
Reconstructing Matrices with Linear Programming

Luis Frank ∗

Abstract
The article explains how to adjust, balance and temporarily disaggregate matrices (to “reconstruct”
matrices, in a broad sense) with linear programming. The main advantage of this method compared
to RAS (standard method recommended in National Accounts manuals) is that it allows recon-
structing matrices even with missing data in the benchmark matrix, or with marginal vectors that
are inconsistent with each other. Reconstructing matrices with linear programming also allows en-
riching the solution by incorporating alternative or complementary information to the adjustment
process. The article also includes numerical examples with small matrices to show the performance
of the proposed method.

Key Words: matrix adjustment, matrix balancing, matrix reconciliation, linear programming,
official statistics, National Accounts.

1. Introduction

Suppose we are provided with a benchmark matrix X0 of dimensions n × k and two vec-
tors u and v′ of dimensions n× 1 and 1× k, respectively, and we are asked to find another
matrix X (of the same size as X0) such that u = X1k and v′ = 1′nX. Or suppose we are
provided with two matrices, X0 and Y0, and the corresponding summation vectors u and
v′, and we are asked to find two matrices X and Y whose rows and columns add up to
these vectors and also the summ of the columns of X equal that of Y. These kinds of re-
quirements appear frequently in National Accounts offices, for example, to balance supply
and use tables or to update input-output matrices, and have motivated a broad amount of
methods (see [7, § 18.1] for a comprehensive review on this topic) known as methods for
updating, reconciling, balancing or projecting matrices.1 Among these methods, the most
widely disseminated and also recommended by the National Accounts manuals ([6, § IX]
y [7, § 2]), is the RAS method of bi-proportional adjustment.

The RAS method is an algorithm that iteratively multiplies each row of X0 by the ratio
ui/(x′0i1k), and each column by vj/(1′nx0j), until convergence. Although it is an effec-
tive method for finding X it has the disadvantage of reducing the adjustment only to the
information provided by the benchmark matrix X0 and the totals u and v. That is, the
choice of this method implies a decision to exclude from benchmarking any other poten-
tially useful information to reconstruct X other than that provided by X0, u and v. This
decision has serious implications, since (i) the selection of the method constitutes a way
of (involuntary) manipulation of the results by exclusion of alternatives or complementary
but relevant information sources; and, (ii) the choice of the RAS method in particular leads
to sub-optimal results because it can not handle rows or columns with missing or defective
data in the benchmark matrix X0. The seriousness of these arguments justifies the search
for an alternative method for matrix-reconstruction with the following features: (i) be effi-
cient in the use of information, that is, to use all available information sources; (ii) allow the
∗Universidad of Buenos Aires. Facultad de Agronomı́a. Av. San Martı́n 4453, C1417DSE. Buenos Aires,

Argentina.
1Throughout the paper we will talk in general of methods for matrix-recostruction, since they are intended

for remaking, repairing or reproducing matrices based on new information about their structure.

 
1652



reconstruction of X with incomplete or defective benchmark matrices; (iii) be solvable with
known optimization criteria and standard algorithms; (iv) be extensible to more complex
problems, such as balancing of complementary matrices or even temporal disaggregation
of matrices.

2. Objectives

The objective of the following paper is twofold: first, to present a more flexible adjustment
method than the RAS method; and second, to extend the method to solve related problems,
such as balancing of complementary matrices or temporarily disaggregating of matrices.
To that end we will use Linear Programming to minimize the sum of the absolute discrep-
ancies between the benchmark matrix and the new given totals.2 Along the paper we will
not focus on optimization algorithms but on the statement of the set of linear constraints
that solve each type of problem. In the end, we expect to compile a sort of methodological
guide for matrix reconstruction useful for official statistics offices. This guide complements
two other papers of the author [1, 2] on interpolation and reconciliation of series with linear
programming.

Before continuing, it is convenient to make a brief digression to clarify the notation that
we will follow throughout the paper. All matrices and vectors are written in bold; matrices
are written upper-case and vectors lower-case. Scalars are written in italics. Vectors are
always column vectors. The subindices at the foot of each matrix indicate the dimensions
of the matrix as the product of rows by column. The dimensions of square matrices are
written with a single subindex at the foot. Bold numbers refer to matrices or vectors whose
elements are the same as the name of the matrix. For example, 1n represents a column
vector of 1 of dimension n × 1. I is the identity matrix, that is, a square matrix with 1 on
the diagonal and 0 elsewhere.

3. El Basic Program

The general method is to solve a linear program that minimizes a certain distance between
the benchmark matrix and the adjusted or reconstructed matrix (this is the so-called objec-
tive function) subject to a system of linear constraints. Formally, the program is expressed

min
x

{
z′x
}

subject to Ax = b, x ≥ 0, (1)

where z is a weighting vector, and A and b are known matrices that define system of linear
constraints that relates the adjusted matrix with the benchmark matrix. The solution x is a
function of the adjusted matrix. The main complexity of the program is to define the proper
set of the linear constraints. That is why we will first focus on this point and leave for later
the description of the objective function. So next we will describe step by step how to build
the system of constraints that will allow us to find X.

2Lahr and de Mesnard [5] were the first authors that suggested the minimization of absolute errors to adjust
matrices, but discouraged it’s use because of the possibility of getting negative elements in the solution (see [5,
pp. 123-124]), which shows that they did not visualize the adjustment as an optimization problem by Linear
Programming. Huang et al. cite Huang2008 picked up the point and proposed various objective functions to
deal with the problem of negative elements, but always under the premise that the problem should be solved
by non-linear programming.

 
1653



First, we establish that the solution x = vec(X) must be compatible with the vectors u
and v. That is, 1′nX = v′ and X1k = u, as it would be expect from any adjustment method.
These restrictions can be expressed together as follows:[

1′k ⊗ In
Ik ⊗ 1′n

]
vec(X) =

[
u
v

]
, (2)

where the operator vec(.) is a function that vectorizes the matrix in the argument, placing
the column j+1 below the column j; and the symbol ⊗ represents the Kronecker product.
Note that, strictly speaking, the system (2) does not establish that the sum of elements of u
must be equal to that of v, that is, that 1′nu = 1′kv. The relaxation of this condition is useful
because it often happens that these sums do not match by rounding of figures, which breaks
the RAS algorithm. Let’s call A11 to the matrix that premultiplies the left side of equality,
x1 to vec(X) and b1 to the vector on the right hand side, so that the expression (2) can be
rewritten more compactly as A11x1 = b1. The dimension of A11 is (n + k) × nk, that of
x1 is nk × 1, and b1 has dimension (n+ k)× 1.

Second, we are interested in introducing a set of constraints to (i) exploit all the infor-
mation provided by X0; and, (ii) incorporate independent information from X0, and from
u and v of course. To comply with (i) we interpret each element of X0 as the sum of the
corresponding element of X plus a “discrepancy” that might be positive and negative in a
way similar to the objective programming model quoted by H. P. Williams [8, pp. 32-34].
Then, for all the elements of X0 y X this relationship may be expressed as[

Ink, Ink ⊗ d′
] [ x1

x2

]
= vec(X0), (3)

where d′ = [1,−1], and x2 is a vector of positive discrepancies, that is x2 ≥ 02nk. Log-
ically, it is possible to add to the system as many rows as additional information sources
become available, although for explanatory clarity we will discuss this possibility in the
next section. Then, if we call A22 = Ink ⊗ d′ and b2 = vec(X0), expressions (2) and (3)
can be composed in a single block system like the following.[

A11 A12

A21 A22

] [
x1
x2

]
=

[
b1

b2

]
, A12 = 0(n+k)×2nk, and A21 = Ink. (4)

A22 has dimension nk × 2nk, and the vectors x2 y b2 have dimensions 2nk × 1 y nk × 1,
respectively. This system, together with the objective function that follows, defines the ele-
mentary linear program of a whole family of adjustment or reconciliation problems, so we
will return to it several times throughout the text.

At this point we are able to define the objective function z′x. The chosen optimization
criterium is to minimize the sum of absolute discrepancies between X0 and X, for which
we decompose z′x in the sum of two terms, z′1x1 + z′2x2. In the first term z1 = 0nk, while
in the second z2 = 12nk, so that the objective function is simply the sum of the absolute
discrepancies between the elements of X and X0. In the appendix we show a numerical
example with fictitious data. We will not delve here into the statistical properties of the
discrepancies and just consider the vector x1 as a mere solution to the problem posed,
which has the advantage of being unique under the chosen optimization criterium.

4. Missing Data and Inconsistent Marginal Vectors

Program (1) together with the set of linear constraints (4) can be expanded or reformulated
to incorporate independent information that compensates for missing data in the reference

 
1654



matrix X0, or simply to enrich the information provided by it, or even to temporarily dis-
aggregate one or more reference matrices. Next, we typify these problems and describe the
appropriate system of constraints to solve each case.

4.1 Alternative or Complementary Information

Occasionally, additional information sources other than matrix X0 become available to
reconstruct the structure of X. This information can be incorporated into the system of
constraints (4) adding rows and columns to it. There are two possible (although not ex-
clusive) ways to incorporate complementary information. One, represented by the system
A31x1 = b3 in the expression (5) in which we introduce strict equality constraints on r ele-
ments of X, as if those elements were perfectly known, for example, through out a census.
Then, the structure of A31 will be that of an array of the r rows of Ink that correspond to
the elements of x known perfectly. The other way, represented by the last line of blocks
in (5), is a set of approximate constraints on s elements of X in the same fashion as in
[A21 A22]x = b2. The structure of A41 is similar to that of A31 although the s elements
of A41 no will match the r elements of A31 since the exact constraint would override the
approximate constraint.

A11 A12 0(n+k)×2s
A21 A22 0nk×2s
A31 0r×2nk 0r×2s
A41 0s×2nk Is ⊗ d′


 x1

x2
x2′

 =


b1

b2

b3

b4

 (5)

It is also possible to bound certain elements of X. To that end, we just add another line of
blocks to the matrix on the left hand side of (5) (although the only relevant block on that
line is A51) and replace the sign of equality by another of inequality as shown in (6). Each
element of X to be bounded will add a couple of rows to A51 and b5 in a similar fashion
to those of the exact constraints. However, the row corresponding to the upper bound, both
in A51 and in b5, should be multiplied by −1 to let the inequality sign of the upper bound
be the same as that of the lower bound. In those software where the inequality sign can be
defined by the user this caution is unnecessary. Example A.1 of the appendix will help to
better understand this structure.

[
A51 0t×2nk 0t×2s

]  x1
x2
x2′

 ≥ b5 (6)

It should be noted that if a certain element of X appears bounded the other constraints that
could have been introduced on it are not canceled at all except for those of strict equality.
Besides, if we expand the system of linear constraints the weighting vector of the objective
function must be expanded too. If we put together expressions (5) and (6) in a single
system, then z′ will be

z′ =
[

0′nk 1′2nk 1′2s
]
. (7)

4.2 Missing or Unlikely Data in the Benchmark Matrix

It is often the case that some elements of the benchmark matrix are faulty, either because
there are missing data or because the data provided is really incredible. In general, data
may be missing (i) because X0 comes from a small or badly drawn sample; and, (ii) be-
cause the database that lead to X0 was originaly classified in categories that did not match

 
1655



strictly to those of the current classification. In contrast, the presence of unlikely data is
typically due to poor sampling designs or samples poorly expanded to the whole popula-
tion. Whatever the cause of these defects, the obvious strategy to follow would be to delete
from [A21 A22] x = b2 the suspicious rows. The practitioner should not worry about the
fact that removing rows from block [A21 A22] leaves twice the amount of null columns in
A4 since these do not represent an obstacle to compute of the solution. In principle, there
would be no limit of the number of rows to be removed, but through numerical simulations
we observed that the solution X may vary dramatically if the quantity of faulty elements
of X0 is high. Then, if several rows of [A21, A22] and b2 ought to be removed it is advis-
able to add additional information as explained in the previous section. Or, if additional
information were not available, to bound the missing data or to benchmark it with reliable
(although outdated) data from X0. This last strategy may be carried out simply adding ad-
ditional constraints emulating the system A51x1 ≥ b5 but replacing the exogenous bounds
in the b5 with appropriate elements of X0.

4.3 Faulty Marginal Vectors

Virtually all adjustment methods assume that the marginal sums u and v are known pre-
cisely. However, it is possible that these vectors are faulty, either because some elements
of u or v come from unreliable sources, or because they are directly unlikely, or simply
because they are unknown. In such a case, the expression (2) can be reformulated to intro-
duce discrepancy terms in the same way as in (3). In the extreme case that all the elements
of u and v were faulty, the expression (2) might be rewritten as follows

[
1′k ⊗ In In ⊗ d′ 0n×2k
Ik ⊗ 1′n 0k×2n Ik ⊗ d′

]  x1
x2
x2′

 =

[
u
v

]
. (8)

For reasons that will become apparent later, we will call A13 to the matrix of dimension
(n + k) × 2(n + k) on the right hand side of the dotted line, and A23 to the null array
0nk×2(n+k).

Now, because u and v are faulty, the sum of elements of one vector will not agree with
that of the other. That is, the condition 1′nu = v′1k is no longer satisfied. Although this
discrepancy is not an obstacle for finding a solution, one might desire also to get consis-
tent marginal sums. To achieve this goal, it could be established that the sum of positive
discrepancies of u be equal to that of v, and that the sum of negative discrepancies of u be
equal to that of v. This is equivalent to introduce the following blocks into the system of
constraints:  1′k ⊗ In In ⊗ d′ 0n×2k

Ik ⊗ 1′n 0k×2n Ik ⊗ d′

02×nk 1′n ⊗ I2 −1′k ⊗ I2

  x1
x2
x2′

 =

 u
v

02×1

 . (9)

The previous system is also useful for resolving small discrepancies between u and v due
to rounding of figures. The weighting vector of the objective function for this specification
of the system of constraints is z′ = [0′nk 1′2n+2k].

4.4 Forcing Signs in the Reconstructed Matrix

So far we have assumed that all elements of X were non-negative, and we restricted the
solution accordingly. However, some elements may have a negative sign, not only because

 
1656



it is indicated so in the benchmark matrix, but also because it might be indecated by ex-
ogenous sources, or by theoretical considerations. To specify the sign of negative elements
we proceed in the same way as to introduce bounds, but in this case calling A51 = −A∗31 y
b5 = 0, and replacing the sign of equality by one of inequality, that is, −A∗31x1 ≥ 0. The
asterisk shows that we do not refer to the same A31 matrix of (5) but to another, which for
simplicity we will describe as an identity matrix of nk × nk without the rows of positive
elements. The original RAS method does not allow to operate with negative values, so
Junius and Oosterhaven [4] developed the generalized RAS method or GRAS.

5. Balancing Complementary Matrices

It is often necessary to balance two matrices so that the sum of the columns of one equals
that of the other. That is, we are provided with two benchmark matrices, X0 and Y0, and
two pairs of marginal totals, and we are asked to find two other matrices (X and Y) that
meet the equilibrium condition X1k = Y1p = u, where u is the unknown marginal total
that balances both matrices but is not necessarily equal to any of the given marginal totals
uX and uY although keeps a minimum distance with them. This problem typically appears
in material balances in which the supply of each product must match its demand. The linear
program associated with this problem is may be written

min
x,y

{
z′xx + z′yy

}
s. a Ax = b, By = c,

(
1′k ⊗ In

)
x1 =

(
1′p ⊗ In

)
y1, x ≥ 0, y ≥ 0.

The set of constraints can be expressed in a more compact fashion grouping them in a
general system like the one below. We will call h = n + p and g = n + k to facilitate
the notation but we warn the reader that we will permanently redefine these letters for
convenience.

A11 A12 A13 0g×np 0g×2np 0g×2h
A21 A22 A23 0nk×np 0nk×2np 0nk×2h

0h×nk 0h×2nk 0h×2g B11 B12 B13

0np×nk 0np×2nk 0np×2g B21 B22 B23

1′k ⊗ In 0n×2nk 0n×2g −1′p ⊗ In 0n×2np 0n×2h




x1
x2
y1
y2

 =


b1

b2

c1
c2
0n

 ,

(10)

where B is an an array analogous to A and c is a vector analogous to b. The upper left
area of the matrix that pre-multiplies the solution is an augmented version of A in equation
(4) but with the blocks A13 and A23 (already defined in the section dealing with the case
of faulty marginal totals). The addition of these blocks is essential to find a non-trivial
solution. Omitting them would mean that the marginal sums uX and uY do not change but
at the same time are identical. On the diagonal after A, the reader may find matrix B which
is completely which is completely analogous to A. In fact, if Y had the same dimensions
as X, B would be identical to A. The balance constraint between X and Y is located in the
last line. Logically, if the balance is not intended to be perfect but only approximate, the
system (10) should be expanded in the same way as in (3) adding a discrepancy block. A 0m×r 0m×2n

0l×s B 0l×2n
D11 D12 In ⊗ d′

  x
y
e

 =

 b
c

0n

 (11)

where

D11 =
[

1′k ⊗ In 0n×2(nk+g)

]
and D12 =

[
−1′p ⊗ In 0n×2(np+h)

]
,

 
1657



and m = g + nk; l = h+ np; r = 3np+ 2h; y s = 3nk + 2g. Again we warn the reader
not to confuse these variables with others of the same name in other sections of the paper.
The objective function of the program (10) is the sum of the discrepancy terms in x2 and
y2 obtained through the product z′ [x′, y′]′, where

z′ =
[

0′nk 1′2(nk+g) 0′np 1′2(np+h) 1′2n
]
.

In case of imperfect equilibrium, the objective function is similar, except that in the weight-
ing vector the last block 1′2(n+h) is replaced by 1′2(2n+h). In the appendix we present a
numerical example.

6. Temporal Disaggregation of Matrices

Sometimes we need to disaggregate a matrix temporarily using a set of time series related to
one of the dimensions of the matrix. For example, we might be interested in decomposing
an annual supply matrix using a set of time series of quarterly gross production value (GPV)
by industry. To do so we are provided with the following information:

(i) The annual GPV by product (u) and industry (v). The first is known only for the year
in question. The sum of the elements u matches that of v; the dimensions of u and v
are n× 1 and k × 1, respectively.

(ii) A succession of quarterly industry GPV vectors of which we are only interested in
the four (v(1), . . . , v(4)) that add up to the annual total v.

(iii) An indefinite number of quarterly series (complementary to those of the GVP) of cer-
tain products by industry. These series may contain precise or approximate values. In
both cases, these are continuous series, although later we will relax this assumption.

The reader will notice that so far we do not require an annual benchmark matrix, or quar-
terly benchmark matrices X(t)

0 for the task. So, based on the given information, we intend
to find four matrices X(t) that satisfy the following conditions:

(i) The sum of quarterly totals 1′nX(1) + · · · + 1′nX(4) and X(1)1k + · · · + X(4)1k must
equal the given annual totals v′ and u.

(ii) The rows of each X(t) must add up to the corresponding quarterly vector v(t), that is
1′nX(t) = v(t)′.

(iii) The solution must also match those elements of X(t) that are known exactly from
alternative sources. We will assume that we know r elements belonging to r/4 alter-
native series.

(iv) The discrepancy between the solution and certain s elements of X(t) that are known
only approximately must be minimal. We will assume that these s elements belong
to s/4 alternative time series.

 
1658



The four conditions can be expressed in a single system of restrictions like the one shown
below. For ease of reading we have divided A and b with dotted lines.



A11 . . . A11 0(n+k)×2nk . . . 0(n+k)×2nk
Ik ⊗ 1′n . . . 0k×nk 0k×2nk . . . 0k×2nk

...
. . .

...
...

. . .
...

0k×nk . . . Ik ⊗ 1′n 0k×2nk . . . 0k×2nk
A31 . . . 0r 0r×2nk . . . 0r×2nk

...
. . .

...
...

. . .
...

0r . . . A31 0r×2nk . . . 0r×2nk
A41 . . . 0s A22 . . . 0s×2nk

...
. . .

...
...

. . .
...

0s . . . A41 0s×2nk . . . A22





x(1)1
...
...

x(4)1

x(1)2
...
...
...

x(4)2



=



b1

v(1)
...

v(4)

b(1)
3
...

b(4)
3

b(1)
4
...

b(4)
4


(12)

The first condition is represented by the upper left area. This condition ensures that the
sum of quarterly totals, by row and column, matches u and v′. The immediately lower area
represents a block diagonal matrix in which each block Ik ⊗ 1′n reproduces the set of con-
straints in (2) that guarantees that The sum of the rows matches the given total. In this case
the condition is met for each quarter, as established in (ii). The next two areas below in-
troduce strict and approximate equality restrictions, respectively, based on alternative time
series. By representing conditions (iii) and (iv) in this fashion we have assumed that all
alternative series are continuous, and that is why all diagonal blocks are the same. If the
time series were discontinuous, the blocks within each area would be different because of
the elimination of those rows with missing data.

On the basis of the system (12) we can propose some variants adapted to the available
information. For example,

(a) If we are provided with an annual benchmark matrix, we could introduce a system
of restrictions of the type[

1′4 ⊗ Ink 0nk×h Ink ⊗ d′
]

x = b2, (13)

where h is the number of columns needed to make the system conformable with other
constraints, and b2 is the vectorized annual benchmark matrix, that is b2 = vec(X0).

(b) If quarterly benchmark matrices were available, they could be introduced in the sys-
tem of constraints in the same way as the proxy series.. That is, b(t)

4 = vec(X(t)
0 ) and

logically s = nk.

7. Conclusion

In the paper we show how to adjust, balance and disaggregate (reconstruct in general)
matrices with linear programming, motivated mainly by the inability of standard methods
(particularly RAS) to incorporate complementary information and deal with missing or
faulty data. This inability is currently a matter of debate in the field of public statistics, as
points out in the 2018 edition of the United Nations manual on supply, use and input-output
tables [7, §18.14 p. 477],

 
1659



“It is important to note that although the projection problem has given rise
to a number of attractive mathematical features, they are often not combined
with survey data, other data sources or expert opinions on certain key elements
like rows, columns or individual cells.”

In addition to this remark about the waste of useful information we add our own con-
cern about the possibility of involuntarily manipulating results by selecting methods that
exclude relevant information. Adjusting with linear programming solves this and other
related problems such as that of missing or faulty data (a problem seldom treated in the
bibliography) but has the disadvantage of producing results that are incomparable. This is
so because when applying a standard method (RAS, for example) the differences between
two reconstructed matrices can only be due to differences in the given data, that is, X0,
u and v. However, with the procedure described above, the differences between two so-
lutions, besides being explained by the input data, can also be explained by the available
sources of information that complement the benchmark matrix, the quantity of missing or
(discarded) faulty data, the quantity and precision of related time series produced by the
statistical office, etc. In other words, the adjustment method we propose relies heavily
on the quality of the Statistical System as a whole because it depends completely on the
abundance of information of good quality.

 
1660



A. Numerical Examples

Example A.1. (Adjustment of a matrix to given marginal totals) X0 is the matrix we want
to adjust, and u and v′ are the marginal totals of a hypothetical matrix X consistent with
them. The reader can verify that neither the sum of the columns of X0 match u, nor does
the sum of the rows of the same matrix match v ′. However, the sum of the u elements is
equal to that of the elements of v′.

X0 =

 5 3
1 2
9 1

 , u =

 7
4
7

 y v′ =
[
11 7

]
.

The expansion of the expression (4) is the following. For clarity, the elements of the so-
lution keep the subscript they would have in X, and the elements we called e are errors or
discrepancies. The subscripts of the discrepancies are those of the associated element of
X. The supra-indexes + or − indicate the sign of the difference between each element of
the outdated matrix and the corresponding element in the solution matrix. The weighting
vector of the objective function for this problem is z′ = [0′6 1′12].

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 −1





x11
x21
x31
x12
x22
x32
e−11
e+11

...
e−32
e+32



=



7
4
7

11
7

5
1
9
3
2
1



.

Next we transcribe the solution found with linear programming (LP) and for comparison
purposes the solution found with RAS. The latter was obtained in the ninth iteration and
with a maximum tolerance of 1 × 10−5. Both calculations were made with own software
written for Euler Math Toolbox.3 In the case of the LP method we used the simplex algo-
rithm included in Euler. The fact that the elements of the LP solution are all integers is not
casual but the consequence of using integers in the benchmark matrix and marginal totals.
The reader can verify that both solutions satisfy v′ = 1′3X and u = X12.

XLP =

 4 3
1 3
6 1

 XRAS =

 3, 85 3, 15
1, 07 2, 93
6, 08 0, 92

 .

Example A.2. (Approximate Matrix Balancing) Let us consider again matrices X0, uX and
vX from example A .1, plus the following three analogous matrices:

Y0 =

 3 5
2 2
3 4

 , uY =

 9
5
5

 y v′Y =
[
6 13

]
.

3Software freely downloadable from http://euler-math-toolbox.de/download.html

 
1661



We want to find a vector u∗ that has a minimum distance with uX and uY, two matrices X
and Y compatible with u∗ and the corresponding vectors v∗X and v∗X. The constraint system
associated with this problem is relatively simple because the matrices to be balanced are of
the same dimensions, so A = B. Then, the system of constraints will be A 011×28

011×28 A
D11 D12

 x
y
e

 =

 b
c
03


where A, D11 and D12, b y c are the matrices defined next.

A =

 1′2 ⊗ I3 I3 ⊗ d′ 03×4 03×12
I2 ⊗ 1′3 02×6 I2 ⊗ d′ 02×12

I6 06×6 06×4 I6 ⊗ d′

 , b =

 uX
vX

vec(X0)

 , c =

 uY
vY

vec(Y0)

 ,

D11 =
[

1′2 ⊗ I3 03×22
]

y D12 =
[
−1′2 ⊗ I3 03×22

]
.

For brevity it is not possible to fully expand these matrices to show each of its elements,
but the reader can verify that the blocks to the left of the dotted line in A are identical to
those on the left hand side of the dotted line of the homologous matrix in example 1, and
that the last column of blocks is equal to the areas on the right side of the dotted line. The
weighting vector of the target function is z′ = [0′6 1′22 0′6 1′22]. The solution to the program
is as follows.

X =

 5 3
1 3
6 1

 , Y =

 1 7
2 2
3 4

 , u∗X = u∗Y =

 8
4
7

 y
[

v′X
v′Y

]
=

[
12 7
6 13

]
.

Example A.3. (Temporal disaggregation) Let us assume that matrix X0 and the vectors u
and v from the first example are annual totals, and we are asked to find four quarterly matri-
ces whose margins add up exactly to u and v. For that purpose we are also given two quar-
terly series v(1)j , . . . , v

(4)
j and an additional proxy series whose elements are x

(1)
31 , . . . , x

(4)
31 .

With this information we will make two computations, one omitting X0 and another one
exploiting the information provided by this matrix.[

v(1) . . . v(4)
]
=

[
1 3 5 2
4 1 2 0

]
y

[
x
(1)
31 . . . x

(4)
31

]
=
[
2 3 3 1

]
.

(a) Disaggregation omitting X0. The constraint system is a simplified version of the expression
(12). The blocks A11 have been reduced to 1′2 ⊗ I3 because the sum of the quarterly
vectors v(t) is exactly equal to the annual total v. We have also omitted the part of the
system (12) that involves the blocks A31 since we do not have exact information about
any of the elements of X(t), and we represent the blocks A41 as vectors, since in this case
A41 = a′41 = [0′2, 1, 0′3].

1′2 ⊗ I3 . . . 1′2 ⊗ I3 03×2 . . . 03×2
I2 ⊗ 1′3 . . . 02×6 02×2 . . . 02×2

...
. . .

...
...

. . .
...

02×6 . . . I2 ⊗ 1′3 02×2 . . . 02×2
a′41 . . . 0′6 d′ . . . 0′2

...
. . .

...
...

. . .
...

0′6 . . . a′41 0′2 . . . d′





x(1)1
...

x(4)1

x(1)2
...

x(4)2


=



u
v(1)

...
v(4)

x
(1)
31
...

x
(4)
31


 

1662



The following are the four matrices found. The reader can verify that the columns of the
four matrices add up to u while the rows add up to u.

X(1) =

 0 4
1 0
0 0

 , X(2) =

 0 0
0 1
3 0

 , X(3) =

 0 2
2 0
3 0

 , X(4) =

 1 0
0 0
1 0

 .

(b) Disaggregation with X0. In this case, we add a line of blocks of I6 and additional discrep-
ancy terms to the previous system, as well as the vector b2 = vec(X0) on the right hand
side of equality.

1′2 ⊗ I3 . . . 1′2 ⊗ I3 03×2 . . . 03×2 03×12
I2 ⊗ 1′3 . . . 02×6 02×2 . . . 02×2 02×12

...
. . .

...
...

. . .
...

...
02×6 . . . I2 ⊗ 1′3 02×2 . . . 02×2 02×12
a′41 . . . 0′6 d′ . . . 0′2 01×12

...
. . .

...
...

. . .
...

0′6 . . . a′41 0′2 . . . d′ 01×12
I6 . . . I6 06×2 . . . 06×2 I6 ⊗ d′





x(1)1
...

x(4)1

x(1)2(1)
...

x(4)2(1)

x2(2)


=



u
v(1)

...
v(4)

x
(1)
31
...

x
(4)
31

b2


Solving the program under this specification and z′ = [0′24 1′20] we get the matrices

X(1) =

 1 1
0 2
0 1

 , X(2) =

 1 0
0 1
2 0

 , X(3) =

 1 2
1 0
3 0

 , X(4) =

 1 0
0 0
1 0

 .

References

[1] Frank L. (2019). Desagregación temporal de series económicas con programación lin-
eal. Revista Ensayos de Polı́tica Econmica. Aceptado, 6 de febrero de 2019.

[2] Frank L. (2019). Interpolating Data with Linear Programming. Statistical Journal of
the IAOS. Enviado, 1ero. de octubre de 2018.

[3] Huang W., Kobayashi S. y H. Tanji (2008). Updating an InputOutput Matrix with Sign-
Preservation: Some Improved Objective Functions and their Solutions. Economic Sys-
tems Research 20: 111-123.

[4] Junius T. y J. Oosterhaven (2003). The solution of updating or regionalizing a matrix
with both positive and negative entries. Economic Systems Research 15: 87-96.

[5] Lahr M. L. y L. de Mesnard (2004). Biproportional Techniques in InputOutput Analy-
sis: Table Updating and Structural Analysis. Economic Systems Research 16: 115-134.

[6] United Nations, Statistics Division, Department of Economic and Social Affairs
(1999). Handbook of Input-Output Table Compilation and Analysis. Studies in Meth-
ods. Series F No. 74. Handbook of National Accounting. New York.

[7] United Nations, Statistics Division, Department of Economic and Social Affairs
(2018). Handbook on Supply, Use and InputOutput Tables with Extensions and Ap-
plications. Studies in Methods. Series F No. 74, Rev. 1. Handbook of National Ac-
counting. New York.

 
1663



[8] Williams, H.P. (2013). Model Building in Mathematical Programming. 5th ed. John
Wiley & Sons Ltd. West Sussex. 432 p.

 
1664




