
Testing for Unit Roots Using Artificial Neural Networks

Rukman Ekanayake1, V.A. Samaranayake2
1,2Department of Mathematics & Statistics, Missouri University of Science and

Technology, Rolla Building, 400 W. 12th Street, Rolla, MO 65401

Abstract
Since the seminal paper by David Dickey and Wayne Fuller in 1979, there has been a
continued interest in developing tests to detect unit roots in the ARMA formulation of
empirical time series. Both asymptotic distribution-based as well as bootstrap-based tests
have been developed with each method exhibiting both strengths and weaknesses. The use
of artificial neural networks (ANNs) for forecasting empirical time series has also grown
over the last quarter century, but there has been no serious attempt to develop an ANN-
based methodology for unit root testing. Results of an initial attempt, to establish the proof
of concept that an ANNs can be trained to detect the presence of a unit root in time series,
is presented in this paper. Comparison with the Augmented Dickey-Fuller (ADF) test via
Monte-Carlo simulations show the ANN outperforming the ADF for all parameter
combinations studied, except for some exceptions for small sample sizes. Overall, results
show promise in the use of ANNs to test for unit roots, but several issues such as the control
of Type I error, optimal number of input nodes, hidden nodes, and hidden layers, have to
be resolved prior to recommending this methodology as a viable alternative to existing test
for unit roots.

Key Words: ANN, Time Series, Non-stationarity, Dickey-Fuller Tests, ADF Test

 1. Introduction

Over the last few decades, there has been considerable interest in developing tests to detect
the presence of a unit root in the autoregressive polynomial of time series modeled using
the Autoregressive Moving Average (ARMA) formulation. David Dickey & Wayne Fuller
were the first to introduce a test to detect the presence of a unit root in Autoregressive (AR)
processes (Dickey and Fuller, 1979). This procedure, known as the Dickey-Fuller (DF)
test, was applicable to AR processes of order one. A test for higher order AR processes
was introduced by Dickey and Fuller (1981) and a more general test applicable to the
general ARMA model was introduced by Said and Dickey (1984). This latter test is known
as the Augmented Dickey Fuller (ADF) test. More recent years have seen the development
of bootstrap-based unit root tests, for an example Ferretti and Romo (1996) developed a
bootstrap based test for first order AR models and later Chang and Park (2003) used sieve
bootstrap method to test the unit root in ARMA time series, but all these tests are rooted in
classical statistical testing procedures. An interesting question one can raise is whether
machine-learning algorithms such as Artificial Neural Networks (ANNs) can be adopted
to detect the presence of unit roots in an empirical time series, which can be assumed to
have an ARMA model as its underlying data generation process. Such techniques have
shown to produce very promising results in areas such as classification and forecasting of

1541

time series. Therefore, it is a natural question to ask whether ANNs can be utilized to detect
unit roots.

Multilayer Feedforward Neural Networks are universal function approximators (Hornik et
al. 1989), which are capable of approximating any function to any desired degree of
accuracy. ANNs are used in many practical situations for pattern recognition, image
classification, forecasting and classification. There has been extensive research on the topic
of forecasting time series using ANNs. An early example in the effective use of ANNs for
time series forecasting are as follows. Szkuta et al. (1999), who employed a three-layered
feed forward ANN to forecast electricity price. A more nuanced study is that of Butler and
Kazakov (2011) who investigated the characteristics of non-stationarity in financial time
series and its effect on forecasts based on ANNs. Chapter 14 of the Handbook of Natural
Computing (2012) is devoted to the topic of neural networks for time series forecasting
and the Chapter author Zhang reports twenty three publications on the topic over the
limited period from 2005 to 2009. Another use of ANNs in time series is clustering. Fawaz
et al. (2019) used deep neural network (DNN) methods to classify hundreds of time series.
In spite of this growth in the use of ANNs for time series forecasting and investigations on
their use on clustering, the utilization of ANNs in testing for unit roots in time series has
not been attempted up to date. This study is an attempt to demonstrate that ANNs can be
utilized to test for unit roots in empirical time series generated through an ARMA process.
It is an attempt at proof of concept rather than to develop an exhaustive and optimal testing
procedure.

 2. Methodology

In this section, we first introduce the ARMA model and explain how the ADF test can be
used to test for unit roots in this formulation. Then in Section 2.2 we introduce ANN based
testing for unit roots in ARMA processes described in Section 2.1.

2.1 Decomposition of a general time series
Let {𝑌 } a time series which satisfies the model
 Y =ρY +Z (t=1,2,...)t tt-1 (2.1)

 , ,1 1Z Z e e tt tt t

where, |𝛼| < 1, |𝛽| < 1 and {𝑒 } is a sequence of independent and identically distributed
normal random variables. The time series {𝑌 } is a stationary ARMA (2, 1) if |𝜌| < 1. If
the |𝜌| = 1 time series is an Autoregressive Integrated Moving Average (ARIMA (1, 1,
1)) process and has a unit root. It is important in empirical time series analysis to know
whether or not |𝜌| = 1. In the standard unit roots testing scenario, the null and alternative
hypotheses are as follows:

: 1 : 1.0 1H vs H

The Augmented Dickey Fuller (ADF) formulation of (2.1), can be written as

 1 ,1 1
Y Y c Y et ti t it i

 (2.2)

where, the coefficients , ,ic i are function of the parameters {𝛼, 𝛽}, and ∆𝑌 = 𝑌 −

𝑌 , the first difference of 𝑌 . The true order of the autoregression in (2.1) is infinite
when 𝛽 ≠ 0. In practice, Said and Dickey (1984) suggested approximating the infinite
autoregression in (2.2) by a truncated version of order k, which is a function of the number
of observations, T, so that one can write

1542

,1 1

k
Y Y c Y ut ti t it i

 (2.3)

where, 𝛾 = 𝜌 − 1. Note that 𝑢 is not independent and identically distributed in (2.3). The
ordinary least square (OLS) method is used to estimate the parameters of (2.3) and they are
defined as 𝛾 = 𝜌 − 1 and �̂� (𝑖 = 1,2, … , 𝑘). Now, the test hypotheses above can be written
as

: 0 : 0.0 1H vs H

The ADF formation for more general ARMA (p, q) formulations can also be written as in
(2.3). Note that in all ARMA formulations we assume the invertiblility of the MA
component and that there are no common roots for the AR and MA polynomials. The test
statistic used for testing a presence of a unit root for more general time-series such as
ARMA (p, q) error distribution is defined as

ˆ

ˆ ,
ˆ()se

 (2.4)

where �̂� follows a Dickey Fuller distribution under the null hypothesis.

2.2 Use of Artificial Neural Network (ANN) for Unit Root Testing
A naïve approach to using ANNs to test for unit roots would be to train the ANN on a
sample of ARMA time series with and without unit roots and use the actual time series
values, say the last 200 values, as input to the network. Such an approach would mislead
the ANN to identify spurious features, such as the variance of the time series, as the
identifying characteristic for the presence of a unit root. For example, a zero mean time
series with a unit roots wanders around zero much more than a zero mean time series
without a unit root. Therefore, we incorporate following preprocessing to the time series
before training the ANN. First, subtracted the mean of the time series and then divided the
time series by its absolute maximum value.

The topology of the ANN used in this study is shown in Figure 1, where we have an input
layer, a hidden layer and an output layer. The main objective is to classify whether the time
series possesses a unit root or do not posses such a root. Therefore, we used a binary output
layer with two nodes. In this exercise, sample sizes of 50, 100, and 250 were employed.
We selected 50 as the number of hidden nodes when training on time series of lengths 100
and 250, and 20 number of hidden nodes for the time series of length 50. The number of
input nodes corresponded to the length of the time series. The hidden nodes were assigned
rectified linear unit (ReLU) activation functions (see Nwankpa et.al. (2018)) and the two
output nodes have softmax activation function (see Nwankpa et.al. (2018)). The weights
for the ANN were updated by the back propagation algorithm. We used a modified binary
cross-entropy loss function as the loss function in this method.

1543

Figure 1: The feed forward ANN topology used in this study.

2.2.1 Controlling for Type I error rate
The binary cross-entropy loss function was used in the primary attempt at training the
Neural Network. It returned a large Type I error rate in this configuration. The nature of
the loss function is to minimize the error and maximize the overall classification accuracy.
However, in order to develop a statistical test comparable to the ADF tests, we need to
control the Type I error rate. Therefore, we used weighted cross-entropy loss function
(WCE) as our loss function. This has been notably used by Ronneberger et.al. (2015). We
have,

1
log(()) (1) log(1 ()),1 2WCE w x p x w x p xi i i iN

where
1;

0;

If the time series in unit root class
xi If the time series is not in unit root class

with 𝑤 and 𝑤 defined as the weights of the loss function. Note that N is the total number
of time series samples, and 𝑝(𝑥) is the predicted probability that the time series is in the
unit root class.

 3. Results

Samples of time series of length T = 50, 100, 250 were generated according to the equations
(2.1), with and without unit roots. Initial value of time series, 𝑦 , was set to zero. For all
generated samples 𝛼 in Equation (2.1) was set to zero. The parameter combinations used
for the simulation are given in the Table 1 below.

1544

Table 1: Parameter Combination used in the simulation.

 0.99 0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
 1 0.99 0.95 0.9 0.5 0.2

Five thousand samples each were simulated for all parameter values of 𝛽 with 𝜌 = 1 for
the unit root cohort. Non-unit root cohort contained 1,000 samples each for parameter
combination of 𝜌 (𝜌 ≠ 1) and 𝛽. Altogether, we simulated 60,000 time series each for the
unit root cohort and the non-unit root cohort for training. In the initial training of the ANN
by setting 𝑤 and 𝑤 to the value of unity in the weighted cross-entropy loss function we
got large Type I error rates (>0.05) for all the time series lengths considered.

In order to fix the Type I error rate at 0.05 we needed to find suitable values for the weights
𝑤 and 𝑤 in the WCE loss function. Therefore, we trained multiple ANNs using simulated
time series while fixing the 𝑤 fixed at unity, and changing the 𝑤 . Then we calculated the
corresponding Type I error rates. The plotted Type I error rates are shown in Figure 2 for
sample size 100. Then by fitting a polynomial regression model to the resulting data, we
estimated the value for 𝑤 when Type I error is 0.05. The estimated 𝑤 ’s are given in Table
2 for length 50, 100, and 250.

Figure 2: 𝑤 vs Type I error rate calculated for time series length 100

Table 2: Estimated value of weight (𝑤) for the weighted loss function.

Length of time series 50 100 250

𝒘𝟏 1 1 1

𝒘𝟐 2.44 1.99 1.94

Type I error rate 0.048 0.05 0.47

1545

After estimating the weights for the loss function, we trained three ANNs for different time
series lengths of 50, 100 and 250 using data samples simulated according parameter
combinations given in Table 1. This constitute the training samples. Then we generated
1,000 samples for every parameter combination for testing. The test results were compared
with those from the ADF test. The ADF procedure employed the General to Specific (G-t-
S) sequential t-test procedure as used in Ng and Perron (1995) to determine the �̂� as in
(2.4). The maximum lag parameter (k) in the ADF model given in the Equation (2.3) was
fixed at 10 for all time series lengths. Then, 10% significance level was used for the G-t-S
sequential t-tests because the size distortion associated in G-t-S procedure with the 5%
significant level is slightly higher than for the 10% significant level when 0 (Ng and
Perron, 1995; and Patterson, 2011). Results of Type I error obtained for the training dataset
for are listed in the Table 3.

These error rates were observed for the training samples using the estimated weights.
Results show that in the training sample, Type I error rate was kept below 0.05 for almost
all parameter combinations except few cases.

Table 3: Type I error rate for training samples in NN-based method.

𝜷

Type I Error

T=250 T=100 T=50

0.99 0.044 0.045 0.034

0.95 0.048 0.041 0.034

0.9 0.046 0.041 0.037

0.8 0.049 0.042 0.036

0.7 0.047 0.044 0.031

0.6 0.045 0.043 0.043

0.5 0.046 0.043 0.044

0.4 0.050 0.041 0.043

0.3 0.050 0.051 0.048

0.2 0.041 0.045 0.060

0.1 0.047 0.057 0.078

0 0.052 0.063 0.084

Tables 4a, 4b, 5, and 6 give the Type I error rates and power yielded by the ANN-
based unit roots tests based on the test data sample.

Table 4a: Size of Unit Root Tests based on Test Data Set (T =50).

𝝆 𝜷 ANN
P(Reject H0) x100

ADF
P(Reject H0) x 100

Test
Property

1 0.9 4.9 5.8
Type I Error 1 0.6 4.2 6.9

1 0.3 5.8 8.2

1 0 9.8 7.2

1546

Table 4b: Power of Unit Root Tests based on Test Data Set (T =50).

𝝆 𝜷 ANN
P(Reject H0) x100

ADF
P(Reject H0) x 100

Test
Property

0.95 0.9 9.2 12.7

Power
0.95 0.6 10.5 12.8

0.95 0.3 14.6 10.9

0.95 0 22.6 12.5

0.9 0.9 19.4 17.5

0.9 0.6 21.9 19.1

0.9 0.3 22.9 17.7

0.9 0 37.4 16.8

0.8 0.9 36.9 20.4

0.8 0.6 42.7 30.1

0.8 0.3 46.6 30.5

0.8 0 60.1 32.8

Table 5: Size and Power of Unit Root Tests based on Test Data Set (T =100)

𝝆 𝜷 ANN
P(Reject H0) x100

ADF
P(Reject H0) x 100

Test
Property

1 0.9 5.5 5.0
Type I Error 1 0.6 6.1 6.4

1 0.3 5.2 6.3

1 0 6.8 5.8

0.95 0.9 24.9 11.9

Power
0.95 0.6 24.9 15.8

0.95 0.3 27.4 14.7

0.95 0 33.7 17.3

0.9 0.9 52.9 20.2

0.9 0.6 54.5 27.1

0.9 0.3 56.4 31.1

0.9 0 61.6 31.0

0.8 0.9 84.9 33.9

0.8 0.6 84.0 49.6

0.8 0.3 87.0 61.9

0.8 0 84.9 67.4

The calculated Type I error rate for the time series of length 100 and 250 is close to 5% in
both methods. The higher variability in the Type I error rate can be seen in the ANN based
method over ADF method for time series of length 50 with a range of 4.9 and 1.4

1547

respectively. However, the Type I error of ANN based method is less than that of ADF
method when the moving average parameter takes values of 0.9, 0.6 and 0.3.

It is clear that the power of the ANN based method exceeds the power of the ADF method
by a considerable amount for each 𝜌 = 0.95, 0.90 and 0.8 and 𝛽 = 0.9, 0.6, 0.3 and 0
combinations, for sample sizes 100 and 250. Even for the case with sample size 50, apart
from few cases when 𝜌 = 0.95, the power of ANN based method is considerably higher
than that of the of ADF method.

While the above results suggest the feasibility of using ANNs to test for unit roots, some
additional testing not reported here have shown that time series that are stationary over
most of the time span but with one or more occasional spikes and other such features can
trick the trained ANN to classify such series as having unit roots. Methods to preprocess
and standardize such series have to be developed if the proposed method is to be used for
testing empirical time series. In addition, the simulation results reported herein are for a
small set of parameters combinations. Additional studies must be conducted to determine
the feasibility of this method for more general ARMA processes.

Table 6: Size and Power of Unit Root Tests based on Test Data Set (T =250)

𝝆 𝜷 ANN
P(Reject H0) x100

ADF
P(Reject H0) x 100

Test
Property

1 0.9 4.9 4.1
Type I Error 1 0.6 5.1 5.7

1 0.3 6.4 5.2

1 0 5.7 5.0

0.95 0.9 68.2 29.4

Power
0.95 0.6 66.6 37.2

0.95 0.3 64.4 39.7

0.95 0 64.8 38.5

0.9 0.9 92.0 60.0

0.9 0.6 94.4 76.8

0.9 0.3 91.7 81.4

0.9 0 92.4 83.3

0.8 0.9 99.5 90.6

0.8 0.6 99.3 95.0

0.8 0.3 99.3 96.4

0.8 0 98.7 97.1

4. Conclusions

We introduce a new approach to testing for unit roots in the ARMA formulation by using
artificial neural networks. Based on the simulation results, neural network based unit root
testing outperforms the traditional Augmented Dickey Fuller test for the time series
considered in this study. Further, we address the issue of controlling the Type I error rate
when using ANN by selecting appropriate weights for the binary cross entropy loss

1548

function. However, additional work in this area is needed to be done. This study utilized a
feedforward ANN with one hidden layer with number of nodes varying with sample size.
The number of hidden layers and the number of nodes in it were selected based on initial
investigations but further studies are needed to conduct to optimize these structural
features. Investigating the type of neural networks and estimation methods optimal for unit
root testing is another aspect that should be investigated. In addition more innovative
methods of standardizing the input series is warranted to avoid spurious features of the
time series effecting the test outcomes.

References

Butler, M., & Kazakov, D. (2011). The effects of variable stationarity in a financial time-

series on Artificial Neural Networks. 2011 IEEE Symposium on Computational
Intelligence for Financial Engineering and Economics (CIFEr).

Chang, Y. and Park, J.Y. (2003). A Sieve Bootstrap for the Test of a Unit Root, Journal of

Time Series Analysis, 24, 379–400.

Dickey, D., & Fuller, W. (1979). Distribution of the Estimators for Autoregressive Time

Series with a Unit Root. Journal of the American Statistical Association, 74(366), 427-
431.

Dickey, D., & Fuller, W. (1981). Likelihood Ratio Statistics for Autoregressive Time

Series with a Unit Root. Econometrica, 49(4), 1057-1072.

Said E. Said, & Dickey, D. (1984). Testing for Unit Roots in Autoregressive-Moving

Average Models of Unknown Order. Biometrika, 71(3), 599-607.

Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., and Muller, P. (2019) “Deep learning

for time series classification: a review,” Data Mining and Knowledge Discovery.

Ferretti, N. and Romo, J. (1996) Unit root bootstrap tests for AR(1) models. Biometrika

83, 849–60.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are

universal approximators. Neural Networks, 2, 359-366.

Ng, S., & Perron, P. (1995). Unit Root Tests in ARMA Models with Data-Dependent

Methods for the Selection of the Truncation Lag. Journal of the American Statistical
Association, 90(429), 268-281.

Nwankpa, C., Ijomah, W., & Gachagan, A., and Marshall, S. Activation functions:

Comparison of trends in practice and research for deep learning. arXiv preprint
arXiv:1811.03378.

Patterson, K. D. (2011). Unit root tests in time series. New York, NY: Palgrave Macmillan.

Szkuta, B., Sanabria, L., & Dillon, T. (1999). Electricity price short-term forecasting using

artificial neural networks. IEEE Transactions on Power Systems, 14(3), 851-857.

1549

Zhang, G. (2012). Neural Networks for Time-Series Forecasting. In G. Rozenberg, T. Back
and J.N. Kok, Handbook of Natural Computing (pp. 461-478). New York, NY:
Springer.

1550

