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Abstract

Bayesian methods face unprecedented challenges in the era of big data, as the evaluation of likeli-

hood in each iteration is computationally intensive. To deal with this bottleneck, recent literatures

focus mostly on speeding up Markov chain Monte Carlo (MCMC). Model selection, which is an

important topic, has not received much attention. In the Bayesian context, deviance-based criteria,

such as the deviance information criterion (DIC), are well-known for model selection purposes. In

this article, we introduce the subsampled DIC and the subsampled information criterion ICAT in the

big data context. Under reasonable regularity conditions, we show that our proposed subsampled

criteria closely approximate their full data counterparts. Extensive simulation studies are conducted

to evaluate the empirical performance of the proposed criterion. The usage of our proposed crite-

rion is further illustrated with the analysis of two datasets, a household income data from the 1994

Census, and the Covertype Data Set.
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1. Introduction

Since the 1990s, Bayesian methods have become increasingly popular due to the introduc-

tion of powerful sampling algorithms such as the Markov Chain Monte Carlo (MCMC).

With the advancement in and prevalence of computer technology, however, big data poses

challenges to Bayesian methods. Evaluation of the full data likelihood function in each

iteration makes the MCMC time consuming when the number of observations is large. To-

wards this end, two major approaches aiming at speeding up MCMC have been proposed,

the parallel MCMC (Wang and Dunson, 2013), and the subsampled MCMC (Bardenet et al.,

2014, 2017; Quiroz et al., 2018; Hu and Wang, 2018). Most of these literatures, however,

focus on Bayesian estimation, while less attention has been paid to Bayesian model selec-

tion.

In the Bayesian framework, the deviance information criterion (DIC; Spiegelhalter et al.,

2002) is one of the most frequently used tools for model selection. In addition, there

are many other deviance based criteria, e.g., the Bayesian Predictive Information Crite-

rion (BPIC; Ando, 2007), the Bayesian predictive distribution-based information Criterion

(ICAT; Ando and Tsay, 2010) and the Posterior Averaging Information Criterion (PAIC;

Zhou, 2011). For most deviance based information criteria, calculation of the likelihood

deviance and posterior deviance based on full data is required in every MCMC iteration. In

this work, we introduce the subsample DIC and subsampled ICAT based on the Bayesian

predictive distribution, which are calculated using a small portion of full data in every

MCMC iterations for Bayesian model selection, yet still produces credible model selection

results. Similar to in Hu and Wang (2018), we use nonuniform probabilities in drawing the

subsamples, which requires even smaller subsample sizes to achieve the same approxima-

tion accuracy than using uniform sampling.

The rest of this paper is organized as follows. In Section 2, we review the subsam-

pled MCMC algorithm, the DIC and the ICAT. In Section 3, we propose the subsampled

DIC and the subsampled ICAT, and present their theoretical properties. Simulation study
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Algorithm 1 Metropolis–Hastings algorithm

for k ← 1 to N do

θ ← θk−1

θ′ ∼ q(. | θ)
u ∼ U(0, 1)

α = π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

if α > u then

θk ← θ′ {Accept}
else

θk ← θ {Reject}
end if

Return θk, k = 1, ..., N
end for

results are shown in Section 4. In Section 5, two applications of our proposed methods

are performed, one using the Covertype Data (Collobert et al., 2002), and the other using

household income data extracted from the 1994 Census database. We conclude with a brief

discussion in Section 6. For ease of exposition, additional technical results are given in the

appendix.

2. Background and Related Work

Consider a dataset x = {x1, ..., xn} with associated likelihood p(x | θ) where θ ∈ Θ is

the underlying distribution parameter. We assume that the observations are conditionally

independent given the value of θ, i.e., p(x | θ) =
∏n

i=1 p(xi|θ). Given a prior distribution

π0(θ), Bayesian inference often relies on the posterior distribution of θ, that is,

π(θ) =
p(x | θ)× π0(θ)∫
p(x | θ)× π0(θ)dθ

∝ π0(θ)
n∏

i=1

p(xi | θ), (1)

where π(θ) denotes the posterior distribution of θ. As π(θ) is intractable in most cases,

MCMC methods are often used to generate samples from the posterior distribution for

statistical inference.

2.1 Subsampled MCMC

The Metropolis–Hastings (MH) algorithm is a widely used method in Bayesian analysis

to sample approximately form π(θ). It proposes a candidate parameter value θ′ from the

proposal distribution q(.|θ), and accept θ′ probabilistically based on the acceptance prob-

ability α. For ease of discussion, we present the standard MH algorithm in Algorithm 1.

The standard MH algorithm evaluates π(.) for θ and θ′ in each iteration, which means the

full data likelihood needs to be calculated per iteration. When datasets are large, this could

be very computationally intensive. To scale up the MH algorithm, Korattikara et al. (2014)

proposed to make the acceptance decision based on a sequential hypothesis test using uni-

form subsamples adaptively, and control the false acceptance probability; Bardenet et al.

(2014) proposed to adaptively approximate the full data likelihood using uniform subsam-

ples under controlled acceptance decision error, and Quiroz et al. (2018) proposed a two-

stage delayed acceptance approach. Approximated full data likelihood based on uniform

subsamples is used in the first stage to get a approximate acceptance decision, and if the
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Algorithm 2 Nonuniform subsampled Metropolis-Hastings algorithm

for k ← 1 to N do

θ ← θk−1

θ′ ∼ q(.|θ)
u ∼ U(0, 1)

ψ(u, θ, θ′)← 1
n
log
(
u π0(θ)q(θ′|θ)
π0(θ′)q(θ|θ′)

)

x∗1, · · · , x∗r
η∼ X {Subsample with replacement according to η1, ..., ηn}

ℓ∗r(θ)← 1
r

∑r
i=1

log{p(x∗

i |θ)}
nη∗i

ℓ∗r(θ
′)← 1

r

∑r
i=1

log{p(x∗

i |θ
′)}

nη∗i

Λ∗(θ, θ′)← ℓ∗r(θ
′)− ℓ∗r(θ)

if Λ∗(θ, θ′) > ψ(u, θ, θ′) then

θk ← θ′ {Accept}
else

θk ← θ {Reject}
end if

Return θk, k = 1, ..., N
end for

candidate draws are accepted, the final acceptance decision is then made based on full data

in the second stage.

The subsampling scheme in Bardenet et al. (2014) and Korattikara et al. (2014) is uni-

form subsampling, where each data point has equal probability 1/n to be sampled without

replacement, while Quiroz et al. (2018) uses uniform subsampling with replacement in or-

der to get independent subsamples and better theoretical performance. These two schemes,

however, are approximately equivalent when the subsample size r ≪ n. To further improve

the efficiency of the MH algorithm, Hu and Wang (2018) proposed to draw subsamples us-

ing nonuniform probabilities η = {η1, . . . , ηn} such that 0 < ηi < 1, i = 1, ..., n and∑n
i=1 ηi = 1, so an approximation of ℓn(θ), the full data log likelihood, is

ℓ∗r(θ) =
1

r

r∑

i=1

1

nη∗i
log{p(x∗i | θ)}. (2)

It is direct that ℓ∗r(θ) is an unbiased estimator for ℓn(θ). To better approximate ℓn(θ),
Hu and Wang (2018) adopted nearly optimal rule and proposed an explicit solution for η

as

ηi =
| log{p(xi | θ̂)}|∑n
j=1 | log{p(xj | θ̂)}|

, i = 1, . . . , n, (3)

where θ̂ = argmaxθ
∑n

i=1 log{p(xi | θ)}/n is the maximum likelihood estimate of θ.

This gives rise to the nonuniform subsampled MH algorithm in Algorithm 2.

2.2 The Deviance Information Criterion

In this section, we briefly review the deviance information criterion (DIC; Spiegelhalter et al.,

2002). Based on the DIC, a candidate model with smaller DIC value is favored. The DIC

is defined based on the following deviance function:

Dev(θ) = −2 logL(x | θ), (4)
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where x is the observed data and θ is parameter of the likelihood. Based on the deviance

in (4), we have the following form of DIC:

DIC = Dev(θ) + pD, (5)

where Dev(θ) is a Bayesian measure of model fit defined as the posterior expectation of the

deviance, i.e., Dev(θ) = Eθ|x[−2 logL(x | θ)]. The second term pD measures the model

complexity, which is defined as the difference between the posterior mean of the deviance

and the deviance of the posterior mean of the parameter:

pD = Dev(θ)− Dev(θ̂),

where θ̂ is the posterior mean. The DIC can be written in two other equivalent forms:

DIC = Dev(θ̂) + 2pD,

and

DIC = 2Dev(θ)− Dev(θ̂).

2.3 The Information Criterion (ICAT) Based on Bayesian Predictive Distribution

From a purely Bayesian viewpoint, the Bayesian predictive distribution is a predictive dis-

tribution which is invariant to reparameterization. Following the definition in Ando and Tsay

(2010) and Spiegelhalter et al. (2014), the Bayesian predictive distribution is

p(xrep | x) =
∫
p(xrep | θ)p(θ | x)dθ,

where xrep is replicate data independently generated by the same mechanism of observed

data x. The Kullback–Leibler (KL) divergence based on the Bayesian predictive distribu-

tion is:

KL[g(xrep), p(xrep | x)] = Exrep [log g(xrep)]− Exrep [log p(xrep | x)], (6)

where g(x) is the data generation process of x. Based on Equation (6), Ando and Tsay

(2010) defined the following information criterion:

ICAT = −2 log p(x | x) + tr
[
J−1(θ̂)I(θ̂)

]
, (7)

where

θ̂ = argmax
θ
{2 log p(x | θ) + log π0(θ)}, (8)

and the matrices I and J are given by

I(θ) =
1

n

n∑

i=1

(
∂φ(xi, θ)

∂θ

∂φ(xi, θ)

∂θ⊤

)
, (9)

and

J(θ) = − 1

n

n∑

i=1

(
∂2φ(xi, θ)

∂θ∂θ⊤

)
, (10)

where φ(xi, θ) = log(p(xi | θ)) + log{π0(θ)/(2n)}, and π0(θ) is the prior distribution of

θ. Based on the MCMC output, −2 log p(x | x) is estimated by:

−2 log
{

1

B

B∑

b=1

p(x | θb)
}
,

where θ1, · · · , θB are B effective random samples drawn from the posterior distribution.
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3. Subsampled Bayesian Model Assessment Criterion

In this section, we will discuss two subsampled Bayesian model assessment criteria, DICsp

and ICsp and their theoretical properties.

3.1 The Subsampled DIC

The goal of subsampled DIC is to get an approximation of DIC based on subsampled data.

From the definition of DIC, its two components, Dev(θ) and Dev(θ̂), need to be approxi-

mated.

Let x = (x1, · · · , xn) be n independent observations from the cumulative distribution

function F (x̃) with probability density function p(x̃), η1, · · · , ηn be sampling probabilities,

respectively, and θ be the unknown parameter for p(x̃). The subsampled DIC is defined as:

DICsp = −4Eθ|x[ℓr(θ)] + 2

n∑

i=1

ℓ(xi | θ̂), (11)

where θ̂ is the posterior mean based on MCMC samples, ℓr(θ) is the subsampled log-

likelihood approximation. For the b-th MCMC iteration, ℓr(θ
b) =

∑r
i=1

log{p(x∗

i |θ
b)}

nη∗i
/r,

where x∗1, · · · , x∗r are r subsampled observations with respective subsample probabilities

η∗1 , · · · , η∗r , the expectation Eθ|x(ℓr(θ)) is estimated by:

Eθ|x [ℓr(θ)] =
1

B

B∑

b=1

ℓr(θ
b). (12)

Remark 1. For the uniform subsampled methods, πi = 1/n, i = 1, · · · , n, the subsampled

log likelihood is ℓr(θ
b) =

∑r
i=1 log{p(x∗i | θb)}/r.

3.2 The Subsampled ICAT

For notation simplicity, we denote ICAT in (7) as IC in this section. In order to approximate

the IC based on subsampled data, we need to approximate two parts of IC, log p(x | x)
for goodness of fit, and tr

[
J−1(θ̂)I(θ̂)

]
for model complexity penalty, where I and J are

defined in Equations (9) and (10).

Let x = (x1, · · · , xn) be n independent observations from the cumulative distribution

function F (x̃) with probability density function p(x̃), η1, · · · , ηn be sampling probabilities,

respectively, and θ be the unknown parameter for p(x̃). The subsampled IC is defined as

ICsp = −2 log
[
1

B

B∑

b=1

exp{nℓr(θb)}
]
+ n · tr

[
J−1

sp (θ̂)Isp(θ̂)
]
. (13)

For the b-th MCMC iteration, ℓr(θ
b) =

log{p(y∗i |θ
b)}

nη∗i
/r, where x∗1, · · · , x∗r are r subsampled

observations with respective subsample probabilities η∗1 , · · · , η∗r , the expectation Eθ|x(ℓr(θ))
is estimated by

Eθ|x [exp(ℓr(θ))] =
1

B

B∑

b=1

exp
(
ℓr(θ

b)
)
. (14)

Remark 2. To approximate the penalty term tr
[
J−1(θ̂)I(θ̂)

]
, we define

Isp(θ) =
1

r

r∑

i=1

∂φsp(x
∗
i , θ)

∂θ

∂φsp(x
∗
i , θ)

∂θ⊤
, (15)
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and

Jsp(θ) = −
1

r

r∑

i=1

∂2φsp(x
∗
i , θ)

∂θ∂θT
, (16)

where φsp(x
∗
i , θ) = 1

nη∗i
log{p(x∗i | θ)} + log{π0(θ)/(2r)}, and π0(θ) is the prior distri-

bution of θ. Suppose x∗1, · · · , x∗r are r subsampled observations with respective subsample

probabilities η∗1 , · · · , η∗r , and θ̂ is the posterior mean obtained via subsampled MCMC, the

penalty term is therefore approximated by based on results in Ai et al. (2018):

tr
[
J−1(θ̂)I(θ̂)

]
≈ n× tr

[
J−1

sp (θ̂)Isp(θ̂)
]
. (17)

The detailed technical procedures to calculate Isp(θ) and Jsp(θ) in linear regression and

logistic regression are given in the Appendix.

3.3 Properties of the Subsampled Information Criteria

Let η1, ..., ηn be nonuniform subsampling probabilities such that 0 < ηi < 1, i = 1, ..., n
and

∑n
i=1 ηi = 1. For a subsample, x∗1, ..., x

∗
r taken randomly according to ηi’s with

replacement and ℓ(xi | θ) is the log probability density given parameter θ, we have

E

[
1

r

r∑

i=1

ℓ(x∗i | θ)
η∗i

]
=

n∑

i=1

ℓ(xi | θ). (18)

Let G = {g(x̃ | θ)} be a family of candidate statistical models. The quantity ν =
Ex̃[Eθ|x̃[log g(x̃ | θ)]] is to measure the deviation of the approximating model from the

true model. For DIC, the estimator for ν is ν̂ = 1
n

Eθ|x[logL(θ | x)]. From Ando (2007), ν̂
is generally positively biased as an estimator of ν. The bias correction term is defined as

bν = Ex [ν̂ − ν] . (19)

The bias correction term has the same definition in Ando (2007). Therefore the bias correct

of posterior mean of log likelihood is

Eθ|x[logL(x | θ)]/n− b̂ν ≈ Eθ|x[lr(θ)]/n − b̂ν ,

where b̂ν is the estimated bias correction term. Under the framework of Spiegelhalter et al.

(2002), we can plug in the unbiased estimator of log likelihood using subsampled data, and

obtain

DICsp = −2Eθ|x[ℓr(θ)] + pD, (20)

where pD = 2[logL(x | θ̂) − Eθ|x[ℓr(θ)]], θ̂ being the posterior mean. From direct

calculation, we have

E[DICsp | θ̂] = DIC, (21)

where the expectation is taken with respect to the randomness of subsampling only. Simi-

larly from (18) , we have based on results in Ai et al. (2018):

E

[
log

{
1

B

B∑

b=1

exp
(
ℓr(θ

b)
)}]

= log

{
1

B

B∑

b=1

exp
(
lr(θ

b)
)}

,

E
[
tr
[
J−1

sp (θ̂)Isp(θ̂)
]
| θ̂
]
=

1

n
tr
[
J−1(θ̂)I(θ̂)

]
.

Furthermore, we have

E[ICsp | θ̂] = IC, (22)

where the expectation is taken with respect to the randomness of subsampling only.
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Figure 1: Selection accuracy (inaccuracy) by DICspfor different subsampling ratios in lin-

ear regression.

4. Simulation Studies

In this section, we evaluate the performance of the proposed criteria under three different

designs: linear regression, balanced-outcome logistic regression, and imbalanced-outcome

logistic regression. Comparison with uniform subsampling procedures for different sub-

sampling ratios is also performed.

4.1 Bayesian Linear Regression Model Selection

We use a setting similar to that in Shao (1997). The size of the full data in each replicate is

set to n = 100, 000. For each observation i, five covariates xi1, xi2, . . ., xi5 are generated

i.i.d. from N(0, 1), and the dependent variable is generated such that

yi = β1xi1 + β2xi2 + . . . + β5xi5 + ǫi, i = 1, . . . , n, (23)

where ǫi are again i.i.d. N(0, 1). We consider 5 true parameter vectors. The MCMC

chain length is set to be 15,000 with the first 5,000 as burn-in. We consider three different

subsampling ratios, namely, r/n. A total of 100 replicates are performed. The selection

results based on DICsp and ICsp are presented in Figures 1, 2. The accuracy is defined

as the proportion of replicates where the optimal correct model is selected out of the 100

replicates. In addition, the inaccuracy, defined as the proportion of replicates where incor-

rect models are selected, is reported in the parentheses. For example, if the true model is

β = (2, 0, 0, 4, 0), then the model only selecting X1 and X4 is the optimal correct model,

the models containing X1 and X4 are correct models, and the rest models are incorrect

models. From Figure 1 we observe that, the DICsp based on both uniform and nonuniform

sampling schemes perform very well, giving 0 inaccuracy under all scenarios and sampling

ratios and accuracy equal to 1 under three scenarios. Even if the accuracies of two scenar-

ios at 0.001 sampling ratio is not 1, it increases to 1 at sampling ratio 0.002. It is noticed

from Figure 2 that the ICsp has rather low accuracy when the true model is small, i.e. there

are many zero-effect covariates, for both uniform and nonuniform subsample schemes, but

meanwhile, the inaccuracy are basically 0 under all scenarios and sampling ratios, which

means that correct models which contain the true covariates but are larger than the optimal

correct model are highly selected. This indicates that, compared to DICsp, ICsp is relatively

a conservative procedure, and tends not to err by incorporating more than just necessary

covariates. One reason for ICsp tending to select larger models than DICsp is that IC has

less penalty than DIC on model complexity. Another partial reason is that our nonuniform
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Figure 2: Selection accuracy (inaccuracy) by ICsp for different subsampling ratios in linear

regression.

sampling procedure places more emphasis on approximating the log-likelihood, which will

tend to select more complex models to increase goodness-of-fit.

4.2 Bayesian Logistic Regression Model Selection

We use the logistic regression to demonstrate the usage of our proposed procedures for

generalized linear models. Both balanced and imbalanced designs are considered. For

the balanced design, five covariates are generated i.i.d. from N(0, 1). For the imbalanced

design, in addition to a constant term of xi1 ≡ 1, four covariates are generated i.i.d. from

Uniform(0, 1). Each yi is generated from Bernoulli(1/1 + exp
(
−x⊤

i β
)
). A total of 100

replicates are ran for each model and for each subsampling ratio, 0.001, 0.002, and 0.005.

The MCMC chain length is 15,000 with the first 5,000 as burn-in. The results of accuracies

and inaccuracies are presented in Figures 3, 4, 5 and 6.
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Figure 3: Selection accuracy (inaccuracy) by DICsp for different subsampling ratios in

logistic regression when outcomes are balanced.

It is seen from the figures that, for both designs and for both DICsp and ICsp, under al-

most all scenarios and subsampling ratios, the proposed nonuniform subsampling scheme

performs significantly better than the uniformly subsampling scheme in terms of higher

accuracies and lower inaccuracies. This difference becomes less significant with the in-

crease in the subsampling ratio, r/n, but for some models it is still quite large even when

r/n = 0.005. It is also observed that, the selection accuracies of ICsp, though still increas-

ing as subsample sizes increase, are lower than the accuracies of DICsp, which means that

ICsp requires more subsamples than DICsp to select true models. In addition, we notice that
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Figure 4: Selection accuracy (inaccuracy) by ICsp for different subsampling ratios in lo-

gistic regression when outcomes are balanced.
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Figure 5: Selection accuracy (inaccuracy) by DICsp for different subsampling ratios in

logistic regression when outcomes are imbalanced.
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Figure 6: Selection accuracy (inaccuracy) by ICsp for different subsampling ratios in lo-

gistic regression when outcomes are imbalanced.

 
1756



Table 1: Model selection results of Census Income data using subsampling schemes

Subsample Size Criterion
Uniform NonUniform

Selected Covariates AUC Selected Covariates AUC

r = 200
DICsp 1, 2, 4, 5, 6 0.8153 1, 2, 4, 5, 6 0.8153

ICsp 1, 2, 4, 5, 6 0.8153 1, 2, 3, 4, 5, 6 0.8155

r = 500
DICsp 1, 2, 4, 5, 6 0.8152 1, 2, 4, 5, 6 0.8153

ICsp 1, 2, 4, 5, 6 0.8152 1, 2, 3, 4, 5, 6 0.8154

r = 1000
DICsp 1, 2, 4, 5, 6 0.8153 1, 2, 4, 5, 6 0.8152

ICsp 1, 2, 3, 4, 5, 6 0.8153 1, 2, 3, 4, 5, 6 0.8154

ICsp gives similar inaccuracies across scenarios, but reaches much higher accuracies when

the true models are larger, i.e. when the true models contain less zero-effect covariates, in

other words, ICsp tends to select larger correct models than DICsp, which is similar to the

case in linear regression. One possible remedy is to change the subsampling strategy based

on the posterior predictive distribution.

5. Application to Real Data

5.1 Census Income Data Set

In this section, we apply proposed model selection methods to a census income dataset

Kohavi (1996) extracted from the 1994 Census database. The response is whether a per-

son’s income exceeds $50,000 a year. There are in total 48,842 observations in this dataset,

and 11,687 of them have income over $50,000 a year. We consider 5 covariates together

with the intercept in our analysis. The covariates used are Age of individuals, Final weight,

Gender indicator, Highest level of education in numerical form, Hours worked per week,

and we denote the intercept and these covariates by X1, X2, X3, X4, X5 and X6. The

variable Final weight (X3) means the number of people the individual represents. Gender

indicator (X4) is a binary variable, and the rest are continuous variables. We first conduct

a logistic regression on this dataset, and all covariates are significant under significance

level of 0.05. Choosing non-informative priors for regression coefficients, we run 50,000

MH iterations and drop the first 15,000 as burn-in to perform both uniform and nonuniform

subsampling schemes to the dataset, subsample sizes chosen as r = 200, 500, and 1000.

We select the optimal correct models based on DICsp and ICsp, and use the estimated coef-

ficients to calculate the area under curve (AUC; Zhou et al., 2009) of selected models. The

results are shown in Table 1. We also run Bayesian process under the same setting using

full data, by which all covariates are selected by both DIC and IC, and the AUC under full

model is 0.8154.

From Table 1 we see that ICsp tends to select larger models than DICsp, which is similar

to the conclusion we have in simulation studies. In addition, overall speaking, the DICsp and

ICsp based on the nonuniform subsampling scheme outperform the DICsp and ICsp uniform

subsampling scheme, for selecting more significant covariates and obtaining higher AUC

values.

5.2 Forest Cover Type Data

In order to assess the performance of the proposed methods, we consider the dataset named

“Covertype” from the UCI Machine Learning Repository (Dheeru and Karra Taniskidou,

2017). The dataset contains 581,012 observations, and 54 covariates, 10 of which being
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Table 2: Model selection results of Covertype data using subsampling schemes

Subsample Size Criterion
Uniform NonUniform

Selected Covariates AUC Selected Covariates AUC

r = 500
DICsp 1, 2, 3, 4, 6, 8, 11 0.7734 1, 2, 3, 4, 6, 7, 8, 11 0.7792

ICsp 1, 2, 4, 6, 7, 8 0.7673 1, 2, 3, 4, 5, 6, 7, 8, 11 0.7789

r = 1000
DICsp 1, 2, 3, 4, 6, 7, 10, 11 0.7774 1, 2, 3, 4, 6, 7, 8, 11 0.7791

ICsp 1, 2, 4, 8, 9, 11 0.7630 1, 2, 3, 4, 6, 7, 9, 10, 11 0.7793

continuous, and the rest being binary. We consider 10 continuous covariates together with

the intercept in our analysis. Similar to in Collobert et al. (2002), we combine 6 classes

and modify the multi-class problem into an imbalanced binary classification problem, with

14.8% 1’s and 85.2% 0’s. As a benchmark, we first conduct the stepwise logistic regression

based on the Akaike information criterion (AIC; Akaike, 1973) with the entire dataset.

The selected model contains X1(Intercept), X2, X3, X4, X5, X6, X7, X8 and X11, and

the corresponding AUC is 0.7790. We then apply uniform and nonuniform subsampling

schemes with subsample sizes r =500 and 1000. In each case, 100,000 MH iterations are

ran, with the first 2,000 samples thrown as burn-in, and we store one sample for every 20

MH iterations in order to reduce autocorrelations of MH samples. The results are reported

in Table 2.

It is observed that, under both subsample sizes and both selection criterion, the fi-

nal models selected by the proposed nonuniform subsampling scheme are closer to the

step regression result and achieve higher AUC values than the models selected by uniform

subsampling. It is also noteworthy that, the proposed nonuniform subsampling achieves

better selection results and higher AUC values at r = 500 than uniform subsampling at

r = 1000. Again, under nonuniform subsampling scheme, ICsp tends to choose larger

models than DICsp, and ICsp needs more subsamples under uniform subsampling scheme

to obtain more significant results than nonuniform subsampling scheme, which is similar

to the results obtained in simulation studies.

6. Discussion

In this paper, we proposed the subsampled DIC and IC which approximate the full data DIC

and IC for big data based on subsampled MCMC. Our subsampled approaches overcome

the computation bottleneck of big data. In the simulation study, we found that nonuni-

form subsampling strategy performs better than the uniform subsampling strategy in small

subsample size cases and in rare events data case of logistic regression.

In addition, four topics beyond the scope of this paper are worth further investigation.

First, we need to theoretically justify the model selection powers of the subsampled DIC

and IC based on the KL divergence. Second, all subsample sizes in this work are pre-

specified. In the future, an adaptive subsampling scheme that automatically calculates the

number of subsampled observations needed is desirable. A subsampling strategy that is

based on the posterior predictive distribution is also devoted to future research. Our pro-

posed model selection criteria are mainly based on algorithm 2. Modifying our proposed

criteria in other subsampling algorithm in Bardenet et al. (2014); Quiroz et al. (2018) is

also an important future work.
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Appendix

A.1 Technical Details for Normal Linear Regression

A.1.1 Complete Data

For the normal linear regression case, consider a more general setting where xi ∈ Rp, yi |
xi ∼ N(x⊤

i θ, σ
2
1), i = 1, ..., n, and θ follows the normal prior π0(θ) ∼ MVN(0p×1, σ

2
2Ip×p).

We have φ(xi, yi,θ) = ℓ(yi | xi,θ) + log[π0(θ)
2n ]. Then

φ(xi, yi,θ) = log
1√
2πσ1

e
−

(yi−x
⊤
i θ)2

2σ2
1 + log

1

2n(2πσ22)
p

2

e
− θ

⊤
θ

2σ2
2 ,

= c− (yi − x⊤
i θ)

2

2σ21
− θ⊤θ

2σ22
,

where c is some constant that does not depend on θ. Then

∂φ(xi, yi,θ)

∂θ
=

xi(yi − x⊤
i θ)

σ21
− θ

σ22
,
∂2φ(xi, yi,θ)

∂θ∂θ⊤
= −xix

⊤
i

σ21
− 1

σ22
Ip×p.

We therefore have

J(θ) =
1

n

n∑

i=1

(
xix

⊤
i

σ21
+

1

σ22
Ip×p

)
,

I(θ) =
1

n

n∑

i=1

(
xi(yi − x⊤

i θ)

σ21
− θ

σ22

)(
xi(yi − x⊤

i θ)

σ21
− θ

σ22

)⊤

.

A.1.2 Subsampled Data

Now consider a subsample of the full dataset, where the observations are now denoted as

(x∗
1, y

∗
1), . . . , (x

∗
r , y

∗
r ). Using similar derivations as above, an approximation of J(θ) based

on this subsample is obtained as

Jsp(θ) =
1

nr

r∑

i=1

x∗
ix

∗
i
⊤

η∗i σ
2
1

+
1

σ22
Ip×p,

and an approximation of I(θ) based on this subsample is

Isp(θ) =
1

r2

r∑

i=1

(
x∗
i (y

∗
i − x∗

i
⊤θ)

nη∗i σ
2
1

− θ

σ22

)(
x∗
i (y

∗
i − x∗

i
⊤θ)

nη∗i σ
2
1

− θ

σ22

)⊤

.
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A.2 Technical Details for Logistic Regression

A.2.1 Complete Data

For the logistic regression case, consider a more general setting that yi ∼ Bernoulli(pi),
where log pi

1−pi
= x⊤

i θ, and xi ∈ Rp, i = 1, ..., n. Similar to the linear regression case

setting, assume θ follows the normal prior π0(θ) ∼ MVN(0p×1, σ
2
2Ip×p). Then

φ(xi, yi,θ) = ℓ(yi | xi,θ) + log[
π0(θ)

2n
]

= yix
⊤
i θ − log

(
1 + ex

⊤

i θ
)
+ log

1

2n(2πσ22)
p

2

e
− θ

⊤
θ

2σ2
2 ,

= yix
⊤
i θ − log

(
1 + ex

⊤

i θ
)
− θ⊤θ

2σ22
+ c,

where where c is some constant that does not depend on θ. Denote pi = exp{x⊤
i θ}/(1 +

exp{x⊤
i θ}), and wi = pi(1− pi), then

∂φ(xi, yi,θ)

∂θ
= xi(yi − pi)−

θ

σ22
,
∂2φ(xi, yi,θ)

∂θ∂θ⊤
= −wixix

⊤
i −

1

σ22
Ip×p.

Therefore we have

J(θ) =
1

n

n∑

i=1

(
wixix

⊤
i +

1

σ22
Ip×p

)
,

I(θ) =
1

n

n∑

i=1

(
xi(yi − pi)−

θ

σ22

)(
xi(yi − pi)−

θ

σ22

)⊤

.

A.2.2 Subsampled Data

Consider a subsample of the full dataset (x∗
1, y

∗
1), . . . , (x

∗
r , y

∗
r ). According to Equations (15)

and (16), the approximations of J(θ) and I(θ) based on this subsample are obtained as

Jsp(θ) =
1

nr

r∑

i=1

w∗
i x

∗
ix

∗
i
⊤

η∗i
+

1

σ22
Ip×p,

Isp(θ) =
1

r2

r∑

i=1

(
x∗
i (y

∗
i − p∗i )
nη∗i

− θ

σ22

)(
x∗
i (y

∗
i − p∗i )
nη∗i

− θ

σ22

)⊤

.
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