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Abstract
The Stop Signal Reaction Time (SSRT) is a latency measurement for the unobservable human

brain stopping process, and was formulated by Logan (1994) without consideration of the nature
(go/stop) of trials that precede the stop trials. In 2017, the authors proposed asymptotically equiva-
lent and larger indexes of mixture SSRT and weighted SSRT to address this issue from time in task
longitudinal perspective, but estimation based on the time series perspective has still been miss-
ing in the literature. To test the hypothesis of no difference between time series based state space
estimation of SSRT and Logan 1994 SSRT, two samples of SST data including real data and the
simulated data were considered, and State-space missing data EM algorithm was applied for each
subject’s SST data, encompassing trial order. Using Logan’s 1994 formulae on ordered SST data,
the new state-space SSRT index was calculated. The results for both the real and the simulated data
showed that state-space SSRT is significantly larger than Logan’s 1994 SSRT, mixture SSRT, and
weighted SSRT. As a conclusion, SSRT indexes based on the information of the preceding trial type
are significantly larger than others.

Key Words: Stop Signal Reaction Times, State-Space Models, EM algorithm, Missing Data,
Lognormal Distribution

1. Introduction

Inhibitory control has theoretical and empirical importance. While its theoretical impor-
tance is rooted in its nature as an internally-governed act of control, its empirical importance
is due to the emergence of key results that support theories of development and inhibitory
psychopathology (Logan, 1994). The Stop Signal Task (SST) paradigm is a useful tool by
which inhibitory control can be studied (Verbruggen, Aron, Band, Beste,Bissett, Brockett,
et al, 2019). The SST includes a go task and a stop task. In the go task, or “go trials”, one of
two symbols, such as X or O, is presented on a computer screen. Participants are instructed
to choose between the X and O as fast as possible. In the stop task, or “stop trials”, a short
time after an X or O is presented, the participant hears an auditory “stop signal” through
headphones; this is a Stop Signal Delay (SSD). The auditory signal indicates they must
withhold their responses on that particular trial. In the most experiments, the stop trials
constitute 25% of all SST trials (Figure 1).
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Figure 1: Stop-signal task (SST) design including two versions of the task: 25% stop trials
and 75% stop trials, (image courtesy of (Manza, Hu, Chao, Zhang, Leung, and Li, 2016)).

The independent horse race model provides a theoretical framework in which the re-
searchers can estimate the stop process’ latency, or Stop Signal Reaction Times (SSRT), and
factors associated with the probability of Successful Inhibition (SI) in the SST paradigm
(Logan and Cowan, 1984). The independent horse race model assumes the finish times for
the go reaction times (GORT) in the stop trials and the finish times for the stop process
are stochastically independent. The SSRT is the time difference between the participant’s
internal response and the stop signal timing (Figure 2).

Figure 2: The independent horse race model: SSD = Td ;SSRT = Ts (Logan, 1994- modi-
fied).

Two general frequentist and Bayesian approaches have been proposed in the literature
to estimate SSRT (Verbruggen, Aron, Band, Beste, Bissett, Brockett, et al., 2019; Matzke,
Dolan, Logan, Brown, Wagenmakers, 2013) The frequentist approach includes three meth-
ods: Colonius’ method to calculate the entire distribution of the SSRT, the mean method
to calculate the constant valued SSRT, and Logan’s 1994 integration method to calculate
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constant valued SSRT (Matzke, Dolan, Logan, Brown, and Wagenmakers, 2013). It has
been shown that Colonius’ method is impossible to use in the human experimental context,
because it requires 250,000 trials for reliable estimates (Matzke, Dolan, Logan, Brown, and
Wagenmakers, 2013). Furthermore, there is higher reliability and less bias in Logan’s 1994
integration estimates versus the mean method estimates, particularly when the probability
of SI is other than 50%. Given these observations, Logan’s 1994 integration method has
been recommended for the estimation of SSRT (Verbruggen, Aron, Band, Beste, Bissett,
Brockett, et al., 2019). For a subject with go reaction times GORT in go trials, stop signal
delay SSD of Td and probability of successful inhibition SI in stop trials, Logan (1994)
proposed the following frequentist point estimation of SSRT:

SSRTLogan1994 = QGORT (1−P(SI|Td))−Td (1)

where Q is the quantile function, and the average of Td is taken over all stop trials. There
are two assumptions for this method: The first implicit assumption is the equal impact of
go trials and stop trials in SST data; that is, the impact of the preceding trial, either go or
stop, on the current stop trial SSRT estimates is assumed to be the same. The second as-
sumption is that there is no trigger failures or the trigger failures are randomized in the SST
data(Matzke, Love and Heathcote, 2017). The authors have shown that the first assumption
may be violated in the context of the tracking SST data1(Soltanifar, Dupuis, Schachar, and
Escobar, 2019). In order to address SSRT estimation given a violated assumption of equal
impact of preceding trial type on SSRT, the authors partitioned SST data to type A cluster
SST data, trials following a go trial, and type B cluster SST data, trials following a stop
trial. Then, by considering cluster type GORTA,SSRTA,GORTB,SSRTB and defining trial
type weight WA = (#Type A stop trials)/(#Total stop trials),WB = 1−WA, they proposed
the following new frequentist indexes of SSRT (Soltanifar, Dupuis, Schachar, and Escobar,
2019):

SSRTWeighted = WA×SSRTA +WB×SSRTB, (2)

SSRTMixture = SSRT(WA×GORTA+WB×GORTB). (3)

It has been shown than under specific, experimenter-pre-arranged conditions, the two
indices are asymptotically equivalent, given increasing number of stop trial (Soltanifar,
Dupuis, Schachar, and Escobar, 2019):

|SSRTWeighted−SSRTMixture| → 0, as mstop→ ∞. (4)

Moreover, the authors have shown that for both cases of the real SST data and the
simulated SST data (Soltanifar, Dupuis, Schachar, and Escobar, 2019):

SSRTWeighted−SSRTLogan1994 > 5.0 ms. (5)

The proposed three indices of SSRT in equations (1) - (3) are calculated via longitu-
dinal perspective on SST data. However, there is little information available to calculate
SSRT when the SST data is considered as a time series data. The lack of literature be-
comes particularly important when the GORT time series has already been studied (Bosch,
Ernestus, and Bores, 2014; Hyndman and Khandakar, 2008; Hyndman, Athnasopaubs,
Bergmeir, Caceres, et al, 2018). Moreover, to the authors’ best knowledge there is no study

1In the tracking SST data, the stop signal delay is dynamically increased by 50 ms after successful inhibition
in the previous stop trial, or decreased by 50 ms after failed inhibition in the previous stop trial. In this way, the
probability of successful inhibition P(SI|Td) approximates to 50% in overall stop trials; and, the estimations of
SSRT are more reliable.
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that assesses the impact of the preceding trial type (go/stop) on the current stop trial SSRT
estimates in the time series context. Here, the linear relationship of the current time point
outcome, in terms of the previous time point outcome in the time series, and the state-space
feature can be simultaneously useful to address the impact of the preceding trial type on
the current stop trial SSRT estimates (Diggle, 1990; Shumway and Stoffer, 2017).

The aim of the present paper is to estimate SSRT, given a violation of the assumption
of equal impact of the preceding trial type (go/stop) on the current stop trial SSRT, using
the missing state-space modelling on the entire SST data set. The outline of the paper is
as follows. First, we consider the real SST data with given go reaction times (GORT), go
reaction times on failed stop trials (SRRT), and stop signal delay time on stop trials (Td)
in the time series framework, and using a four-stage missing data state-space modelling,
we compute state space SSRT with a lognormal distributional assumption. Second, we
compare the new state space SSRT index with the three established indices in (1) - (3).
Third, we repeat the previous explorations for the case of simulated data. Finally, we
close with a discussion of the sensitivity of the distributional assumptions of the missing
data state-space modelling, and the asymptotic behavior of the disparities between these
indices.

2. Methods & Materials

2.1 Data

The study data included two sets of the real data and simulated data described below.

2.1.1 The Real Data

Data was collected at the Ontario Science Center in Toronto, Canada from 2009 to 2010.
The sample includes 16,099 children, aged 6 to 17 years old (Crosbie, Arnold, Paterson,
Swanson, Dupuis, Li, et al., 2013). Self or parent-reported demographic data were ob-
tained. Each child completed a stop signal task (SST) comprised of 5 blocks of 24 trials
(one practice block and four main blocks). Within the blocks, 25% of the trials contained a
stop signal. The stop signal task algorithm was designed so that the probability of success-
ful inhibition converged on 50%. The study’s variables included stop-signal delay (centi-
seconds), previous trial type (stop/go), and ADHD status (yes/no). The ADHD variable
was defined based on SWAN z-score (Brites, Salgado-Azoni, Ferrerira, Lima, and Ciasca,
2015), whether the score falls in the top 10% of the distribution (defined as ADHD case) or
not (defined as control case).

2.1.2 The Simulated Data

The simulations are based on the assumption of the independent race model. Independent
GORT and SSRT via the tracking method with initial SSD = 200 ms were simulated. On
the stop trials, a successful inhibition was considered one for which GORT > SSRT +SSD;
and, otherwise, it was considered a failed inhibition. An ex-Gaussian distribution was
assumed for GORT, SSRT, and it was simulated by R package GAMLSS (Stasinopoulos
and Rigby, 2016). This distribution has been extensively used in psychology, neuroscience,
and as a time model for cognitive process in the study of reaction times(Palmer, Horowitz,
Toralba and Wolfe, 2011; Roher and Wixted, 1994; Luce, 1991). We simulated SST data
for each subject with type A GORT and SSRT ex-Gaussian distributions, type B GORT and
SSRT ex-Gaussian distributions, and weights WA = 0.75 and WB = 0.25(see Appendix). We
randomly merged the two cluster A and cluster B SST data for each subject. The baseline
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ex-Gaussian distributional forms for type A cluster, type B cluster SST data, and subject
SST sample are as follows in the Table 1:

Table 1: Structure of simulated stop task data by subject sample size ( SST data sample
size per subject: N=96,192,288,384,480,960)

SSRT(∆ mean, ∆ STD) n(subjects) Cluster Type n(subjects):cluster GORT distribution SSRT distribution
(increasing, increasing) 11 A 11 (a = 2k : 1≤ k ≤ 11) ExG(300,35,30) ExG(130+a,70+a,60+a)

B 11 (a = 2k : 1≤ k ≤ 11) ExG(450,50,30) ExG(150+a,90+a,60+a)
(increasing, decreasing) 11 A 11 (a = 2k : 1≤ k ≤ 11) ExG(300,35,30) ExG(130+a,70-a,60)

B 11 (a = 2k : 1≤ k ≤ 11) ExG(450,50,30) ExG(150+a,90-a,60)
(decreasing, increasing) 11 A 11 (a = 2k : 1≤ k ≤ 11) ExG(300,35,30) ExG(130-a,70+a,60)

B 11 (a = 2k : 1≤ k ≤ 11) ExG(450,50,30) ExG(150-a,90+a,60)
(decreasing, decreasing) 11 A 11 (a = 2k : 1≤ k ≤ 11) ExG(300,35,30) ExG(130-a,70-a,60-a)

B 11 (a = 2k : 1≤ k ≤ 11) ExG(450,50,30) ExG(150-a,90-a,60-a)

2.2 Subjects

A random subsample of 44 participants (11 ADHD; 33 Control) age 6-17,with 96 SST
trials, and a minimum of 10 stop trials preceded by a stop trial was selected from the
real SST data in 2.1.1. For the simulated data, 44 subjects with a variety of increasing or
decreasing mean and variance of their underlying SSRT distributions were simulated. Each
simulated subject had 96, 192, 288, 384, 480, and 960 SST trials.

2.3 Statistical Inference

We considered the raw SST data, including GORT, SRRT and SSD, as a three-dimensional
time series vector with missing values, and applied the missing data state-space models to
it (Figure 3).

Figure 3: A 3-dimensional time series plot of Stop Signal Task (SST) data with 96 trials(72
go trials with GORT data points; 24 stop trials with 24 stop signal delay SSD data points
and 12 signal respond reaction time SRRT data points).

Given that statistical technique, the state–space modelling of time series requires the
input data to have normal distribution, we log transformed the data (Bland and Altman,
1996). In addition, the original lognormal distributional assumption for RT data is among
the most accepted distributional forms in the RT literature, and it removes considerable
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skewness, making the data’s distribution near normal (Fengm, Hongyue, Lu, Chen, He, Lu,
et al., 2014).

The details of the process are:

Step (i): We assumed a lognormal parametric distribution for GORT, SRRT, and SSD and,
then we considered the following input data:

logGORT = log(GORT )∼ N(µ,σ2),

logSRRT = log(SRRT )∼ N(µ∗,σ∗2)

logSSD = log(SSD)∼ N(µ∗∗,σ∗∗2). (6)

Step (ii): We fit a Frequentist missing state-space model with relative tolerance of 1% to
the incoming data(Shumway and Stoffer, 2017):

State Equation:(xt)3×1 = (Φ)3×3.(xt−1)3×1 +(wt)3×1 : wt ∼iid N(03×1,Q3×3)

Observation Equation:(y(1)t )q1t×1 = (A(1)
t )q1t×3.(xt)3×1 +(v(1)t )q×1 :

v(1)t ∼iid N(0q1t×1,Rq1t×q1t). (7)

The observation matrix A(1)
t carries the trial type information from the previous trial to

the current trial and either identity or identity with some diagonal values 0 whenever the
preceding trial type is ”go”. The state equation can be written in the following format:

xt1
xt2
xt3

=

φ11 φ12 φ13
φ21 φ22 φ23
φ31 φ32 φ33

∗
xt−1,1

xt−1,2
xt−1,3

+

wt1
wt2
wt3

 :


xt1 = logGORTt

xt2 = logSRRTt

xt3 = logSSDt .

(8)

We applied the missing data EM method by R package ASTSA (Stoffer, 2017) to cal-
culate the matrix Φ = (φi j)3×3 implying:

̂logGORTt = φ11.logGORTt−1 +φ12.logSRRTt−1 +φ13.logSSDt−1̂logSRRTt = φ21.logGORTt−1 +φ22.logSRRTt−1 +φ23.logSSDt−1̂logSSDt = φ31.logGORTt−1 +φ32.logSRRTt−1 +φ33.logSSDt−1 (1≤ t ≤ n)

(9)

where n = 96 for the real SST data and n = 96k(k = 1,2,3,4,5,10) for the simulated SST
data.
Step (iii). We used the estimated ̂logGORTt(1 ≤ t ≤ m(m = 72k(k = 1,2,3,4,5,10)) and
used the frequentist MLE methods to fit normal distributions N(µ̂, σ̂2) to the corresponding
state- space SST data (72k GORTs, 8k-14k SRRTs, 24k SSDs) matched to the original SST
data.

Step (iv). The state-space estimation of SSRT for given probability of successful inhibition
P(SI) was computed as:

SSRTSS.Logan1994 = exp(µ̂ + σ̂ .Φ−1(1−P(SI)))−Td , (10)

where Φ−1 is the quantile function of standard normal distribution, and the average of Td is
taken over all matched state-space stop trials.

We then repeat Steps (i) - (iv) with normal assumptions. Table 2 compares the overall
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methodology applied in calculations of SSRT indices (1) - (3) with that of SSRT index in
(10):

Table 2: Comparison of the current and State-Space method of estimations of SSRT
Method Old
Used Data Only GORT (72 trials) and SSD(24 trials)
Methodology Does not consider impact of the preceding trial on the current trial
Distribution Ex-Gaussian
Method New
Used Data Estimated state-space GORT (72 trials) and estimated state-space SSD (24 trials)
Methodology Considers the impact of the preceding trial on the current trial via the observation matrix
Distribution Lognormal/Normal

All formerly established SSRT indices in equations (1) - (3) were compared with the
new index in equation (10) using the paired t-tests (PROC TTEST, (SAS/STAT software
version9.4, 2012)). Given the distributional assumption for the SST data in the state space
modelling (three variate lognormal or normal), independent sample t-tests were conducted
between ADHD and control groups within each SSRT index.

3. Results

The results are divided into two subsections. In subsection 3.1, the new state space SSRT
index is compared with SSRTWeighted ,SSRTMixture, and SSRTLogan1994 in terms of size and
differential impact between clinical groups. First, for the case of comparison of estimations,
the following statistical hypothesis test is conducted:

H0 : SSRTSS.Logan1994 = SSRTLogan1994,

H1 : SSRTSS.Logan1994 6= SSRTLogan1994, (11)

Second, for the case of differential impact between clinical groups, the following statistical
hypothesis test is conducted:

H0 : SSRT ADHD
SS.Logan1994 = SSRTControl

SS.Logan1994,

H1 : SSRT ADHD
SS.Logan1994 6= SSRTControl

SS.Logan1994, (12)

Similar hypothesis tests are conducted with replacing SSRTLogan1994 in (11) with SSRTMixture

and SSRTWeighted ; and, with replacing SSRTSS.Logan1994 in (12) with SSRTMixture and SSRTWeighted .

In subsection 3.2, the comparisons in terms of size of the estimates are repeated for the
simulated data and the asymptotic behaviour of the sizes. Their sensitivity to the distribu-
tional assumptions is studied.

3.1 State-Space SSRT for the real SST data

Table 3 presents results for the new estimated state-space SSRT and compares it to the
established SSRTs.
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Table 3: Paired t-test and two sample t-test results of SSRT indices by distributional as-
sumption (n = 44).

(a) Measurement Comparisons
Measurement Population Distribution Mean(95%CI) t Sig.(2-tailed)
SSRTSS.Logan1994−SSRTLogan1994 Overall Lognormal 13.1(8.4,17.6) 5.7 < 0.0001

Normal 21.9(17.4,26.3) 9.9 < 0.0001
SSRTSS.Logan1994−SSRTMixture Overall Lognormal -0.6(-9.8,8.7) -0.1 0.9

Normal 8.3(0.2,16.4) 2.1 0.04
SSRTSS.Logan1994−SSRTWeighted Overall Lognormal -1.2(-8.4,6.0) -0.3 0.7

Normal 7.7(1.3,14.1) 2.4 0.02
(b) Differential Impact
Measurement Population SST Distribution Mean(95%CI) t Sig.(2-tailed)
SSRTSS.Logan ADHD vs. Control Lognormal 58.6(3.0,114.2) 2.3 0.04

Normal 58.8(1.8,115.6) 2.3 0.04
SSRTLogan1994 Ex-Gaussian 66.5(10.5,122.5) 2.6 0.02
SSRTMixture Ex-Gaussian 65.6(5.4,125.9) 2.4 0.04
SSRTWeightd Ex-Gaussian 62.3(5.1,119.5) 2.4 0.04

There are five key results from Table 3. First, the SSRTSS.Logan1994 was significantly
larger than SSRTLogan1994 under both distributional assumptions (Lognormal: 13.1: 95%CI
=(8.1, 17.6); Normal: 21.4:95%CI =(17.4,26.3)); second, there were no significant differ-
ences between SSRTSS.Logan1994 and two former indices SSRTMixture and SSRTWeighted over-
all, under the lognormal distributional assumption. However, under normal distributional
assumption, the former index was significantly larger than the latter two [8.3:95%CI = (0.2,
16.4); 7.7:95%CI = (1.3, 14.1), respectively]. Third, the ADHD participants had 58.6 ms
[95%CI = (3.0,114.2)] higher SSRTSS.Logan1994 values than controls under the lognormal
distributional assumption. A similar result was observed under the normal distributional
assumption. Fourth, the differential impact of SSRTSS.Logan1994 was slightly weaker than
the two former new indices SSRTMixture and SSRTWeighted under the lognormal distribu-
tional assumption (58.6 ms vs 65.6 ms, 62.3 ms). Finally, similar conclusions were found
under the normal distributional assumption. Figure 4 depicts the comparison of the regular
estimation of SSRT given by (1) and its state-space counterpart given by (10), given by the
results in Table 3.

Figure 4: Regular and State-Space estimations of SSRT
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From Table 3(a), it follows that under different underlying distributional assumptions
for GORT, SRRT, and SSD, we obtain different estimates when comparing SSRTSS.Logan1994
and the other three indices. To confirm the assumption of sensitivity of the state-space
SSRT estimation to the underlying distributional assumption, we will conduct the compar-
isons for the simulations in the next section.

3.2 Simulations & Asymptotic Behaviour

In order to check the impact of the underlying distributional assumptions in the state-space
models on the estimated SSRT indices, we simulate SST data as shown in subsection 2.1.2.
Table 4 presents the results of pairwise t-tests for each given participant sample size m un-
der the lognormal distributional assumption for the simulated ex-Gaussian GORT, SRRT,
and SSRT. Such an assumption is justified, given that the shifted lognormal distribution
provides a good fit for the ex-Gaussian distribution of the RT data (Ratcliff and Murdock,
1976).

Comparing the results from Table 3, Panel(a), and Table 4, we conclude:

Under the lognormal assumption for the real data:

Result (i): The difference between the state-space and the conventionally estimated SSRTLogan1994
in the simulated data is the same as in the original real data. However, the size
of differences in the former (8.1-11.8 ms) is smaller than the latter (13.1 ms),
and with increasing simulated sample sizes, their gap diminishes.

Result (ii): The difference between the state-space estimated SSRTLogan1994 and the conven-
tional SSRTMixture in the simulated data is in the range 8.5 – 11.7 ms and very
different from the non-significant difference in the original real data.

Result (iii): The difference between the state-space estimated SSRTLogan1994 and the con-
ventional SSRTWeighted in the simulated data is in the range of 4.0 – 5.4 ms, and
somewhat different than that of their non-significant difference in real data.

Table 4: Paired t-test results of simulated state-space SSRT indices by m(n = 264).
Pair N(#SST) m(#stop) Mean(95%CI) t Sig.(2-tailed)
SSRTSS.Logan1994−SSRTLogan1994 8.1(6.5,9.8) 9.9 <0.0001
SSRTSS.Logan1994−SSRTMixture 96 24 8.5(6.8,10.1) 10.3 <0.0001
SSRTSS.Logan1994−SSRTWeighted 4.0(2.2,5.8) 4.5 <0.0001
SSRTSS.Logan1994−SSRTLogan1994 10.2(9.3,11.1) 23.1 <0.0001
SSRTSS.Logan1994−SSRTMixture 192 48 10.4(9.5,11.3) 23.1 <0.0001
SSRTSS.Logan1994−SSRTWeighted 4.2(3.3,5.2) 8.8 <0.0001
SSRTSS.Logan1994−SSRTLogan1994 10.4(9.5,11.2) 22.8 <0.0001
SSRTSS.Logan1994−SSRTMixture 288 72 10.6(9.6,11.5) 22.8 <0.0001
SSRTSS.Logan1994−SSRTWeighted 4.9(3.7,5.4) 11.7 <0.0001
SSRTSS.Logan1994−SSRTLogan1994 11.4(10.4,12.3) 24.5 <0.0001
SSRTSS.Logan1994−SSRTMixture 384 96 11.1(10.0,12.1) 12.3 <0.0001
SSRTSS.Logan1994−SSRTWeighted 5.0(4.2,5.8) 12.3 <0.0001
SSRTSS.Logan1994−SSRTLogan1994 11.4(10.5,12.3) 26.6 <0.0001
SSRTSS.Logan1994−SSRTMixture 480 120 11.3(10.4,12.3) 24.1 <0.0001
SSRTSS.Logan1994−SSRTWeighted 4.8(4.0,5.6) 12.4 <0.0001
SSRTSS.Logan1994−SSRTLogan1994 11.8(11.2,12.6) 34.0 <0.0001
SSRTSS.Logan1994−SSRTMixture 960 240 11.7(11.0,12.4) 33.3 <0.0001
SSRTSS.Logan1994−SSRTWeighted 5.4(4.8,5.9) 20.0 <0.0001
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Under the normal assumption for the real data:

Result (i): The difference between the state-space and conventionally estimated SSRTLogan1994
in the simulated data (8.1 ms-11.8 ms) is significantly smaller than in the orig-
inal real data (21.9).

Result (ii): The difference between the state-space estimated SSRTLogan1994 and conven-
tional SSRTMixture in the simulated data (8.1 ms-11.8 ms) is similar to that of
the real data (8.3 ms).

Result (iii): The difference between the state-space estimated SSRTLogan1994 and conven-
tional SSRTWeighted in the simulated data (8.1 ms-11.8 ms) is similar to that of
real data (7.7 ms).

These two sets of results show that one needs to check underlying distributional as-
sumptions for state-space models in calculating SSRT’s state-space indices. Figure 5 presents
the indices’ differences in terms of simulated sample size. There are two main results: First,
the main increment on the index difference occurs from sample size m = 96 to m = 192;
Second, after simulated sample size m = 480, the trend has almost asymptotic constant
behaviour.

Figure 5: Disparities of simulated SSRT indices by sample size (n = 264).

4. Discussion

This study has presented a time series-based methodological approach for a more informed
estimation of SSRT by considering state-space nature of SST time series data, and lognor-
mal format of the involved distributions offering a new index of SSRT. It introduced time
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series based state–space SSRT as the third index of SSRT, which considered trial order in
the stop task data. It hypothesized that considering previous trial type (stop/go) in calcula-
tion of the new time series based index does impact estimations of SSRT, as it was shown
in the case of the longitudinal approach (Soltanifar, Dupuis, Schachar, and Escobar, 2019).

The majority of findings of the study affirmed the hypothesis. State-space estimations
of Logan’s 1994 SSRT were 13.1 ms and 21.9 ms significantly larger than their regular
estimations under a normal or lognormal distribution assumption for SST data, respec-
tively. This result was confirmed by similar significantly higher estimations (8.1 ms - 11.8
ms) from simulated SST data under the ex-Gaussian distributional assumption. However,
there were no significant differences between two indices of SSRT on their differential
impact between clinical groups. There was consistency in comparing the results of the
state-space SSRT and the Logan 1994 SSRT indices using both real and simulated SST
data. While in the majority of cases, the new time series based index is different from es-
tablished indices (as shown in this study), there are special cases where these four indices
will be precisely equal. Two special cases include when each stop trial is preceded by a
go trial, i.e. (A(1)

t )q1t×3 = 03 and when each stop trial is preceded by another stop trial, i.e.
(A(1)

t )q1t×3 = I3.
The study’s results based on the time series method were consistent with those of longi-

tudinal method (Soltanifar, Dupuis, Schachar, and Escobar, 2019), considering the impact
of the preceding trial type on the current stop trial SSRT in the calculation of SSRT. The first
consistency is that when the researcher considers the trial order when considering the SST
data, they obtain significantly larger estimates versus when they ignore trial order. This is
the common conclusion in both approaches. One explanation for this commonality is that
a participant’s stopping skills improves immediately after stop trials compared to go trials
in the SST. This is in accord with examples in previous literature, such as a participant’s
optimized control skills in playing video games with dual task and task switching situation
(Strobach, Frensch and Schubert, 2012), and a participant’s improved visuomotor control in
playing action video games (Li, Chen and Chen, 2016). In our case, once the order of SST
trials is considered in the calculations, for the those preceded by a stop trial the participant’s
stopping improves by his or her on taking longer go reaction times (GORT), and hence, the
latency of the stopping process SSRT increases. This yields to increase in the estimated
SSRT. The second consistency is that there is no statistically significant difference between
clinically differential impact(ADHD versus Control) using longitudinal perspective estima-
tions of SSRT versus time series based estimation of SSRT. On defining the ADHD based
on SWAN z-score we followed a trait based approach rather than emulating diagnosis.

The study’s proposed time series based method is; however, less favourable than that of
time in task longitudinal based method (Soltanifar, Dupuis, Schachar, and Escobar, 2019)
given few considerations as follows: First, the calculations in the new method (in partic-
ular compared to the Weighted SSRT index in the old method) are more difficult than the
old one. Second, the calculations in the new method are susceptible to satisfaction of un-
derlying lognormal distributional assumption for the SST data. Third, the calculations in
the new method are dependent to the size of the relative tolerance of the missing data EM
algorithm. Finally, given that (i) ADHD as a trait is likely to reflect participants who make
alot of errors in go trials and many signal responds in stop trials; (ii) the new estimation
method considered preceding trial type into account; there was no progress in finding better
differential impact (ADHD versus Control) in the new method.

This study’s findings are restricted in a few aspects. The first is the assumption of a
lognormal distribution for GORT, SRRT and SSRT in the state–space estimations of Logan
1994 SSRT. The optimum situation would be ex-Gaussian distributional assumption for
GORT, SRRT, and SSRT in the new method such that the only remaining difference be-
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tween the conventional method and the new method would be consideration of the nature
(go/stop) preceding trials in the SST data. Thus, such assumption limited comparison of the
results in their more customary assumption of ex-Gaussian distribution (Verbruggen, Aron,
Band, Beste, Bissett, Brockett, et al., 2019). The second is the sensitivity of the state-state
approach in calculating SSRT to a multivariate normal distributional assumption of the SST
data, and upon violation of normality, inconsistent results may yield. This is evident from
both real and the simulated SST data results, in simulated data, given good fit of the log-
normal distribution to the simulated Ex-Gaussian SST data, the results for the calculated
state-space SSRT versus the regular SSRT are consistent. The third one is that state-space
calculation of SSRT depends on the relative tolerance of the missing data EM algorithm
in the calculation of the state-space SST data. While we chose 1% for this purpose, other
values may yield different state-space SST data and a different state-space SSRT estimate.
Consequently, they may impact their comparison of non-state space SSRT estimates. Fi-
nally, for simplicity of the calculations, it was assumed that there were no trigger failures
or randomized trigger failures in the SST data (Matzke, Love and Heathcote, 2017).

The approach outlined in this study should be replicated in the future research in two
directions. The first is that the study should be replicated for in adult participants who can
perform longer tasks and produce a higher number of stop trials (e.g., 200 SST trials with
50 stop trials, as recommended (Verbruggen, Aron, Band, Beste, Bissett, Brockett, et al.,
2019), to confirm the current results at older ages and across a larger number of trials. The
second is to consider non randomized trigger failures and their probabilities in the SST data
in the calculations of the state-space Logan 1994 SSRT and to compare the results with the
former established estimates.

Conclusion

The relative position of stop and go trials in the entire stop signal task data has been shown
to be a key factor in the estimation of the associated SSRT based on the time in task longi-
tudinal method(Soltanifar, Dupuis, Schachar, and Escobar, 2019). This study provided fur-
ther evidence on this finding from time series perspective, paving the way for more refine-
ment in the estimates. Given consistency of results in both methods and advantages of the
first method, the researchers are recommended to consider Weighted SSRT (SSRTWeighted)
as the latest optimum option for estimation of the latency stopping process in the brain.
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Abbreviations

ADHD Attention Deficit Hyperactivity Disorder
GORT Reaction time in a go trial
GORTA Reaction time in a type A go trial
GORTB Reaction time in a type B go trial
SSD Stop Signal Delay
SI Successful Inhibition
SR Signal Respond
SRRT Reaction time in a failed stop trial
SSRT Stop Signal Reaction Times in a stop trial
SSRTA Stop Signal Reaction Times in type A stop trial
SSRTB Stop Signal Reaction Times in type B stop trial
SST Stop Signal Task
SWAN Strengths and Weakness of ADHD-symptoms and Normal behavior rating scale
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Appendix

Cluster type Weight Calculations in the Simulation of SST data

Here we show that the weight WA = 0.75 is the most natural weight given independence
of assignment of stop or go process to the given trial. To see this, let T1, · · · ,T96,S1, · · · ,S24
and G1, · · · ,G72 denote all trials, stop trials and go trials. Then, given that 25% of all trials
are go trials, it follows that:

WA =
#{∃ j(Ti = S j),∃k(Ti−1 = Gk)|1≤ i≤ 96}

24

=
#{∃ j(Ti = S j),∃k(Ti−1 = Gk)|1≤ i≤ 96}/96

24/96

=
P(∃ j(Ti = S j),∃k(Ti−1 = Gk)|1≤ i≤ 96

P(∃ j(Ti = S j)|1≤ i≤ 96)

=
P(∃ j(Ti = S j)|1≤ i≤ 96)×P(∃k(Ti−1 = Gk)|1≤ i≤ 96)

P(∃ j(Ti = S j)|1≤ i≤ 96)
= P(∃k(Ti−1 = Gk)|1≤ i≤ 96)' 0.75.
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