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Abstract 
 
We developed a non-normal regression model to characterize the growth of shrimp and 
the shrimp’s weight distributions throughout the fattening process. The experiment was 
conducted in the Baja California Gulf in 2010 where shrimp producers built submersible 
sea cages to breed shrimp.  
During the fattening process, producers took samples and performed biometric analyses 
in order to observe characteristics of the shrimp in the growth process. We analyzed the 
information from the samples using several distributions of probability to study the 
behavior of shrimp growth. To find the best mathematical model to characterize this 
behavior, we applied techniques that are used in reliability engineering and data lifetime 
studies. 
 
Key Words: Non-Normal Regression, Extreme Value Distribution, Submersible Sea 
Cages. 
  
 
 

1. Literature Review 
 
For shrimp producers, predicting shrimp growth is fundamental to make adequate 
business decisions (Tian et al., 1993).  
 
Scholars have conducted qualitative (Carvajal, 1993) and quantitative studies that model 
the average shrimp weight. Quantitative methods model the average weight through 
statistical regression techniques using several functional forms. Yu et al. (2006) 
compared eight functional forms to model the average weight of shrimps. Katsanevakis 
(2006) did something similar with fish populations.  
 
Because shrimp is one of the species whose weight-marketing price depends on the 
shrimp size, not only the average weight prediction is required, but also the distribution 
of the weight and size. 
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2. Rationale 
 
In 2010, shrimp producers in the Baja California Gulf experimented with how to breed 
shrimp inside of submersible sea cages. White shrimp post-larvae PL8 were seeded at the 
beginning of June 2010 (time zero) and harvested on October 25th (time = 135 days). 
Each day, scuba divers went to feed them inside sea cages.  
 
In order to monitor shrimp growth during this fattening period, samples were taken on 
June 28th, July 05th and 19th, August 02nd and 16th, September 13th and 27th, and on 
October 11th and 25th. For each sample, a biometry was performed to obtain individual 
information about the weight, size, and other shrimp quality characteristics.  
 
For producers, it is important to forecast the distribution of sizes of the final product: it is 
not just enough to know the average weights because shrimp market prices depend on the 
sizes of shrimps.  
 
A balanced harvest point—between continuing feeding shrimps and the final harvest to 
commercialize them—is desirable. Producers seek to optimize the time of harvest to 
maximize growth, while minimizing the risk of losing money feeding shrimp that cannot 
grow anymore. 
 

3. Rationale 
 
The goal of this research was to characterize the growth of shrimp throughout the 
fattening process. The specific objective was to model the distribution of the weight of 
shrimp at different times before and after the harvest. For producers, it was important to 
predict the distribution of sizes of the final product, because these factors determine the 
project feasibility, marketing conditions, their final price in the market, and the return on 
investment of this new form of shrimp production. To achieve this goal, we applied non-
regression models to these data.  
 
Given that the dates to collect the samples were selected according to weather conditions 
and human resources availability, this study is observational. 
 
The variables considered in this work (see Figure 1) are the following: 
 
Independent variable: the number of days since larva was seeded. 
Dependent variable: the size of the shrimp. 
 
 

4. Methodology 
 
We propose a model that describes shrimp size distribution as a function of the day 
variable 𝑃𝑟(𝑌	 ≤ 	𝑦: 𝑥) 	= 	𝐹(𝑦, 𝑥) 	= 	𝐹(𝑦)  where 𝑌 is the shrimp weight at time t and 
x represents the day variable. The mean of the distribution has only one explainer 
variable 𝜇/ 	= 	 𝛽1 	+	𝛽3𝑥/. The simplest distribution model for normal, logistic, and 
extreme value distributions is the following: 
 

𝑃𝑟(𝑌 ≤ 𝑦) = 𝐹(𝑦; 𝜇, 𝜎) = 𝐹(𝑦; 𝛽1, 𝛽3, 𝜎) = 𝛷((𝑦 − 𝜇)/𝜎), 
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Figure 1: Weight of shrimp as a function of time. Shrimp were bred in submersible sea cages. 

 
Where 𝜇/ 		= 	𝛽1 	+ 	𝛽3𝑥/. and 𝜎 does not depend on 𝑥, the explainer variable. The 
quantile function for this model is as follows: 
 

𝑦: = 𝜇 + 𝛷;3(𝑝)𝜎 = 𝛽1 + 𝛽3	𝑥 + 𝛷;3(𝑝)𝜎. 
 
The localization and scale parameters estimation of this regression model can be 
done by the maximum likelihood estimation for, 𝛽1 , 𝛽3  "and 𝜎  such that the 
sample likelihood function is maximum. The likelihood function is given by  
 

𝐿(𝛽1, 𝛽3, 𝜎; 𝑥) = 	>𝐿/
?

/@3
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Numerical methods are used to maximize the log of this function, in which the 
first derivatives with respect to 𝛽1, 	𝛽3, 𝜎 of the likelihood function are set equal to 
zero and then the equations are solved for to 𝛽1, 	𝛽3, 𝜎. 
 
This procedure can be executed using statistical software. We used the “Proc 
reliability” and “Proc Lifereg” procedures in SAS. The quantile function can be 
used to calculate size weight percentiles for the shrimp size distribution for a 
specific value of 𝑥 (days). The initial step is to identify what kind of distribution 
the variable of interest follows for each level of the explanatory variable. 
 
Then, the location parameter and scale (or shape) parameter are fitted separately 
for each level (Figure 2). 
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Figure 2: Identifying best distribution fit. 

 
Finally, a joint model is estimated in which the scale parameter σ is limited to be 
equal for all levels of the explanatory variable and, at the same time, the locations 
parameters are estimated (Figure 3-left).  
 
 

 
Figure 3: Left: Identifying the best distribution fit. Right: Real and estimated data with model 
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We subsequently assessed the assumptions of the model (Table 1 and Figure 4). 
 

 
Table 1: Extreme value Regression Model Y = sqrt(x), check for residuals assumptions 

 
 

 
Figure 4: Left: Assessing Extreme Value Assumption 

 
5. Results 

 
Our model can be used to predict the distribution of sizes of shrimp reared inside 
submersible sea cages in similar conditions each season. This model does not only 
estimate the average weight but also the percentiles and the percentages of the sizes for a 
determined time. Further, the model is able to extrapolate information to predict the size 
distribution at a determined time in the future. This allows certainty for strategic planning 
purposes and decision making. The distribution of the shrimp weight can be better 
modeled using an extreme value distribution. 
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