximator of any continuous 
function (Hornik, et al, 1989) with primary application for building models to forecast 
future values of a dependent variable (Olden & Jackson, 2002). The neuralnet library 
(Guenther, 2016) was used to implement the NN methodology in R/RStudio (R Core Team, 
2018; RStudio Team, 2016). The article by Schmidhuber (2015) provides a detailed 
historical review ANN, particularly deep learners. 

In addition, “ensemble” models are used to obtain a more representative result of the 
analysis. Ensemble models typically leverage the power of using multiple algorithms to get 
a better prediction than would have been obtained if only one algorithm is used, using a 
voting mechanism (EMC Education Services, 2015). In ANN, predicted results changes 
depending on the training data used for building the model. As a result, researchers could 
find themselves in a dilemma of what result to present. To avoid such situation, in addition 
to accounting for the variability in ANN models, the dataset multiple is resampled times to 
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get different training sets for building multiple models. We combine the results and present 
the average, which is a more representative solution. We present a 95% confidence interval 
bounding this average on a bivariate marginal plot to give an idea of the performance of 
the final model.  

The ANN workflow would involve the following: 

1. Use of a feed-forward network 
2. Specification of 3 nodes in one hidden layer 
3. Use of a linear activation function 
4. Feature scaling the data using min-max method 
5. Specify a random seed that controls which data is sampled 

a. Sample 75% of the data as training data and use the rest as test data 
b. Fit a neural network model using the training data 
c. Validate the performance of the model using test data 
d. Calculate and store model diagnostics like R2, RMSE, RMSPE and log-

likelihood 
e. Make predictions of the dependent variable, while varying one predictor 

and leaving the others constant. We vary the predictor from the smallest 
to largest value in the dataset. 

6. We repeat step 5 a specified number of times (say 1000) with different random 
seed values. For each model, the results are stored for each variable. 

7. Find the average of the 1000 predicted values of the dependent variable for each 
predictor and construct a 95% confidence interval about the mean. 

8. Display the results as marginal plots and interpret. 

 

2.0 Data Gathering, Cleaning and EDA 

More  than half of the time spent in a data science project is spent at this stage of the project, 
data preparation (EMC Education Services, 2015). This is because it is important to put 
your data in the right condition to be used for modeling. This can be a back and forth 
process throughout the research work, especially if the data comes from multiple sources. 

 

2.1 Data Gathering and Cleaning 

Two primary data source for this project are DrillingInfo, an oil and gas data vendor and 
service provider (Drillinginfo, 2018) and the North Dakota Industrial Commission’s Oil & 
Gas Division (NDIC O&G Commission, 2018). These are public data and effort was made 
to correct suspicious data, rather than throw it away. In one situation, an operator had 
reported 28 million pounds of proppant on a 25-stage job. This did not make sense in a 
univariate or bivariate space, when looked at in combination with other variables (number 
of stages in this case). We reached out to the operator and they confirmed that the data was 
inputted incorrectly and provided the correct number to be 2.8 million pounds. This is more 
reasonable value for a 25-stage job. Another operator reported 18 million pounds of 
proppant, this made sense for a 47 stage frac job. A lot of the time, data scientists are 
working on projects in areas they have little or no knowledge about. Therefore it is 
important to ask the project sponsor or a knowledge expert in the field whether or not the 
data makes sense. Table 1 is a contingency table showing the distribution of wells in each 
county by formation. The most activity is clearly in the McKenzie County. 
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Table 1: Distribution of wells by County and Formation 

County Bakken Three Forks Sum 
Burke 87 51 138 
Divide 119 186 305 
Dunn 658 365 1023 
McKenzie 1185 678 1863 
Mountrail 850 396 1246 
Williams 843 337 1180 
Sum 3742 2013 5755 

 

3.0 Exploratory Data Analysis 

The case study presented is the Bakken formation. In the Bakken and Three Fork, about 
88% of the 170 barrels most likely estimate of the OOIP are located in six of the nineteen 
producing counties in North Dakota, according to NDGS 2010 assessment (Nordeng & 
Helms, 2010). These counties are Burke (10.04%), Divide (10.46%), Dunn (11.87%), 
McKenzie (21.51%), Mountrail (17.10%) and Williams (17.11%). The historical monthly 
oil production reported by the NDIC is shown in Figure 4 (top). This figure also shows 
these counties remain top producers during the past 10 years. The wells shown in Table 1 
were completed between 2008 and 2016, with at least one year of production recorded.  
Several libraries used are available in R software (R Core Team, 2018). Temporal variables 
were converted to date, using the lubridate package (Grolemund & Wickham, 2011). 
Figure 4 (bottom) shows the number of wells in the dataset by year completed. The peak 
corresponds to the period of high oil price before the price collapse of late 2014. Figure 5 
shows the map of the study area. 
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Figure 4: Historical County Production for ND (top) and Wells Completed by Year 

(bottom) 

 

 
Figure 5: Map of North Dakota showing area of study with wells as red dots (Wigwe, et 

al, 2019) 
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3.1 Distribution of Completions Parameters 

The distribution of the number of stages, total pounds of proppant, total volume of fluid 
injected and the perforated interval typically used in frac jobs in the Bakken and Three 
Forks formations are shown in Figure 6, Figure 7, and Figure 8. The comparative boxplot 
shows the number of stages, Figure 6 a. On average, operators are using the same 
application in both formations for the number of stages (30 stages). There is more 
variability in the number of stages for the Bakken compared to the Three Forks formation. 
Figure 6 b shows that most operators favor a perforated interval in the 8,000 ft. to 11,000 
ft. range on the lateral. The distribution of total pounds of proppant used for the frac jobs 
is as shown in Figure 6 c. Most frac jobs used less than 5 million pounds of total proppants 
(the red line). As will be shown later, of the 656 occurrences of application of more than 5 
million pounds of total proppants, only 83 cases occurred prior to 2014 (Figure 7 c). This 
indicates that the use of large pounds of proppants started becoming popular during the 
downturn. To summarize, on average, 75,000 barrels of fluid and 3.5 million pounds of 
proppants were used for the 30-stage completion of a 9,300 ft. perforated interval between 
2008 and 2016. 

 

         

Figure 6: Distribution of Completions Parameters, vertical dashed lines are Averages 

 

3.2 Change in Completion Parameters since 2008 

Figure 7 shows the variation of completion parameters with time from 2008 to 2016. Figure 
7 a shows an increasing trend in the number of frac stages used in completions. There does 
not appear to be a systematic change in the length of lateral and perforated interval since 
2008 (Figure 7 b). However, there is an increasing tendency towards drilling longer and 
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perforating the laterals in the 9,000 ft. - 11,000 ft. range. As mentioned previously, the use 
of more than 5MM lbs of proppants started becoming popular after 2014 (Figure 7 c). Most 
of the completions prior to 2012 utilized less than 100,000 barrels of total fluid and the use 
of more than 100,000 barrels of total fluid became increasingly popular from 2013 and well 
into the downturn (Figure 7 d). This tendency to use more proppants and higher fluid 
volume meant that operators could complete fewer wells with a view to "increasing" 
production (Figure 4) and spending less money on average.  

 

 

 

Figure 7: Distribution of Completions Parameters Cont'd 

Injection rate and injection pressure are two important parameters that contribute to an 
efficient hydraulic fracture treatment. The limits to these two parameters are usually pre-
set by the capacity of the pumping equipment used for the treatment. The injection rate 
seems to be similar on average for both formations with a value of around 40 bpm 
(Figure 8 a & b). Injection pressure on the other hand correlates with the true vertical 
depth of the formation and hence expect a slightly higher pressure for the Three Forks 
than the Bakken on average. This is because the Three Forks directly underlies the 
Bakken formation and hence is a slightly deeper formation. On average, the maximum 
injection pressure recorded is 8360 psi (Figure 8 c & d).  
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Figure 8: Distribution of Injection Rate and Pressure 

 

Using the corrplot package (Wei & Simko, 2017), the plot of the correlation matrix of all 
the variables along with the dependent variable (six-month cumulative oil production) is 
shown in Figure 9. This plot shows that the perforated interval and total proppant have 
moderate correlations with the number of stages (𝑟 = 0.53), while as expected, the total 
fluid and injection rate have 𝑟 =  0.67 and the total fluid and total proppant have 𝑟 = 0.62. 
There is a very weak correlation among the other variables. 
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Figure 9: Correlation plot of variables 

 

3.3 Subset Data to Complete Cases 

A summary of the data with complete cases only is shown in  

Table 2. The data is normalized, split into training and testing set, and used to build ANN 
models as described in the workflow under the 1.2 Methodology section. The 
results will be discussed next. 

 

Table 2: Distribution of wells by County and Formation – Complete cases only 

County Bakken Three Forks Sum 
Burke 55 22 77 
Divide 69 80 149 
Dunn 340 129 469 
McKenzie 436 169 605 
Mountrail 512 147 659 
Williams 441 96 537 
Sum 1853 643 2496 
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4.0 Results and Discussion 

The predictions were made by varying one variable at a time while keeping the others fixed 
at the average values as shown in Table 3. The scaled versions were used for modeling and 
prediction before re-scaling back to the original units. Extrapolation and interpretation of 
the results obtained beyond the limits of the x-axis is discouraged as the results presented 
holds only within the limit of the data used for analysis. 

 

Table 3: Average values of Variables 

Variable Actual Scaled 
Perforated Interval (ft.) 9,100 0.544 
Stage 28 0.337 
Total Proppant (lbs.) 2,778,000 0.2197 
Total Fluid (bbl) 54,400 0.1513 
Injection Rate (bpm) 39 0.1997 
Injection Pressure (psi) 8,100 0.5672 
Sample size, n 2496 2496 

 

 

4.1 Effect of Number of Stages 

Figure 10 shows the variation of the number of stages on oil production. The general 
observation, based on the data, shows an increase in oil production up to 25 stages and oil 
production starts decreasing for higher stages. There seem to be a time and drainage 
component acting as confounding variables in this plot, which will be investigated further. 
This is a data-driven model, as a result the plot does tell the story of what is going on in 
the formation. The model does a good job based on the amount of representative data used. 
The 95% confidence interval is shown on the bivariate plot on the left and the conditional 
distribution of the predicted values at stage 30 on the right of Figure 11. In the dataset, 
about 94% of the wells were completed using 15 to 40 stages, hence there is a high level 
of confidence in the prediction of oil production in this range of stages. The most common 
stage count (30 stages) makes up 25% of the dataset. Hence, completing a 30 stage well in 
the Bakken, keeping the other parameters at the average values as shown in Table 3, will 
result in 52,300 – 54,600 barrels of oil production after six months, with 95% confidence. 

Completions with less than 15 stages were more common when development of the Bakken 
began in 2008 and only few wells use completions above 45 stages by 2016. The marginal 
plot shows that even for a well with the same characteristics, there is a probability 
distribution of oil production at different stages, rather than a fixed, single value. There is 
more variability in the distribution (captured by the 95% confidence interval) beyond data 
points with high probability of occurrence in the dataset. 
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Figure 10: Variation of Oil Production with Number of Stages 

 

 

Figure 11: Conditional Distribution of Oil Production for 30 Stages showing 95% 
Confidence Interval 

 

4.2 Effect of Perforated Interval 

The effect of the perforated interval is shown in Figure 12. Similar to the number of stages, 
on average, oil production decreases with increasing perforated interval, showing two 
distinct slopes, with a transition period between. The steeper slope from 4000 – 5000 ft. 
corresponds to wells drilled on a one section spacing, which was typical during the early 
development of the Bakken. This corresponds to 6% of the wells in the data. While the 
smaller slope from 7000 – 10,000 ft. corresponds to later wells drilled on a two section 
spacing. This makes up 70% of wells in the data. The transition period is between 5000 ft. 
and 7000 ft. The data has wells with longer laterals, making up the rest of the data. 
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The result shown in Figure 12 suggests that smaller perforated intervals correspond to 
higher production, and the difference in production beyond 7000 ft. of perforated interval 
is not very large. Similar to number of stages, earlier Bakken completions utilized less than 
20 stages and one section drilling. Furthermore, there were fewer to no wells drilled in the 
area prior to 2008. Hence, a possible sign of depletion affecting newer wells could be 
observed. As a result, these newer wells relied on aggressive completions from operators 
to achieve high production results. 

Figure 13 shows the conditional distribution of oil production, bounded by 95% 
confidence interval around the average. Due to the number of wells between 6000 ft. and 
11,000 ft. (88% of the wells), the model’s predicted oil production values are more accurate 
than in areas with sparse data. 

 

 

Figure 12: Variation of Oil Production with Perforated Interval 

 

 

Figure 13: Conditional Distribution of Oil Production for Pi = 9000 Ft showing 95% 
Confidence Interval 
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4.3 Effect of Total Pounds of Proppants 

The results for the effect of proppants injected is shown in Figure 14. Unlike the previous 
two cases, increase in the amount of proppant has a positive impact on oil production. The 
data suggests that 61% of the wells were completed using 1 – 3 million pounds of proppant, 
with 35% utilizing between 3 and 5 million pounds of proppants. Based on Figure 15 (left), 
there is more variability in the oil production beyond 6 million pounds of proppants, 
suggesting less data in that region. Most applications utilized less than 5 million pounds of 
proppant. Due to the cost of proppants, length of fracture created and the limitations of the 
pumping equipment, it may not be feasible to pump more sand than the formation can take. 
For a 3 million pound frac job in the Bakken, keeping the other parameters at the average 
values as shown in Table 3, oil production of 52,800 to 55,000 barrels in six months with 
95% confidence is predicted. 

 

 

Figure 14: Variation of Oil Production with Total Proppant 

 

 

Figure 15: Conditional Distribution of oil Production for TP = 3MM lbs showing 95% 
Confidence Interval 
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4.4 Effect of Total Volume of Fluid Pumped 

Similar to total proppant, the total fluid injected has a positive effect on oil production as 
shown in Figure 16. As show in Figure 9, the total fluid is correlated with the total 
proppant. Most applications (95% of cases) utilized less than 100,000 barrels of fluid, with 
half of that being less than 50,000 barrels. Very few jobs used more than 100,000 barrels 
(4% of cases). Figure 17 (left), shows a bivariate plot of the model results with 95% 
confidence interval shown. The increasing variability shown beyond 100,000 barrels of 
fluid is indicative of less data coverage.  

 

 

Figure 16: Variation of Oil Production with Total Fluid 

 

 

Figure 17: Conditional Distribution of oil Production for TF = 50K barrels showing 95% 
Confidence Interval 
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4.5 Effect of Maximum Injection Pressure 

The results for the effect of injection pressure is shown in Figure 18. This plot shows a 
decreasing trend with increasing injection pressure. The injection pressure is a function of 
formation breakdown (frac) pressure, which depends on the true vertical depth of the well; 
this is going to be slightly different for each stage. The higher injection pressure could 
mean less brittleness of the rock. If this is the case, more pressure would be required to 
initiate a fracture. Figure 19 (left), shows the 95% confidence interval and the conditional 
distribution of six-month oil given that the injection pressure is 8000 psi. About 95% of 
the wells have maximum injection pressure above 6,000 psi, hence the variability in the 
prediction is more consistent in this range.  

 

Figure 18: Variation of Oil Production with Injection Pressure 

 

 

Figure 19: Conditional Distribution of oil Production for IP = 8000 psi showing 95% 
Confidence Interval 
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4.6 Effect of Maximum Injection Rate 

The results for the effect of maximum injection rate is shown in Figure 20. This does not 
seem to have a reasonable impact on oil production. This is because the oil production is 
does not change much after six months when the injection rate is varied from 20 to 100 
bpm. 90% of wells were pumped at 50 bpm or less, resulting in the level of accuracy 
depicted in Figure 21 (left).  

 

 

Figure 20: Variation of Oil Production with Injection Rate 

 

 

Figure 21: Conditional Distribution of oil Production for IR = 40 bpm showing 95% 
Confidence Interval 
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5.0 Conclusion 

Using exploratory data analysis: 

1. An increasing trend is observed for number of stages, total pounds of proppants 
and total fluids injected between 2008 and 2016 in the North Dakota portion of the 
Bakken 

2. This was attributed to the fact that the downturn in 2015 forced operators to drill 
fewer wells. Hence, they utilized more fraturing materials in order to improve 
productivity. However, this did not guarantee increased oil production as the 
results were mixed as in previous years 

3. On the other hand, the use of more stages, proppants, fluids and drilling of longer 
laterals would naturally result in higher cost for the operator. Hence, there is the 
need to evaluate the effect of these parameters on oil production. 

To evaluate the effects of completion parameters on oil production: 

- An “ensemble” of regression models was built using artificial neural network 
- A 75/25 splitting rule was used for the training/testing set for each model 
- Sensitivity studies was carried out on the completion parameters 
- It was observed that oil production decreased with increasing number of stages, 

perforated interval, maximum injection pressure, and maximum injection rate 
- On the other hand, oil production increased with total pounds of proppants and 

total volume of fluid pumped. 

One possible confounding variable that was observed in this study is drainage or depletion, 
which depends on time. Oil production dropped with increasing number of stages and 
perforated interval. In reality, longer laterals and more stages are expected to result in 
higher recoveries because larger area of the reservoir is exposed to the well through 
stimulation. Due to possible drainage issue, earlier wells appear to perform better, forcing 
operators to adopt aggressive approach in completion designs in order to recover more oil. 
This will be the focus of future study, to ascertain how to account for drainage and 
incorporate it into the models. 
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