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Abstract 
Growing accessibility and availability of data and cloud computing create new 
opportunities to rethink and redesign critical engineering systems and address outstanding 
global challenges. The machine learning approaches, having succeeded in many new fields 
of study, will have many issues as they get adopted in system of increasing complexity, 
scale and criticality. In this paper, we present the Human-Collaborative Decision Making 
(HCCD), a framework that leverages both artificial and human intelligences through visual 
analytics to produce explainable and trustable information that support decision making in 
complex and critical systems. We demonstrate the generalizability, superiority, impact and 
potential of HCCD in a wide range of applications. 
 
Key Words: Human-Computer Collaborative Decision Making (HCCD), Decision 
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1. Introduction 
 
The past decade has witnessed a revolution in technology (Lasi et al., 2014). Data logging 
devices including smart phones, IoT device and sensors, and microprocessors have become 
omnipresent due to their decreasing cost and increasing computing power (Atzori et al., 
2010). Cloud technologies made accessing and processing of big data possible for anyone 
(Fox et al., 2009). These drastic changes introduce many opportunities for rethinking and 
redesigning of existing engineering systems and creating new tools to address outstanding 
global challenges, e.g. (Ostrom et al., 1999).  
 
Artificial Intelligence (AI) including machine learning has permeated numerous new fields 
of study, feeding off the growing volumes of data and cloud computing (Nilsson, 2014). 
Current research and application of data driven AI has primarily focused on processing and 
modeling of data and performance improvement of existing AI methods (Müller and 
Bostrom, 2016). We argue that a far more superior solution to extracting knowledge from 
data is the Human-Computer Collaborative Decision Making (HCCD) environment, 
particular for critical, complex, large scale systems and consequential decisions. HCCD 
leverages the speed and memory of artificial intelligences and the cognition and reasoning 
of human intelligences, and therefore is better at making intelligent, explainable and 
trustable decisions.  
 
Visual analytics is an interdisciplinary research area that designs and develops real-time 
software systems that allow users to visually and interactively explore voluminous data 
and extract knowledge that support decision making (Keim et al., 2008). Visual analytics 
has been applied in many critical decision systems such as public safety surveillance and 
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sustainable agriculture (Zhang et al., 2014; J. Zhao et al., 2019). As AI gets adopted to 
more complex and large-scale systems and operations, visual analytics can provide a 
HCCD environment that ensures outputs of AI components are explainable and trustable. 
Additionally, visual analytics can also be used to directly explain machine learning models 
through visualization and interactions among data, models and end users.  
 
In this paper, we present the HCCD, a framework that integrates artificial and human 
intelligence through visual analytics, to produce explainable and trustable information that 
support decision-making in complex and large-scale situations. We demonstrate HCCD’s 
wide range of applications in explainable deep learning, public safety, and sustainable 
agriculture. We will also discuss the open problems and future directions of HCCD. 
 
The rest of the paper is organized as follows. Section 2 provides an overview of related 
work in Human-Computer Interaction, Human-Computer Collaboration, and the most 
current AI technologies and applications. Section 3 details the HCCD framework, its 
advantages and open research problems. Sections 4, 5 and 6 showcases applications of 
HCCD to a spectrum of complex problems. Section 7 concludes the paper with a discussion 
on future directions of HCCD. 
 

2. Related work 
 
The study of relationship between human and computer in decision making systems is not 
new. We discuss selected four research areas that are related to HCCD and support the 
adoption of HCCD. 
 
2.1 Human Computer Interaction 
Human-Computer Interaction (HCI) studies the way computer technology influences 
human work and activities and uses such knowledge to improve technology usability and 
user experience (Dix, 2009). Active research in HCI includes augmented reality, 
knowledge-driven human-computer interaction, and brain-computer interactions (e.g. 
(Billinghurst et al., 2015; Chen et al., 2015; Ye et al., 2015)  
 
These areas provide new tools beyond visualization for human computer collaboration. 
Human gesture in HCI for example studies human gestures as an input method to 
communicate with the computers aiming to bridge the gap between human and computer 
by making the interaction as natural as human to human as possible (Rautaray and Agrawal, 
2015). Gesture-based human-computer interaction often focuses on measuring and 
analyzing different body parts or objects, especially hand gestures (Karam, 2006). Devices 
such as CyberGlove II and SoftKnetic HD cameras has further supported the technology 
needed to make such analysis (Kevin et al., 2004). However, there remain challenges such 
as analyzing cluttered scenes where nearby objects and surfaces interact, methods not 
sharing the same evaluation criteria making comparisons difficult, and systems not 
generalizing beyond training sets (Supančič et al., 2018). 
 
2.2 Human Computer Interaction 
Human Computer Collaboration (HCC) is another general research area which studies the 
collaboration among at least one human user and one computation machine to accomplish 
a common goal (Terveen, 1995). HCC is a unique approach to benefit from both high 
computation power and empirical domain knowledge. The central theme of HCC is 
facilitating human users to gain understandable and trustable insights from the results 
provided by computation machines. 
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HCC has been widely applied to knowledge discovery (Valdés-Pérez, 1999), collaboration 
between multiple users (Dillenbourg and Baker, 1996), designing visual analytics 
framework for big data (Crouser and Chang, 2012). More recently, crowdsourcing (Howe, 
2006) and social computing (Parameswaran and Whinston, 2007) that integrate knowledge 
from a large population pool, has gain great research interest. HCC can also provide 
theories, methods and principles for optimizing the designs of complex HCCD 
environments. 
 
2.3 Human Computer Collaboration 
Artificial intelligence (AI) can broadly be described as the science of designing 
computational artifacts for performing various human tasks or, related to cognition, the 
science of knowledge representation and reasoning (Pomerol, 1997). AI-driven decision-
making has become increasingly relevant in recent years with advances in natural language 
processing, machine and deep learning, and speech recognition (Jarrahi, 2018). In recent 
years, AI has been widely adopted in many traditional scientific disciplines to leverage 
increasing data and computing power. For example, computer vision and pattern 
recognition methods have been increasingly used to monitor grain production (Patrício and 
Rieder, 2018) in agriculture. 
 
While AI-driven agents’ rate of learning and reasoning is impressive, they are limited by 
their inability to use common sense and adapt to new areas. However, AI-human 
collaboration has emerged as a powerful area, combining both the strengths of humans and 
computers. For example, while a pathologist was able to outperform a deep learning system 
in identifying metastatic breast cancer, combining the system’s predictions with the 
pathologist’s resulted in an approximately 85% reduction in human error (Wang et al., 
2016). 
 

3. Visual Analytics Driven HCCD 
 
This section details the proposed HCCD framework, including the components and the 
process and operational environment of HCCD. Section 3.1 describes the HCCD 
components, process and operational environment. Section 3.2 discusses the scope of 
applications and benefits of HCCD.  
 
3.1 Human-Computer Collaborative Decision-Making (HCCD) 
Components of the proposed framework HCCD are shown in Figure 1. HCCD integrates 
three components, real-time information, historical information, and computerized 
knowledge into one visual analytics platform that collaborates with users or stakeholders 
in decision making. The real-time information come from physical IoT sensors such as in-
situ sensors and remote sensing, or cyber sources such as social media, in geographically 
distributed transportation, environment and other large-scale systems. The second 
component, historical information, refers generally to other existing or available data that 
stakeholders have used and can use for decision making, including current database and 
known policies. Finally, HCCD requires the assembly of related scientific (e.g. physical, 
dynamics, economical, sociological, and data) models as well regulatory and operational 
constraints which can be computerized.  
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Figure 1: Illustration of HCCD for decision making in agriculture 

 
These three components are the raw material for an HCCD environment, where visual 
analytics is then applied to for an interface that facilitates the knowledge discovery of end 
users. Data and computerized knowledge will need to be organized in a hierarchy that 
represent different levels of abstraction and addresses needs in the targeted application. 
The interaction between data and computerized knowledge, e.g. machine learning models, 
will also help users understand the context of the model outputs. In certain cases, HCCD 
can be used solely for this purpose (e.g. Section 4). This process will require knowledge of 
artificial intelligence, cognitive science, human factor and uses an iterative user-centered 
design approach to meet specific requirements of the end users and optimize the 
effectiveness the collaborative environment. 
 
3.2 Applications and advantages of HCCD 
The HCCD is a generalizable and scalable framework that can be applied to a spectrum of 
problems. The need for HCCD increases when the application problem at hand grows in 
complexity, scale and/or criticality. Examples of such problem range from interpretation 
of AI models (e.g. deep learning) to criminology to Food-Water-Energy systems to climate 
change. Figure 2 exemplifies the interactions between HCCD environment with external 
sources of real-time information, historical information, and computerized knowledge as 
well as the range of domains these sources. Sections 4, 5 and 6 will showcase some 
successful applications of HCCD in these areas. 
 
In these applications, HCCD is an inherently advantageous environment compared with 
the stand-alone AI solutions. We summarize these benefits as follows: 

• Provides a balance of automated computerized analysis and human cognition to 
amplify human-centered decision making.  

• Leverages both human knowledge and visual analysis to increase analytical 
efficiency and guide simulations and analysis 

• Enables interactive simulations, dimensional reduction, clustering, analytics to 
improve decision making 

• Creates interactive discovery, planning and decision-making environments 
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• Discovers knowledge about role of visual display and interfaces in discovery and 
decision-making 

 
Figure 2: HCCD operational environment 

 
4. HCCD and Deep Learning 

 
4.1 Limitation of Deep Learning Models 
4.1.1 Limitation of training data  
Deep learning symbolizes the current state of AI technologies and machine learning 
research. The standard machine learning process includes data preparation, feature 
engineering, training, evaluation and implementation. It is common practice to spend 80% 
of time to prepare data for model training. Since learning is retroactive, the model will not 
adapt to evolutions of system dynamics, future significant events, and new patterns. This 
issue exacerbates with deep learning models, as the data relies on extremely large dataset 
and requires extended time to train. 
 
Data are information collected about real-world processes, which follows the laws of 
physics and established theories in respective disciplines. Data models, with machine 
learning or not, is an approximation of the generative real-world process, whose dynamics 
models may already exist. Machine learning models train exclusively on input data and 
does not account for science-based physical and dynamical models. Integrating the two 
models remain an open research problem. 
 
4.1.2 Interpretability and Trust 
There also exists a trust issue with deep learning in practice. Like other machine learning 
models, deep learning takes a black-box approach, where learning follows predetermined 
automated procedures and has limited options for domain experts to incorporate even 
common sense and basic human knowledges (Adadi and Berrada, 2018).  
 
While per defined metrics, e.g. precision and recall, deep learning may produce satisfactory 
performances for different tasks, in many scenarios, e.g. critical information is sparse, it 
will have little practical value. For example, deep learning models may have 99.99% 
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accuracy detecting pedestrian obstacles in autonomous vehicles, a single mistake may 
result in a fatal casualty and creating far-reaching legal, policy and public trust issues for 
adoption of self-driving cars. 
 
4.1.3 Lack of context 
Machine learning models require data to be transformed into numeric representations, 
unlike cognitive processes of a human. The inputs are also treated as independent variables, 
when in most cases they are not. Connections among different inputs, often critical in 
human’s sense-making, are lost in the processing of input data. In natural language 
processing for example, many vectorization methods focus on the frequencies and orders 
of words, whereas humans rely on semantics for comprehension.  
 
Predictions of machine learning are provided without explanation. In many cases, it is not 
sufficient to make decisions based on predictions with uncertainties, but why the prediction 
is made, e.g. responsible variables and patterns. Since the training process is a “black-box”, 
the results are not explainable. 
 
4.2 HCCD for Deep Learning 
4.2.1 HCCD for model analysis 
HCCD can compensate the limitation of machine learning by allowing human users to 
explore and experiment with training data and deep learning models. Visualization can be 
developed to understand parameter influence, training process and convergence of the 
model. In this process, user can iteratively better model performances, develop confidence 
on the model, and understand data and model limitations informed model implementations. 
 
For example, Wongsuphasawat et al. designed the TensorFlow Graph Visualizer, 
providing a high-level overview of the model’s graph structure as well as individual inputs 
and outputs of each layer (or node) in the model, such as the weights or bias 
(Wongsuphasawat et al., 2017). This visualizer allows users to more effectively understand 
a model’s complex structure and operations, the high- and low-level workflow, and 
potential limitations that would otherwise be difficult to identify. 
 
4.2.2 Mixed-Initiative and Interactive Machine Learning 
With both artificial and human intelligences in the HCCD environment, there is an 
opportunity for the mixed-initiative learning, where knowledge extraction may originate 
from either machine learning models or the human agents. Endert has explored many 
different scenarios of how to integrate the human and computer effectively in analysis 
problems (e.g. (Endert et al., 2011; Endert et al., 2012).  
 
Interactive machine learning in which users iteratively train machine learning models is 
especially important for finding relevant information during evolving situations and events 
since models that are trained offline may not perform well as the definition for relevancy 
changes over time. Figure 3 shows an example (Snyder et al., 2019) of an interactive 
learning framework for facilitating situational awareness in which social media analysts 
incrementally train text classifiers by correcting (relabeling) the relevancy of real-time 
tweets during evolving events, outperforming state-of-the-art offline models. The 
underlying HCCD environment in this example demonstrates the interactivity between 
human users and the machine learning process. HCCD allow users to develop better 
understanding and confidence of the developed models as a result. 
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Figure 3: Example of interactive machine learning (Snyder et al., 2019) 

 
5. HCCD and Public Safety 

 
5.1 Background 
Social media is a rich source of eyewitness accounts and field information. There is a great 
value as well as challenge in harnessing social media analytics to improve public safety 
and security, and improve safety during a terrorist attack, natural disaster and other 
emergency events. Meanwhile, significant increases in text, image, and video data (with 
limited quality, relevance, and reliability) can reduce first responder sensemaking and 
coordination capabilities in time-critical event detection, isolation, and response tasks due 
to information overload.  
 
5.2 Social Media Analytics and Reporting Tool (SMART) 
SMART is a visual analytics application that streams real-time, geotagged tweets to 
facilitate situational awareness. SMART provides a number of advanced visualizations and 
tools for spatial clustering, textual filtering, topic modeling, and anomaly detection. 
SMART’s design and selection of visual tools is inherently human-centered and effectively 
supports situational awareness through automated algorithms and interactive machine 
learning. However, system training is needed for effective use, and users must know which 
visualization tools to apply for quickly understanding an evolving situation, especially 
when it is time-critical, as well as identifying potentially important information. Figure 4 
shows the user interface of SMART which enables a HCCD environment. 
 

 
Figure 4: User Interface of HCCD in SMART (Zhang et al., 2014) 
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5.3 Evaluation and Impact 
SMART 2.0 (Snyder et al., 2019) an extended version of SMART that provides interactive 
machine learning, resulted in significant improvements in tweet relevancy classification 
performance (F1 score) by allowing users to iteratively train text classifiers as opposed to 
using a statically trained model. SMART 2.0 users also found that the interactive learning 
noticeably expedited the process of locating important information during events such as 
basketball games, shootings, and widespread wildfires (e.g. specific blood drive and 
wildfire locations). 
 

6. HCCD and Agriculture 
 
6.1 Background 
Smart agriculture catches the attention of plant breeders and becomes increasingly popular 
due to its benefits of capturing plant status with remote sensing technologies. For instance, 
various sensing cameras (e.g., RGB, LiDAR, hyperspectral, thermal cameras) can be 
mounted on Unmanned Aerial Vehicles (UAVs) to collect the physical appearance of 
plants. Instead of traditional hand-measured plant characters, which is an expensive and 
time-consuming manual process, remote sensing technologies can efficiently obtain a large 
amount of data for numerous plants throughout the entire growing season. Usually, the 
plant characters, which the plant breeders are interested in, takes extra steps to derive, such 
as the end of season plant biomass. Biomass is a critical indicator for the estimation of 
productivity and yield.  
 
The prediction of plant biomass involves the application of regression models that taking 
a series of hyperspectral images as input. For hyperspectral images, each pixel on a 
photograph records the spectrum of visible light (range from 400 nm to 900 nm) and then 
binning by 5 nm. Therefore, the dimension of input data samples is high and demands a 
long computation time. To help domain experts to understand how the regression models 
perform as well as identify the critical set of input features that impacts the performance. 
We collaborated with remote sensing experts and plant scientists to design an interactive 
exploration system to assist the feature selection and model exploration. 
 
6.2 FeatureExplorer 
FeatureExplorer (Zhao et al. 2019) is a visual analytics system designed to facilitate the 
evaluation of regression models and interactive feature selection. As shown in Figure 5, 
FeatureExplorer consists of 3 panels: a) the control panel to support the interactive 
selection of features, b) the feature correlation panel with a sorted correlation matrix and a 
scatter plot for a selected pair of features, c) the evaluation panel to display the prediction 
results of regression models and the importance ranking of features. The correlation matrix 
in Panel b and the feature importance ranking in Panel c are two methods to rank the 
features. The correlation matrix displays the linear relationship between a pair of features 
in a tabular visualization. The feature importance ranking shows the predictive contribution 
of features in regression models, and it captures the latent features that can be generated 
from input features. The users can explore the ranking of features for these two methods 
and interactively select the features that have both high correlation with biomass and 
feature importance. 
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Figure 5: User Interface of FeatureExplorer (Zhao et al., 2019) 

 
6.3 Evaluation  
During the collaborative analysis process with domain experts, it is found that iteratively 
selected subset of features can achieve better performance than an automatic selection 
method because domain experts pick more robust features for different datasets. Domain 
experts take advantage of knowledge on the biophysical meaning of features as well as 
choosing the features suggested by an automatic algorithm. The evaluation shows the 
advantage of the HCCD environment for complicated decision-making tasks. 
 

7. Discussion and Research Opportunities 
 
7.1 “Infobesity” 
One primary challenge to be addressed in designing an HCCD environment is “infobesity” 
(Rogers et al., 2013). Information exists in a wide range of formats, modalities, scales, and 
sources. While cloud and IoT have made access to information extremely easy, the 
velocity, volume and veracity of the various data has made synthesis of them, and fusion 
of their underlying information a daunting task.  
 
Many design decisions have to be made on the VA interface, i.e. what and how data will 
be transformed and presented to end users. Preparatory analysis will need to be conducted 
to understand relationships of the data. Developers will then need to innovate on the ways 
related data are presented to users without introducing bias and misinterpretations. The 
interactivity of VA systems also requires data rendering to be of low latency. Sampling 
methods for VA system can be used to mitigate this issue and remains an active research 
area. 
 
 

A

B
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7.2 Interdisciplinary system design 
Another major challenge in developing HCCD is the interdisciplinary task to optimize 
human and computer intelligence collaborations. The raw data is transformed into 
interconnected visualizations for users to interactively extract knowledge. Designing the 
interface of HCCD will require domain knowledge of multiple disciplines. 
 
For example, developers must understand the cognitive workload of the HCCD users and 
the operational environment prior to developing and implementing these visualizations. 
For example, there is a distinction between on-line and off-line applications. Users that 
manage on-line or real-time processes will have limited bandwidth to process information 
and the development of events in real-time puts hard constraints on time available for 
locating and interpreting critical information. Whereas, for off-line analytical tasks, users 
might want access to all possible information, can accommodate longer wait time and may 
be interested in exploring historical data as well as real-time data. Further complexity is 
introduced when levels of expertise are taken into accounts. It is recommended that a user-
centered design be used with HCCD to tailor the interface for the specific needs of the 
application, problem and user population. Interdisciplinary research, methods and theories 
to address the above problems will also be developed to ensure the effectiveness of the 
HCCD environment. 
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