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Abstract
Multivariate autoregressive moving average models can be represented as graphical models with

nodes representing either the autoregressive or the moving average components and the edges rep-
resenting a significant partial correlation among them. Absent edges imply a parsimonious structure
of the time series models. Different strategies for testing the presence of edges are presented, as-
sessed and compared.
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1. Multivariate time series models

The dynamics of multiple dependent time series can be represented, under appropriate
conditions, through multivariate time series models of the autoregressive moving average
type. In a quite general form they can be described by the equation

Φ0Xt −
p∑

i=1

ΦiXt−i = At −
q∑

j=1

ΘjAt−j (1)

where the behavior of m time series at a current time t is explained by the other contempo-
raneous time series inXt, by the lagged time seriesXt−i up to a lag p and by the current and
lagged values innovationsAt−j up to lag q. HereXt−i andAt−j , i = 0, . . . , p, j = 0, . . . , q
are m-dimensional random vectors while Φi and Θi are m×m fixed coefficient matrices.
Model (1) is a structural autoregressive moving average of order p and q (SVARMA(p,q))
and dimension m. More details about this model can be found in multivariate time series
books such as [10] and [13].

In this article we discuss methods that can be applied to model (1), however we con-
sider, just out of illustration, one commonly used subclass: the structural vector autoregres-
sion of order p, (SVAR(p)) defined by the equation

Φ0Xt =
p∑

i=1

ΦiXt−i +At (2)

In model (2) we express the current variables at time t (Xt) as a linear combination of the
other contemporaneous variables and all the lagged variables up to a lag p (Xt−1, . . . , Xt−p).
It is typically assumed that Φ0 can be rearranged into a triangular matrix in order to avoid
simultaneity.

Even assuming the triangular structure of the contemporaneous coefficient matrix, when
all the other coefficients are non-zero (i.e. a saturated model), the resulting model is far too
complex most of the times. We therefore compare methods to reduce the complexity by
obtaining sparse models where a significant number of parameters assume a zero value.
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2. Graphical modeling context

In particular we consider the problem of parsimonious structural vector autoregressive
structures in the context of graphical modeling. This is a very convenient perspective as in
a SVAR a zero coefficient corresponds to a vanishing partial correlation.

A graphical model is a representation of the relationship between several random vari-
ables through a graph G = (V,E) where each vertex in the set V represents a random
variable and each edge in the set E implies the presence of a relationship between the adja-
cent random variables. Some excellent monographs on graphical modeling are [5], [7] and
[16].

In graphical modeling we distinguish between two common type of graphs: one is the
conditional independence graph (CIG) and it is an undirected graph; the other one is the
directed acyclic graph (DAG). In both graphs the presence of an edge between vertices
implies a conditional dependence, however a missing edge has a different interpretation in
the two graphs: it means conditional independence in a CIG and marginal independence in
a DAG.

It is possible to move from a concept of marginal independence and hence from a DAG
to a CIG, through moralization [8].

Time series models can be seen as graphical models with vertices representing the time
series Xt−i, i = 0, . . . , t − 1, where flow of time provides a natural hierarchy that suits
DAG structures.

As an illustration we consider the DAG of a saturates SVAR(2) in Figure 1. In this
case all the contemporaneous variables in Xt = {X1,t, X2,t, X3,t} depend on the past
variables in Xt−1 and Xt−2. All the edges between past variables and current variables
are directed consistently with time while the red edges between current variable are at this
stage undirected as the contemporaneity does not suggest any direction.

Figure 1: DAG of a saturated SVAR(2)

The aim is to provide a sparse structure for these graphs as well as a direction to the
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edges between current variables. Directed acyclic graphs require, because of interpretabil-
ity, that there is no cycle between contemporaneous variables; this requirement corresponds
to the existence of an ordering of the variables such that Φ0 in Equation 2 is triangular.

In the procedure propose by Tunnicliffe Wilson et al. [14] the sparsity of the DAG is
obtained primarily through an initial sparse CIG built on the correlation structure of the
data. From the CIG, the DAG is later obtained through a process of demoralization.

In the next section we will consider alternative methods to achieve sparsity in the con-
ditional independence graph.

3. Sparsity

Graphical modelling provides sparse structural VAR’s through sparsity (presence of zeroes)
in the precision matrix W . An estimate of the partial correlations τij are obtained through
a rescaling of the of the entries wij of the precision matrix:

τ̂ij =
−wij√
wiiwjj

A zero in the precision matrix is equivalent to a zero partial correlation or conditional
independence under the hypothesis of gaussianity of the time series.

The first approach we cansider is the test proposed by Tunnicliffe Wilson et al. [14].
Following this procedure we test the partial correlation with a t-test resulting from the
equivalence

τc =
tc√

n− k + t2c

where tc is a threshold value of a t-distribution with a given number of degrees of freedom
and a chosen level of type I error probability. The resulting threshold value of the partial
correlation τc is used to the st the null hypothesis of τ = 0. It can be shown that this test is
equivalent to the classical χ2 test used in graphical modeling: −n log(1− τ2) ∼ χ2

1. Both
tests suffer from multiple testing and corrections like Bonferroni [4] or Šidaḱ [15] could be
used to control the overall error rate. While amelirating the issue of multiple testing, both
correction may result as cinservative.

Drton and Perlman [2] [3] propose the SINful approach that adopts simultaneous tests
for τij to control for the overall error rate for incorrect edge inclusion. SINful utilizes the
sample partial correlation τ̂ij to test τij and its Fisher’s z transformation

z(τ̂ij) =
1

2

(
ln

1 + τ̂ij
1− τ̂ij

)

where, as n → ∞,
√
n− p− 1 · (z(τ̂ij)− z(τij)) ∼ N(0, 1). They showed the vector

of the p(p−1)
2 statistics z(τ̂ij) to have asymptotically a multivariate Normal joint distribu-

tion. Eventually simultaneous p-values are partitioned in 3 sets: S for significant, I for
indeterminate and N for non-significant.

Meinshausen and Bühlmann [11], in a seminal paper, apply the lasso to the elements of
the precision matrix W with a neighborhood approach, where each node is considered as a
response variable. The procedure however left open some issues:

• Sparsity is only imposed on the neighborhoods, which becomes an issue if sparsity
needs to be considered for the whole partial correlation matrix;

• This method does not consider the symmetric nature of the partial correlation matrix
(computationally inefficient);
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• It is possible that the neighborhood pursuit approach does not provide sign consis-
tency between regressions.

In order to solve or ameliorate these aspects, other authors have proposed a sequence of
papers.

• Peng et al [12] proposed a Sparse Partial Correlation Estimation (SPACE) method
to deal with lack a symmetricity.

• Friedman et al [6] proposed the GLASSO method with an algorithms that provides
a maximum likelihood estimates of the elements of the precision matrix.

• Cai et al [1] proposed a consistent and computationally efficient method (CLIME)
by banding the precision matrix.

• Liu and Wang [9] proposed a method (TIGER) insensitive to the tuning parameter λ
so the whole dataset can be used for estimation.

In the next section we compare these different methods through a simulation exercise.

4. Simulation

We simulated two different SVAR models of different complextities. For each one of them
different sample sizes were considered: 1000, 2000, 5000, 10000, 20000, 50000 data
points. The simpler model is a SVAR(2) with 3 time series, while the more complex is
a SVAR(3) model with seven time series.

Table 1: Results of a simulations of a SVAR(2) for 1000 and 10000 data points. The table
reports the true positive rate, the true negative rate, the false positive rate and the false
negative rate of different methods.

Sample size Method TPR TNR FPR FNR
1000 Tua 0.9564 0.9380 0.0620 0.0436

TBo 0.9293 0.9950 0.0050 0.0707
SIN 0.929 0.998 0.002 0.071
GLASSO 0.9 0.8889 0.1111 0.1
SPACE 0.9943 0.983 0.017 0.0057
CLIME 0.7836 0.299 0.701 0.2164
TIGER 0.5557 0.9 0.1 0.4443

10000 Tua 1 0.9520 0.0480 0
TBo 0.9993 0.9970 0.0030 0.0007
SIN 0.999 0.997 0.003 0.001
GLASSO 0.9 1 0 0.1
SPACE 0.9821 1 0 0.0179
CLIME 0.7779 0.439 0.561 0.2221
TIGER 0.5379 0.784 0.216 0.4621

The different methods were compared considering the correctly identified (TP), the
correctly identified missing edges (TN), the edges erroneously identified (FP) and the er-
roneously identified missing edges (FN). Four common ratios were calculated out these
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measures: the true positive rate (TPR), the true negative rate (TNR), the false positive rate
(FPR) and the false negative rate (FNR). These ratios are defined as:

TPR =
TP

TP + FN
; TNR =

TN

TN + FP
; FPR =

FP

FP + TN
; FNR =

FN

FN + TP

As a representation of all the simulations we report the results in the case of the sim-
pler SVAR(2) with 1000 and 10000 data points. The methods compared are: the t-test of
Tunnicliffe Wilson et al. (Tua); the t-test with Bonferroni correction (TBo); SINful (SIN);
GASSO; SPACE; CLIME and finally TIGER. The results are shown in Table 1.

5. Conclusions

The two main conclusions from this simulations results are first that the t-test with a Bon-
ferroni correction gives results equivalent to the SINful approach and second, that the above
methods seem to perform better than the other methods. The last conclusion should how-
ever be taken with caution due to the need of fine tuning of other methods.
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