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Abstract
Surveys are often designed with the purpose of producing reliable estimates at upper levels of aggre-
gation, but information at disaggregated levels may also be needed. The demand for official statistics
at fine levels and at low cost is motivating researchers to explore alternative estimation methods. For
this work, the challenge originated with the U.S. Bureau of Labor Statistics’ National Compensation
Survey (BLS’s NCS), which aims to collect wage and non-wage compensation data of employees
in the United States. For this survey program, the BLS is interested in producing hundreds of thou-
sands of employee compensation statistics that serve as key data in producing economic indicators,
such as the quarterly Employment Cost Index and the Employer Costs for Employee Compensation,
of interest especially to government agencies and institutions. In this paper, a bivariate hierarchical
Bayes model is developed using sparse survey data available for fine domains defined by geography,
occupations, work levels within occupations, and job characteristics (union/non-union membership,
full-time/part-time work status, and incentive-based/time-based pay), from the NCS. Model predic-
tions are then constructed for the small set of domains, for which survey data are available, and
for a much larger set of domains, for which survey data are not available. Also, discussed in this
paper are methods for addressing challenges in identifying the prediction space, in constructing and
selecting the information that serves as model input, and in making use of relationships between
variables and domains structure.
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1. Introduction

With a growing demand for granular statistics, increasing costs of data collection and a
need for integrating data from multiple sources, agencies are continuously increasing their
interest in small area estimation models. The U.S. Bureau of Labor Statistics publishes
monthly small area estimates of employment and unemployment, part of the Local Area
Unemployment Statistics program. The U.S. Census Bureau has implemented small area
estimation models in the production of official statistics of income and poverty measures for
the Small Area Income and Poverty Estimates (SAIPE) program (Bell, Basel, and Maples,
2016). The U.S. National Agricultural Statistics Service is reviewing small area model-
based estimates for the production of crops (Erciulescu, Cruze, and Nandram, 2019), cash
rents (Erciulescu et al., 2018) and agricultural labor official statistics (Erciulescu, 2018).
The Chilean Ministerio de Desarrollo (Casas Cordero Valencia, Encina, and Lahiri, 2016)
and the World Bank (Elbers, Lanjouw, and Lanjouw, 2003) use small area estimation mod-
els for poverty mapping. These are all examples of important government programs that
already employ or are actively considering small area estimation methods. The variety and
complexity of each of these practical studies is difficult to generalize to one single strat-
egy. In a recent article, Tzavidis et al. (2018) attempted to present such framework for the
production of small area official statistics but limited the presentation to unit-level mod-
els, with fairly simple specifications, variance structures that ignored the design effect, and
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prediction for domains with sample data only.
Small area estimation methods aim to improve on estimates that rely only on the ob-

served survey data within the small domains, by borrowing information across all domains
and by using auxiliary data, to allow for estimation in domains with no survey data and pro-
vide associated measures of uncertainty for granular statistics in a transparent, reproducible
and validated process. There is rich and growing literature on small area estimation mod-
els, since the introduction of the major classes, in the pioneering papers by Fay and Herriot
(1979) (area-level models) and Battese, Harter, and Fuller (1988) (unit-level models). For
more details and extensions, we refer to comprehensive reviews of the field, including
Ghosh and Rao (1994), Jiang and Lahiri (2006), Datta and Ghosh (2012), and Pfeffermann
(2013), and the monograph Rao and Molina (2015).

In the frequentist framework, likelihood-based or approximate likelihood-based meth-
ods are common approaches for estimation of small area models parameters. Other ap-
proaches, which have proven to perform not as well as the likelihood-based methods, in-
clude method of moments and analysis of variance (ANOVA). For a simulation study com-
paring different estimation methods, we refer to Datta, Rao, and Smith (2005). In the ma-
jority of the literature, empirical best linear unbiased predictions (EBLUPs) are constructed
under the framework of linear mixed models with an averaged squared error loss. A major
methodological challenge is the derivation of an accurate estimator for the prediction mean
squared error (PMSE) of the EBLUP, and an extensive literature on the topics exists, with
several competing estimation approaches; for a classical case, we refer to Prasad and Rao
(1990), who used an ANOVA-type estimator for the random effects variance component
and derived a second-order unbiased estimator for the PMSE of the EBLUP, and for al-
ternative, resampling, methods, we refer to Jiang and Lahiri (2006) and Rao and Molina
(2015). Finally, the construction of prediction intervals for the EBLUPs have been of in-
terest to many, but only few publications are available. The motivation for these studies
is the fact that Wald-type intervals that use the PMSE estimator in lieu of the variance are
often not accurate for areas with small sample sizes. Different corrections to prediction
intervals have been studied by Datta et al. (2002) and Diao et al. (2014). Resampling
methods have been used to construct bootstrap prediction intervals Hall and Maiti (2006),
Chatterjee, Lahiri, and Li (2008), Erciulescu and Fuller (2018).

In a Bayesian framework, both empirical Bayes and hierarchical Bayes approaches have
been considered in the literature as estimation approaches of small area models parameters.
Under this framework, Markov Chain Monte Carlo (MCMC), often times in combination
with other Bayesian sampling algorithms, have been greatly studied. On the other hand, for
simple distributional assumptions with practical computational properties, MCMC may not
even be needed; see, for example, Molina, Nandram, and Rao, 2014. In an empirical Bayes
approach, distributional assumptions are made for the error terms, and the model parame-
ters are treated as fixed, estimated a priori using a classical method. This approach was used
in Fay and Herriot (1979) for constructing small area predictions and in Cox (1975) for con-
structing prediction intervals. In a hierarchical Bayes approach, distributional assumptions
are made for the error terms and prior distributions are adopted for the nuisance parameters;
when a priori information is not available, common choices are non-informative priors. In
either of the two approaches, inference is based on the posterior distribution of the param-
eters of interest, given the data (survey direct estimates) and nuisance parameters. Arora
and Lahiri (1997) proposed one of the initial hierarchical Bayes approaches to small area
estimation and showed a case of superiority of the Bayes estimator of a small area over
the corresponding BLUP, in terms of reducing the PMSE. One advantage of the Bayesian
methods for estimation is that the full conditional distribution is derived for the parameters
of interest, without additional computations or approximations; therefore, posterior means,
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posterior variances, and posterior credible intervals may be obtained in a straightforward
manner. Two additional advantages of the Bayesian methods are that, under appropriate
model and priors specification, the posterior mean of a variance component will always be
positive, and the implementation and prediction methods of complex functions of parame-
ters can be handled straightforwardly. One drawback of the Bayesian methods may be the
computational complexity and time.

Multivariate small area estimation models can be used to incorporate the relationship
between two or more variables of interest. The motivation for modeling multiple variables
of interest jointly instead of separately is that, when they are correlated, the small area
estimates will be more precise under joint modeling. A small number of studies of the
multivariate Fay-Herriot (FH) model have appeared in the literature. Fay (1987), Fuller
and Harter (1987) and Datta, Day, and Basawa (1999) discussed the use of multivariate
regression for small area estimation and constructed empirical Bayes predictions. Datta,
Fay, and Ghosh (1991), Datta et al. (1996), and Datta, Day, and Maiti (1998) constructed
hierarchical Bayes predictions using a multivariate small area model. Gonzalez-Manteiga
et al. (2008) demonstrated the performance of the bivariate FH model using simulation
studies; the authors used methods of moments for parameters estimation and compared a
closed-form expression with a bootstrap estimator for the prediction mean squared error (a
matrix referred to by the mean crossed product error matrix). Fay, Planty, and Diallo (2013)
extended the dynamic model in Rao and Yu (1994), and use maximum likelihood estimation
methods to estimate the parameters of a multivariate model. Concurrently, Krenzke et
al. (2019) developed bivariate hierarchical Bayes area-level models for adult competency
proportions.

The goal of this paper is to provide an estimation framework that expands on the classic
small area estimation approaches. Whereas direct survey estimation relies only on the ob-
served survey data within the small domains, the classic small area estimation approaches
borrow strength from information across all domains and from auxiliary data. Lacking
auxiliary data of good predictive power, at the level of interest, we explore the construc-
tion of covariates using categorical variables used in the domain definitions. Moreover, our
proposed framework borrows strength from the relationship between multiple quantities of
interest, in addition to borrowing strength from information across all domains and from
covariates. Model predictions and associated measures of uncertainty are constructed for
the set of domains with sample data, as well as for a set of domains with no sample data.
Unlike classical small area estimation approaches, where predictions are constructed for
all the theoretically possible domains, we define the set of domains plausible for prediction
a priori, using ancillary information. The methodology developed is a transparent, repro-
ducible and validated process, that relies on hierarchical Bayes methods for model fit and
prediction.

In Section 2, we introduce the motivation for this work, describe the data available
for the application study, and present a framework for direct survey estimation. Small
domain estimation models are described in Section 3, in the form of bivariate Fay-Herriot
models, along with a framework for model fit and prediction. Model validation methods
are presented in Section 4. Of interest to the motivation study, results for the prediction of
employee compensation components are provided throughout the paper. A discussion of
practical challenges and concluding remarks are given in Section 5.

2. Application Background

The motivation for this work is the interest in small area estimation methodology at the U.S.
Bureau of Labor Statistics’ (BLS’) Office of Compensation and Working Conditions. The
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BLS’ National Compensation Survey (NCS) production and publication has experienced a
decrease in sample size as a result of the enactment of the 2011 federal budget. See Lettau
and Zamora (2013), for more information on the NCS program. However, interest remains
in potentially producing hundreds of thousands of compensation statistics by geography,
occupation, classification, and work level. The official statistics produced using NCS data
serve as key data in producing economic indicators, such as the quarterly Employment
Cost Index and the Employer Costs for Employee Compensation, of interest especially to
government agencies and institutions.

The NCS is a nationwide establishment-based survey conducted to collect data on la-
bor cost and compensation components, such as wages, salaries, and benefits. NCS data
are collected on the pay period that includes the 12th day of the month, using a two-stage
sample design: in the first stage, a probability proportional to size sample of establish-
ments is drawn from the list frame, and in the second stage, a sample of occupations (to
be denoted by ‘quotes’) is drawn within the establishments sampled in the first stage, us-
ing a complex four-step procedure. The occupations are defined using the six-digit codes
from the Standard Occupational Classification (SOC) system. Official statistics produced
using NCS data are published four times a year, for the reference months of March, June,
September, and December. For more information on the NCS, we refer to Bureau of Labor
Statistics (2018).

2.1 Data

For our application, the data are available from the NCS, at the quote level, for June 2017.
In particular, sample data on employee compensation components, wage and benefits, mea-
sured in $/hr, are available for 36,790 quotes with positive compensation. The area, or the
domain, of interest is defined by the combination of geography, occupation, work level, and
characteristics (time/incentive, full-time/part-time, union/nonunion). Geography is defined
by the nine census divisions (groups of states). Occupation is defined in O*NET-SOC,
six-digits SOC system codes being of interest, and there are a total of 759 in the sample
data. Work levels range from 1 to 15 and are missing for some of the sample data records.
The total number of cells that can be constructed by cross-tabulating these categorical vari-
ables, and corresponding to the total number of theoretically possible domains, is 874,368.
It is important to note that sample data are only available for 16,107 domains, with most
domains having very small or zero realized sample size. On the other hand, information
on the classification of six-digit SOC system codes and corresponding work levels is avail-
able from the 2010 SOC system. From that set, we construct the prediction set of interest
to the application, leading to 572,328 plausible domains; the range of work levels varies
across occupations. Finally, base weights and replicate weights are available for the sample
data. In particular, a set of 120 replicate weights was constructed for the balanced repeated
replication (BRR) method, with Fay adjustment factor of 0.5 (see Judkins, 1990). These
replicates will be used in the construction of sampling variances for the domains of interest.

Most of the small area estimation studies in the literature rely on the availability of
auxiliary data, from other surveys, administrative sources or remote sensing sources, to
name a few. However, often, difficulties arise in obtaining auxiliary data that align with the
survey data in terms of time and granularity, that are free or error or subject to quantifiable
error, and that are good covariates for regression models fitted to the survey data. For our
application study, such data are not available, and we propose an alternative method for
constructing model covariates, as will be described in the next section.
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2.2 Survey Summaries

Let i = 1, . . . ,m index the target domains with ni the sample size in domain i, j =
1, . . . , ni the observations (quotes) in the domain, and yij the value of the target variable
(compensation: y1,ij and y2,ij for wage and benefits compensation, respectively) for unit j
in domain i. Let Yi denote the population quantity of interest in domain i, for instance the
domain total

∑Ni
j=1 yij or domain mean

∑Ni
j=1 yij/Ni, with Ni the number of population

units in the domain. We write Ŷi as the direct estimator of Yi, which is constructed using
only the survey data and the survey design weights in domain i. Typically, direct estimators
are of the Horvitz-Thompson or inverse-probability-weighted type. Note that ni can be
zero, in which case Ŷi is undefined.

For our application, the estimation targets are the mean hourly wage and benefits com-
pensation in each domain. Their direct estimators are defined as:

Ŷ1i =

∑ni
j=1(wijy1,ij)∑ni

j=1wij
, Ŷ2i =

∑ni
j=1(wijy2,ij)∑ni

j=1wij
.

Following Guciardo (2019), we construct their associated replicate variance and covari-
ance estimates using the BRR method, with Fay adjustment,

V̂ (Ŷ1i) =

∑R
r=1(Ŷ

r
1i − Ŷ1i)2

R(1− k)2

V̂ (Ŷ2i) =

∑R
r=1(Ŷ

r
2i − Ŷ2i)2

R(1− k)2

Ĉov(Ŷ1i, Ŷ2i) =

∑R
r=1

(
(Ŷ r

1i − Ŷ1i)(Ŷ r
2i − Ŷ2i)

)
R(1− k)2

,

where R = 120, k = 0.5, and

Ŷ r
1i =

∑ni
j=1(w

r
ijy1,ij)∑ni

j=1w
r
ij

, Ŷ r
2i =

∑ni
j=1(w

r
ijy2,ij)∑ni

j=1w
r
ij

are the direct estimators constructed using the replicate weights, for r = 1, ..., R.
The direct point and variance/covariance estimates just defined are the key inputs into

the domain-level models to be considered in the next section. It is not necessary to have
estimates in all domains of interest, since the small domain model will be able to handle
prediction for unobserved domains. However, observed domains i, for i = 1, ...,m, require
valid sets of estimates, in particular, non-zero point and variance estimates and non-singular
variance-covariance matrices, V̂ (Ŷ1i) Ĉov(Ŷ1i, Ŷ2i)

Ĉov(Ŷ1i, Ŷ2i) V̂ (Ŷ2i)

 .
Let the domains of interest be also denoted as fine-level domains (16,107 domains);

recall that these domains are defined by the cross-tabulations of census divisions, six-digit
SOC system codes, work levels, full-time/part-time, union/nonunion, time/incentive. In
contrast, let high-level domains (197 domains) be defined by the cross-tabulations of census
divisions and two-digit SOC system code. Then, survey summaries are provided in Table 1:
sample sizes, effective sample sizes neffi := (

∑
j w

2
ij)
−1(
∑

j wij)
2, effective sample size

in domain i, and coefficients of variation (CVs) for wage and benefits survey estimates.
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Note that the domain-level sample sizes are very small, having a median of 1, for the
fine-level domains, and reasonably large for the high-level domains; similar results for the
effective sample sizes. Despite this result, most of the CVs for the fine-level domains
estimates are smaller than the CVs for the high-level domains estimates, as a consequence
of unreliable survey estimates at fine levels of granularity.

Table 1: Survey Summaries

Fine Level High Level
Statistic Sample Effective CV(%) Sample Effective CV(%)

Size Sample Size Wage Benefits Size Sample Size Wage Benefits
Minimum 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00
1st Quantile 1.00 1.00 0.00 0.00 60.00 23.90 3.77 6.00
Median 1.00 1.00 0.00 0.00 127.00 48.41 5.63 8.67
Mean 2.28 1.85 2.62 4.69 186.75 68.98 7.40 11.56
3rd Quantile 2.00 1.99 2.80 5.27 234.00 90.85 9.55 14.45
Maximum 74.00 45.86 68.12 92.20 1308.00 367.77 39.12 80.88

Preliminary data investigation and estimation using multiple linear regression models,
fitted to the survey estimates of wage and benefits, separately, indicated overall departures
from common normality assumptions, which adds an additional complication to the small
area estimation modeling. Therefore, we apply a log transformation to the survey estimates,

y1i := log(Ŷ1i), y2i := log(Ŷ2i),

and transform the associated variance-covariance matrices estimates with entries

σ2ei,1 :=
V̂ (Ŷ1i)

Ŷ 2
1i

, σ2ei,2 :=
V̂ (Ŷ2i)

Ŷ 2
2i

,

σei,12 := Ĉov(Ŷ1i, Ŷ2i)
σei,1σei,2√
V̂ (Ŷ1i)V̂ (Ŷ2i)

.

Figure 1 illustrates the effect of such transformation on the overall distributions of the
domain-level survey estimates.

We note that a possible alternative approach for variance estimation for the transformed
estimates consists of applying the replication variance estimation formulas directly to the
transformed variables. In our application, the survey summaries for the two sets of variance
estimates were similar, so we proceeded with the variance transformation approach. One
practical advantage of the variance transformation approach is that it can be applied to the
domain-level summary statistics, without the need for record-level data.

To mitigate the zero or very small, fine-level domains variances estimates, we devel-
oped a three-step procedure. First, we impute for zero or missing high-level variances
(covariance) estimates using the mean (median) of the available, positive, variances (co-
variances) estimates. Then, we project the high-level variances and covariances estimates
onto fine levels, inversely proportional to the effective sample sizes,

Σei,1,1 := (neffi )−1σ2,Hei,1n
eff,H
i , Σei,2,2 := (neffi )−1σ2,Hei,2n

eff,H
i ,

Σei,1,2 := (neffi )−1σHei,12n
eff,H
i ,

where the superscript H corresponds to high-level domains statistics. Finally, we ap-
proximate the variance-covariance matrices by the nearest positive-definite matrices (see
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Figure 1: Distributions of the domain-level wage and benefits survey estimates, before and
after the transformation and revision, constructed using the sample data. The x-axes are
removed due to disclosure limitations.

Higham, 1988). Figure 2 illustrates the effect of such revisions on the overall distributions
of the domain-level survey variances and covariances estimates.

3. Models

Model-based estimation methods are useful tools for improving survey-based estimation
for domains with small amounts of data because they provide a principled way to incor-
porate the survey estimates, the relationships between variables and external (auxiliary)
information, while also accounting for sources of uncertainty in these components. In the
context of small domain estimation, the models are fit to the set of domains with sample
data, but predictions are constructed for all the domains in the prediction space.

In this section, we introduce the small domain estimation models as hierarchical mod-
els, with a sampling level corresponding to the model for the domain direct estimates and
a linking level corresponding to the model for the domain target quantities and auxiliary
data. To incorporate the relationship between two or more variables of interest, we con-
sider multivariate small domain estimation models. In particular for the application, wage
and benefits compensation components are jointly modeled. The motivation for modeling
multiple variables of interest jointly instead of separately is that, when they are correlated,
the small domain estimates can be expected to be more precise under joint modeling. In the
application using the NCS data under consideration, the correlation between the domain-
level wage rate estimates and the corresponding benefits estimates, for fine-level domains
is approximately 0.8. Therefore, in the application study, we expect some reductions in the
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Figure 2: Distributions of the domain-level wage and benefits survey variances and co-
variances estimates, before and after the transformation and revision, constructed using the
sample data. The x-axes are removed due to disclosure limitations.

variances of the model predictions based on a bivariate model, compared to variances of
model predictions based on separate univariate models.

3.1 Model Matrix

As mentioned in the previous section, auxiliary data available from sources other than
the NCS are not available at the level of granularity of interest for this study. Therefore,
we explore the possibility of constructing covariates from the survey data available; in
particular, the categorical variables that are used to define the domains of interest, as well
as their interactions. In this subsection, we describe a method for constructing the model
matrix.

First, a full model matrix is constructed by cross-tabulating the categorical variables
defined by the census divisions, six-digit SOC system codes, work levels, full-time/part-
time, union/nonunion, time/incentive, and their two-way interactions. The number of rows
in the resulting matrix equals to the number of domains in the sample data. Because all of
the variables considered are categorical, with different number of levels each (9, 759, 16,
2, 2, 2, respectively), the resulting model matrix is a binary matrix, with multiple columns
corresponding to each of the six variables levels, and additional columns corresponding to
the interaction terms. Therefore, the number of columns in the full model matrix equal to
20,684 (= (9−1)+(759−1)+(16−1)+(2−1)+(2−1)+(2−1)+((9−1)+(759−
1) + (16− 1))× ((2− 1) + (2− 1) + (2− 1)) + (9− 1)× (759− 1) + (9− 1)× (16−
1) + (759− 1)× (16− 1) + (2− 1)× (2− 1) + (2− 1)× (2− 1) + (2− 1)× (2− 1)).

To reduce the number of dimensions of the model matrix, we implemented three clas-
sic selection procedures: a multiple or multi-task learning method, a decision trees method,
and a likelihood-based method. For these, each column in the model matrix is treated as a
covariate. Note that we violate the interaction criterion by selecting levels of the original
variables or their interactions, without constraining on selecting all their main effects lev-
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els; this is not a concern because our interest is in prediction, and not in determining and
explaining the effects of each of the variables on the final predictions.

Aligning with the goal of modeling jointly wage and benefits compensation compo-
nents, we start the selection of columns in the model matrix with a 10-fold cross-validated
fit of a multivariate Lasso, assuming multivariate normal distribution. Applying a multi-
variate Lasso penalty results in a set of selected covariates across both responses (wage and
benefits survey estimators), determined using the tuning parameter that gives the minimum
mean cross-validated error. This effort is validated by previously fitted multiple linear re-
gression models to wages and benefits, separately, using the same set of covariates defined
using the six categorical variables under discussion, that resulted in comparable coeffi-
cients of determination. Finally, we impose a constraint that all the estimated regression
coefficients be greater than 0.03, in absolute value. The set of selected covariates using
multivariate Lasso consists of 612 variables.

To further reduce the dimensions of the model matrix, we apply two additional vari-
able selections methods, separately to wage survey estimates and benefits survey estimates,
starting with the set of covariates selected by the multivariate Lasso-type method described
above. A subset of covariates is selected using an algorithm of decision trees models that
recursively partitions the data until the outcomes in the final disaggregated group are as
nearly homogeneous. A second subset of covariates is selected using stepwise selection us-
ing Akaike Information Criterion with both backward and forward selection. The final set
of covariates is defined as the intersection of the these two sets, and consists of 18 variables;
see Appendix A for a descriptive list of the final set of covariates selected for modeling.
The final model matrix includes these 18 variables and an intercept.

Multiple linear regression models are again fit to the wage survey estimates and bene-
fits survey estimates, to asses the predictive power of the final set of covariates selected for
modeling. Plots of the survey estimates against the fitted values, as well as the coefficients
of determination, for these two models, are illustrated in Figure 3. Assuming homoge-
neous sampling variances across the domains (which is not the case), the results in Figure
3 suggest a resonable percentage of the sampling variability is being explained by the set
of selected covariates. Next, we allow for heterogeneous sampling variances across the do-
mains, for joint modeling of wage and benefits survey estimates, and for use of information
across the domains; expecting additional variability to be explained by the last two.

3.2 Small Domain Hierarchical Bayes Bivariate Model

We previously described the construction of the model input: survey estimates of wage and
benefits, with associated variance-covariances matrices and a set of covariates with reason-
able predictive power. Now, the proposed bivariate model is developed as a hierarchical
Bayes model of the form:

Sampling Model: yi|(θi,Σei, β,Σv) ∼ N(θi,Σei)
Linking Model: θi|(β,Σv) ∼ N(xiβ,Σv)

Priors: β ∼ N(0, 104I), component-wise
Σv ∼ Inverse-Wishart(3, I)

where i = 1, · · · ,m = 16, 107 is an index for the small domains (cross-tabulations of
census divisions, six-digit SOC system codes, work levels, binary characteristics), yi is the
vector of domain-level direct survey estimates for wage and benefits, θi is a vector of the
two quantities of interest (true wage and true benefits), xi is the final model matrix defined
in the previous section, of dimensions m × p = 16, 107 × 19, β is a vector of p = 19
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Figure 3: Survey estimates against the fitted values from multiple linear regression models,
fitted separately to wage survey estimates and benefits survey estimates

unknown regression coefficients, Σv is the linking model variance-covariance matrix, of
dimension 2 × 2, and Σei is a known survey variance-covariance matrix, of dimensions
2×2. Independent, noninformative, proper priors are adopted for the parameters β and Σv.

The relationship between the small domain population value θi and the auxiliary data
xi is described in the linking model. Note that the population value θi, which is usually
treated as fixed in the survey context, is a random variable under this model specification.
Inference is based on the predictive distribution, [θi|yi, xi,Σei, β,Σv].

The model is fit using MCMC, with three chains, each chain starting with 3,000 sam-
ples, of which 1,000 samples are burned in. To speed up the convergence, the least squares
estimates from the multiple regression models, fit separately to wage and benefits survey es-
timates, are used as initial values for the regression parameters; the least squares estimates
are deviated by (−0.1, 0, 0.1) for the three chains, respectively. To reduce the autocorrela-
tion in the chains to make inference that assumes nearly independent samples, we thin each
of the chains so that every 10th iteration is kept. The resulting set of 600 samples is used
for inference.

3.3 Prediction

The model predictions are composites of direct survey estimates and synthetic predictions
based on the hierarchical Bayes model described above. Direct estimates with large sam-
pling variances, relative to all the sampling variances, would be smoothed more than the
others, toward a common trend prediction that depends on the linear relationship assumed
between the direct estimates and the covariates, as well as the bivariate relationship as-
sumed for the wage and benefits compensation components. In this section, we will discuss
prediction for two types of domains: in-sample domains, defined as the domains where sur-
vey sample data are available, and not-in-sample domains, defined by the domains where
survey sample data are not available, but classification data from the SOC suggests they are
plausible and, hence, are part of the prediction space.

Using the R samples θiζ , ζ = 1, · · · , R, from the predictive distribution [θi|yi, xi,Σei,
β,Σv], posterior summaries such as means, variances, credible intervals, may be con-
structed for the wage and benefits, on the log scale. Since the interest is in these quantities
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on the original scale, we also consider back-transforming the samples using an exponential
transformation, θ∗iζ := exp(θiζ). Then, final model predictions are defined as

• point estimates: R−1
∑R

ζ=1 θ̃iζ ,

• variance estimates: R−1
∑R

ζ=1

(
θ̃iζ −R−1

∑R
ζ=1 θ̃iζ ,

)2
• p quantile estimates: θ̃i(p), θ̃i = (θ̃i1, · · · , θ̃iR),

where θ̃i, θ̃i ∈ {θi, θ∗i }.
Prediction for not-in-sample domains relies on the model output and on the covariates

available for these additional domains that were not part of the set of domains to which the
model was fit. For the set of domains i

′
, with no sample data, the covariates matrix with

rows xi′ is constructed similarly to the model matrix described previously.
Recall that the additional information on the not-in-sample domains is limited to the

cross-tabulation of six-digit SOC system codes and the plausible work levels within. There-
fore, we assume that all the other job characteristics apply to the set of plausible cross-
tabulations of six-digit SOC system codes and work levels. In the application, there are
743 six-digit SOC system codes with available information on work levels. The final model
matrix is constructed after stacking 743 submodel matrices, each submatrix being specific
to a six-digit SOC system code.

To construct the submodel matrices, we propose the following algorithm. For a given
six-digits SOC system code, the full model matrix is built using the cross-tabulation of
census division categories, plausible work level categories, binary characteristics, and their
two-way interactions, with the rows that correspond to not-in-sample domains only. Then,
the dimension of the sub-model matrix is reduced by selecting main effects and two-way
interactions that use common variables to the ones used to define the columns in the model
matrix used to fit the model. Finally, an intercept term is included in the submodel matrix.
The number of not-in-sample domains ranges from 353 to 864, across the 743 six-digit SOC
system codes considered, leading to a not-in-sample model matrix of dimensions 556,197
× 19.

Finally, for a domain i
′
, with no sample data, we generateR samples θi′ζ , ζ = 1, · · · , R,

from N(xi′βζ ,Σvζ), and transform them back to the original scale θ∗
i′ζ

:= exp(θi′ζ). Sim-

ilarly to the prediction for in-sample domains, posterior summaries for domain i
′

are con-
structed using the set of samples θ̃i′ , θ̃i′ ∈

{
θi′ , θ

∗
i
′

}
, for a not-in-sample domain i

′
.

4. Model Validation

As is the case with any modeling approach, validation is a critical piece in the development.
We discuss two types of model validation checks, that were conducted iteratively with the
model fit and prediction steps, and led to the final model specification presented in the
previous section. For example, the final model matrix, the revised sampling variances, the
normal distribution in the sampling model assumed for the log transformed direct survey
estimates, the noninformative proper priors adopted for the model parameters, the number
of MCMC samples, including burn-in and thinning, are consequences of the iterative steps
implemented between model fit and prediction, and model validation.

4.1 Internal Model Validation

In this subsection, we discuss internal model validation. For this, we consider mixing and
convergence diagnostics for the MCMC sampler, residual diagnostics for the normality
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assumptions, and posterior predictive checks for the normality and linearity assumptions,
and for other characteristics of the sample data (such as order statistics for each of the
response variables, or correlation between the two response variables).

4.1.1 Convergence and Mixing Diagnostics

Convergence and mixing diagnostics for the MCMC sampler are presented in Table 2,
using summaries of the Gelman-Rubin R̂ statistic and the MC effective sample size, across
all of the monitored parameters (regression coefficients, variance-covariance matrices, log-
likelihood). The ranges of these two statistics are acceptable; see Gelman et al. (2013).
While it is preferred that the R̂ be below 1.1, we do report one value of 1.13, for one of the
variance-covariance parameters for benefits but do not consider it a major concern. Also,
the effective sample sizes are above 5% of the number of samples used for inference, which
is again acceptable. The diagnostics presented in Table 2 may be improved by running
longer MC chains, but we believe the improvement in convergence and mixing would not
outgain the cost in computational time, while the changes in model predictions and their
variances would be negligible.

Table 2: Convergence and Mixing Diagnostics

Statistic R̂ MC Effective Sample Size
Minimum 1.00 55.00
1st Quantile 1.00 430.00
Median 1.00 600.00
Mean 1.00 511.10
3rd Quantile 1.00 600.00
Maximum 1.13 600.00

4.1.2 Residuals

Inspired by the transformed residuals computed in Battese, Harter, and Fuller (1988), we

define unconditional residuals as
yi,1 − xiβ̂√
σ̂2v,1 + (σei,1)2)

and
yi,2 − xiβ̂√
σ̂2v + (σei,2)2)

, corresponding

to wages and benefits, respectively; the authors constructed unit-level transformed residuals
that are approximately independent and identically distributed with mean zero and variance
equal to the common constant across all the units, while we constructed domain-level trans-
formed residuals that are approximately independent and identically distributed with mean
zero and variance equal to one. Alternative residuals may be constructed as conditional

residuals,
yi,1 − θ̂i,1
σei,1

and
yi,2 − θ̂i,2
σei,2

, for wage and benefits, respectively. The subscripts 1

and 2 correspond to the two quantities modeled, wage and benefits, for the vectors being
the first or second entry, and for the matrices being the first or second diagonal elements.

Residuals plots against the fitted values xiβ̂ are presented in the first columns of Figures
4 and 5, for the unconditional and conditional residuals, respectively. Despite the observed
decrease in the residuals values with an increase in the fitted values, the scatterplots indicate
no significant departure from the homogeneous variance assumption for residuals. Normal
quantile-quantile plots are presented in the second columns of Figures 4 and 5. The plots in
Figure 5 indicate slightly heavier tails because the conditional residuals are standardized by
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the sampling errors only. Overall, the quantile-quantile plots for benefits look better than
the ones for wages, but no major concerns are indicated; we would expect all the points
to fall close to the 45 degrees line in the case of independent and identically distributed
residuals; however, that is not the case here (wages and benefits were modeled jointly and
the predictions depend on the estimated variance parameters).

Figure 4: Unconditional residuals. Scatterplots, versus fitted values xiβ̂, and normal
quantile-quantile plots, for wage and benefits

4.1.3 Posterior Predictive Checks

To further assess the adequacy of the model fit, we conducted posterior predictive checks.
In particular, for a set of pre-defined statistics, we compare their posterior predictive dis-
tribution to their corresponding values obtained using the original sample. The procedure
to generate data from the posterior predictive distribution is as follows. Consider the pos-
terior samples for β and Σv, denoted by βt and Σt

v, respectively, for t = 1, ..., T = 600.
Construct θti and draw replicates yti following the model:

θti ∼ N(x
′
iβ
t,Σt

v),
yti ∼ N(θti ,Σei),
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Figure 5: Conditional residuals. Scatterplots, versus fitted values xiβ̂, and normal quantile-
quantile plots, for wage and benefits

For this application, we consider three test statistics, with the corresponding posterior
predictive quantities as:

• Deviance, T−1
∑

t(y
t
i − θti), i = 1, ...,m,

• Unscaled Residual, T−1
∑

t y
t
i − yi, i = 1, ...,m,

• Scaled Residual, T−1
∑

t y
t
i−yi

(T−1)−1
∑

t(y
t
i−T−1

∑
t y

t
i)

2 , i = 1, ...,m,

• Identity, yti , i = 1, ...,m, t = 1, ..., T ,

• Correlation, Cor((yi,1)t, (yi,2)t), i = 1, ...,m, t = 1, ..., T .

Posterior predictive p-values are constructed for the last two test statistics as:

• Indicator,
∑

i I
{
yti ≥ yi

}
, t = 1, ..., T ,

• Correlation,
∑

i I
{
Cor((yi,1)

t, (yi,2)
t) ≥ Cor((yi,1), (yi,2))

}
, t = 1, ..., T .

By definition, the posterior predictive p-value is the proportion of summary statistics
calculated with samples generated from the posterior predictive distribution that exceed the
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corresponding value based on the original sample. A p-value close to 0.5 indicates that the
model provides a reasonable fit to the sample data.

Based on the summary results in Tables 3, 4, and 5, there is a tendancy to generate
more smaller values than the survey estimates (distributions for unscaled and scaled resid-
uals have slightly longer lower tails than upper tails), and joint estimates with slightly larger
correlation than the sample correlation. Nevertheless, overall, there is no substantial indi-
cation of model lack of fit.

Table 3: Posterior Predictive Checks, Wages

Statistic Deviance Unscaled Scaled Indicator
Residual Residual

(statistics) (statistics) (statistics) (p-values)
Minimum -0.005 -3.349 -3.606 0.480

1st Quantile -0.004 -0.113 -0.262 0.489
Median -0.003 -0.001 -0.002 0.492

Mean -0.003 -0.020 -0.028 0.492
3rd Quantile -0.002 0.099 0.242 0.495

Maximum -0.001 1.245 2.403 0.506

Table 4: Posterior Predictive Checks, Benefits

Statistic Deviance Unscaled Scaled Indicator
Residual Residual

(statistics) (statistics) (statistics) (p-values)
Minimum -0.002 -3.357 -2.993 0.479

1st Quantile -0.001 -0.196 -0.283 0.491
Median -0.001 -0.020 -0.034 0.494

Mean -0.001 -0.005 -0.014 0.494
3rd Quantile -0.001 0.173 0.247 0.497

Maximum -0.000 2.358 2.416 0.505

Table 5: Posterior Predictive Checks, Wages and Benefits

Statistic Correlation
(p-values)

Minimum 0.759
1st Quantile 0.814

Median 0.816
Mean 0.816

3rd Quantile 0.819
Maximum 0.825
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4.2 External Model Validation

External model validation checks are based on comparisons of survey estimates to model
predictions. For domains where sample data are available, direct comparisons of model
and survey estimates may be conducted. The two plots in the first row in Figure 6 illustrate
the relationship between the model predictions and the survey direct estimates, for wages
and benefits, respectively. Note that there are deviations from the 45 degrees line, corre-
sponding mostly to the domains with large sampling variances (after transformation, and
revision). The two plots in the second row in Figure 6 illustrate the relationship between the
model predictions variances and the survey direct estimates variances, for wages and ben-
efits, respectively. Note that the model prediction variances are smaller than the sampling
variances (after transformation, and revision), for most of the domains. These observations
demonstrate the model performance with respect to improving survey-only estimation for
the domains where sample data are available but only domain-specific data are used in the
estimation at the domain level.

Figure 6: Model predictions versus survey direct estimates, for wages and benefits; point
estimates

A different way of visualizing the results in Figure 6 is to illustrate relative measures
of model predictions versus survey direct estimates. For this, we consider two relative
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measures: the difference between the model predictions and the survey direct estimates,
and the ratio of the model predictions variances to the survey direct estimates variances.
The estimated relative measures for the domains with sample data are plotted against the
domain effective sample sizes, in Figure 7. In agreement with the conclusions above, the
largest differences between the model predictions and the survey direct estimates are for
domains with small effective sample sizes, and the ratios between the model variances and
the sampling variances (after transformation, and revision) increase (to 1) with an increase
in the effective sample size.

Figure 7: Relative measures of model predictions versus survey direct estimates, for wages
and benefits; variance estimates

For domains where sample data are not available, direct comparisons of model and
survey estimates can not be conducted because survey estimates can not be constructed.
Therefore, we consider a novel visual approach for comparing model predictions for the
full prediction space of domains to the survey estimates for the set of domains with sample
data. Figures 8, 9, 10, and 11 depict the distributions of the model predictions and sur-
vey estimates of wage, point estimates and standard errors, benefits, point estimates and
standard errors, respectively: one curve (in blue) corresponds to the distribution of the sur-
vey estimates for the set of domains with sample data; one curve (in red) corresponds to
the distribution of the model predictions for the set of domains with sample data; and one
curve (in black) corresponds to the distribution of the model predictions for the set of do-
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mains without sample data. The range of the estimates is truncated to improve visualization
(longer right tails result in difficult to see curves).

To reiterate, the results in Figures 8, 9, 10, and 11 are not meant for one-to-one compar-
isons across the different sets of estimates/predictions but rather for comparison of ranges
of estimates/predictions. For example, it is noticeable that the mode of the in-sample model
predictions is shifted to the right, compared to the model of the survey estimates. This is
an effect of shrinkage of the estimates toward the common trend, estimated by the model,
especially shrinkage of estimates for domains with sample sizes or large sampling vari-
ances (after transformation, and revision). However, the one-to-one comparison between
these two sets of estimates is better quantified in Figures 6 and 7. The multiple modes in
the distribution of the model predictions for not-in-sample domains correspond to the same
mean structure, the xiβ̂ component, due to similar job characteristics encountered in the
set of covariates selected for modeling and prediction. Moreover, the range of the model
predictions, for both in-sample and not-in-sample data, are comparable to the range of the
survey estimates.

Figure 8: Distributions of the model predictions and survey estimates of wage; point esti-
mates

5. Discussion

Various practical challenges were encounter when applying the methodology developed
to the application data. First, preparing the model input data was an intensive process,
including data manipulation, construction of direct survey estimates, data investigation to
assess the quality of the direct survey estimates and development of methods to revise such
survey summaries and assess relationships between quantities of interest and necessary
transformations. Another important challenge was in defining the prediction space, effort
that is still ongoing. We note that the prediction space is specific to the application, for
example, certain job characteristics do not apply for some of the six-digit SOC system
codes, such as unleveled jobs.

The next set of practical challenges relate to variable selection. For the application we
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Figure 9: Distributions of the model predictions and survey estimates of wage; standard
errors

Figure 10: Distributions of the model predictions and survey estimates of benefits; point
estimates

considered, there was a set of six categorical variables, each with a different number of
categories. Considering all these variables and their multiple interactions was not possible
due to computational difficulties. Therefore, we started the variable selection effort with
the full set of variables and their two-way interactions only. The final set of variables we
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Figure 11: Distributions of the model predictions and survey estimates of benefits; standard
errors

selected to construct the model matrix was very small, relative with the full initial set,
and the addition of any other variable resulted in an increase in computational time or a
limitation in computation capability (e.g., it was not possible to keep union of the sets of
variables selected by different methods).

Other software and computational time challenges relate to the use of R STAN and R
JAGS for model fit. There are limitations in model specifications for R JAGS. For example,
the default priors for the linking model variance-covariance matrix in R STAN are LKJ-
type priors (Lewandowski, Kurowicka, and Joe, 2009), specification not straightforwardly
available in R JAGS. On the other hand, for these types of models, the computation time
for R STAN is significantly longer than for R JAGS (see Erciulescu, 2019). The models are
expensive to fit because of the multivariate nature (modeling multiple response variables),
the multiple nature (using a large number of covariates), the large number of domains con-
sidered for model fit (over 16,000), the inference method considered (Bayes and MCMC).
The results in this paper are based on models fit in R JAGS.

Moreover, the prediction for not-in-sample domains has limitations due to storage
(multi-dimensional array objects corresponding to posterior samples for model parameters)
and is computationally expensive due to the time necessary for predictions (new samples
are generated to construct the posterior predictive distribution of θi′ ). Therefore, increasing
the number of MCMC samples, considering other model diagnostics, such as autocorrela-
tion plots, or adopting alternative priors for the model variance-covariance matrix, would
result in a computational cost.

We developed alternative methodology for fit and prediction using other model spec-
ifications, such as LKJ-type prior distributions for the linking model variance-covariance
matrix or univariate models fit independently to wage and benefits. However, due to com-
puting resources limitations, we were only able to work with small subsets of the in-sample
prediction space (few hundreds of domains) and different subsets of covariates. Also, we
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compared the posterior means for the model parameters to the initial values provided to the
MCMC and decided to further investigate an empirical Bayes estimation approach, treating
the regression parameters except the intercept as fixed. As a result, the computational time
decreased, at the cost of lower quality convergence and mixing diagnostics.

In summary, we modeled employee compensation components for domains defined by
the crossing of census division, six-digit SOC system codes, work levels and character-
istics. In future investigations, we would like to explore even finer domains (e.g., with
geography defined by states, counties, or metropolitan areas). In addition, we developed
bivariate small domain models for wage and benefits compensation but would like to ex-
plore multivariate models for wage and non-wage (more than just benefits) compensation
subcategories. Alternative computation methods are of interest and exploration of other
sources that help refine the prediction space remains of interest, too.
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6. Appendix

The variables selection methods described in Section 3 resulted into a final set of 18 co-
variates. A descriptive list of these 18 covariates is provided in Table 6.

Table 6: Selected Covariates

Intersection of full-time/part-time variable, part-time category, with time/incentive variable, time category
Intersection of full-time/part-time variable, part-time category, with work level variable, level 10
Intersection of full-time/part-time variable, part-time category, with work level variable, level 4
Intersection of six-digit SOC system code variable, code 112022 (Sales Managers),

with work level variable, level 13
Main effect six-digit SOC system code variable, code 291151 (Registered Nurses)
Intersection of six-digit SOC system code variable, code 411012 (First-Line Supervisors/Managers

of Non-Retail Sales Workers), with work level variable, level 9
Intersection of six-digit SOC system code variable, code 413021 (Insurance Sales Agents),

with work level variable, level 9
Intersection of six-digit SOC system code variable, code 413031 (Securities, Commodities,

and Financial Services Sales Agents), with work level variable, level 11
Intersection of six-digit SOC system code variable, code 413031 (Securities, Commodities,

and Financial Services Sales Agents), with work level variable, level 9
Intersection of six-digit SOC system code variable, code 472111 (Electricians),

with union/nonunion variable, union category
Intersection of union/nonunion variable, union category, with time/incentive variable, time category
Intersection of union/nonunion variable, union category, with work level variable, level 3
Intersection of union/nonunion variable, union category, with work level variable, level 4
Main effect work level variable, level 11
Main effect work level variable, level 12
Main effect work level variable, level 13
Main effect work level variable, level 2
Main effect work level variable, level 9
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