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Abstract
We discuss the preliminary testing of a continuous option pricing model with memory and intrinsic
stochastic volatility. The stock dynamics follows a nonlinear stochastic functional differential equa-
tion with a closed-form solution and the option pricing formula is a conditional expectation that can
be simulated via Monte Carlo methods. We tested the model for the S&P500 index during two time
periods: during and after the 2008-2009 financial crisis. The model’s performance was compared to
the Black-Scholes model for different memory lengths, contract expiration times, and moneyness.
We found that the option pricing model with memory was more accurate than Black-Scholes during
the crisis, while the opposite was true in the post-crisis period.
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1. Introduction

Since the seminal works of Black, Scholes, and Merton (1973), a significant number of
option pricing (OP) models have been proposed. An assumption of the Black-Scholes
(BS) model that is frequently challenged is that stock prices follow a Geometric Brownian
Motion with constant volatility (e.g., Rubinstein 1994, and Scott 1987). More specifically,
tests of the BS model on real market data have revealed biases on implied volatility (Bates,
1996), suggesting that volatility should not be assumed to be constant.

For this reason, several variants of the BS model with non-constant volatility have been
proposed (e.g., Geske 1979, Cox & Ross 1975, Hobson & Rogers 1998). Furthermore,
several authors have developed models with memory (e.g., Arriojas, Hu, Mohammed & Pap
2007, Stoica 2004, Kazmerchuk 2007, and Chang 2007). This is a reasonable consideration
since decision makers take into account their knowledge of the past market behavior when
selling or purchasing assets.

Our goal in the present work is to discuss the testing of the OP model with memory
developed by Sancier and Mohammed (2017) against market data. This model has a hered-
itary structure in which the stock price follows a stochastic functional differential equation.
We used data from the S&P500 index to test this model. Even though the BS model has
consistently performed well on the S&P500 index (Dumas, Fleming, & Whaley, 1998), we
wanted to test whether the OP model with memory would perform better during the crisis
period.

The paper is outlined as follows. In section 2, we summarize the OP model with mem-
ory to be tested in this study and, in section 3, we describe the steps taken to test it. Section
4 provides a summary of our observations and a discussion about further investigations.
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2. Option pricing model with memory

Let T > 0 be the expiration time of an option. The option pricing model with memory
proposed by Sancier and Mohammed (2017) assumes that stock prices (S(t))t∈[0,T ] satisfy
the stochastic functional differential equation (SFDE){

dS(t) = f(t, St)S(t)dt+ g(t, St)S(t)dW (t), t ∈ [0, T ]
S(t) = θ(t), t ∈ [−L, 0],

(1)

on a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ) satisfying the usual conditions. The
initial process θ ∈ L2(Ω, C) isF0-measurable. The valueL > 0 is the memory length. The
processW is a 1-dimensional Brownian Motion on (Ω,F , (Ft)t∈[0,T ], P ), and the memory
segment St is given by St(s) := S(t+ s), s ∈ [−L, 0], for any t ∈ [0, T ]. The functionals
f : [0, T ]×L2(Ω, C)→ R and g : [0, T ]×L2(Ω, C)→ R are jointly continuous, globally
bounded, and uniformly Lipschitz in the second variable, viz.

|f(t, ψ)| ≤ fmax and |g(t, ψ)| ≤ gmax and

|f(t, ψ1)− f(t, ψ2)|+ |g(t, ψ1)− g(t, ψ2)| ≤ α‖ψ1 − ψ2‖L2(Ω,C) (2)

for all t ∈ [0, T ] and ψ, ψ1, ψ2 ∈ L2(Ω, C). The Lipschitz constant α is independent of
t ∈ [0, T ]. The following two theorems give the solution of the stock price model (1) and
its fair option price as a conditional expectation.

Theorem 1 The SDFE (1) has a unique solution, which is an (Ft)t∈[0,T ]-adapted process
S ∈ L2(Ω, C([−L, T ],R)), starting off at θ, given by

S(t) = θ(0) exp

{∫ t

0
f(u, Su)du+

∫ t

0
g(u, Su)dW (u)

− 1

2

∫ t

0
g(u, Su)2du

}
, t ∈ [0, T ]. (3)

Theorem 2 Let {B,S} be a market (e.g. a bond and a stock) such that for fixed r ≥ 0,
B(t) = ert, t ∈ [0, T ], and such that S is described by the SFDE (1) with θ(t) > 0 for all
t ∈ [−L, 0] a.s.. Let V (t) be the fair price at time t of a European call option written on
the stock S with exercise price K and maturity time T . Then

V (t) = e−r(T−t)EQ[(S(t)−K)+|FS
t ], t ∈ [0, T ],

where Q is defined by dQ = ρ(T )dP with ρ(T ) given by

ρ(t) := exp

{
−
∫ T

0

{f(t, St)− r}
g(t, St)

dW (u)− 1

2

∫ T

0

(
{f(t, St)− r}

g(t, St)

)2

du

}
.

That is, the model was intrinsic stochastic volatility which is calculated via past stock
prices. Note that if the functionals f and g are set to be constants, then the stock price
model becomes a standard Geometric Brownian Motion.

3. Methods

We obtained daily S&P500 options data from the Chicago Board Options Exchange (CBOE)
for the period that ranged from January 7, 2008 to April 26, 2010. This range included a cri-
sis period, which we considered to be from 1-7-2008 to 6-1-2009, and a post-crisis period,
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which we considered to be from 6-1-2009 to 4-26-2010. We selected 20 equally spaced
trading days within each period and used the data from (European-style) call options that
were purchased on those dates.

We evaluated the OP model’s performance for 4 different choices of memory length:
L = 10, 20, 30, and 60 trading days. We used the same length of trading days to calculate
the Black-Scholes model parameters. For example, when using L = 10 in the OP model
with memory, we estimated the BS constant drift and volatility (both historical) by using
the 10 previous trading days. The option’s time to expiration was taken to be the number of
trading days between the option’s purchase date and the expiration date. For the OP model
with memory, we used a constant drift (the same one used in the BS model) and a volatility
functional that behaved as a moving standard deviation of returns.

We calculated option prices for all feasible strike prices and expiration times (the corre-
sponding ask and bid prices had to be greater than zero in order for a contract configuration
to be considered). Fair option prices for the BS model were calculated using the BS for-
mula, while fair prices for the OP model with memory were calculated via Monte Carlo
Simulations. Each option price calculation was done via 10000 simulations.

To test the accuracy of the OP model with memory and to compare it with the BS model,
we used two measures: the mean absolute error (MAE) and the mean relative absolute er-
ror (MRAE). The mean absolute error is an average of absolute values of errors and the
mean relative absolute error is an average of relative absolute errors that use the BS model
as benchmark. To better assess the OP models’ performances in different scenarios, the
averages were done over different moneyness groups (that varied in 5% intervals) and ex-
piration groups (see tables 1 and 2). We defined moneyness to be the ratio (K−S(0))/S(0)
and expressed it as a percentage.

4. Results and Discussion

Tables 1 and 2 show a shortened version of the option configurations considered. We
calculated a total of 128 MRAEs and the table shows 30 of them. The OP model with
memory performed better than the BS model in 73 out of the 128 scenarios considered
during the crisis period. In the time interval following the crisis, this number was 16 out of
128.

This shows that in the crisis time period, the Option Pricing Model with Memory had
a better performance compared to the Black-Scholes model. This observation is consistent
with well-known observations that the BS model has subpar performance during periods
in which market volatility changes rapidly. On the other hand, the Black-Scholes model
performed better than the OP model with memory during the post-crisis period, which is
consistent with its well-known good performance during times of relative financial stability.

A future direction in testing the OP model with memory is to consider other indexes
and stocks, as well as different choices of volatility functional. The volatility function used
in this study was a relatively simple one, so we hope to explore more complex ones, as well
as non-constant drift functionals.
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Figure 1: Measures of fit (MRAEs and MAEs) for the BS model and the OP model with
memory during and after the 2008-2009 crisis period.
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