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Abstract
Clinical safety data are routinely evaluated using between group p values for every reported ad-

verse event (AE), with multiple testing procedure applied to the p values to adjust for multiplicity.
However, the p value generated for each AE is often based on comparing only the AE incidence
rate between two randomized groups, regardless of AE severity. To enhance the evaluation of drug
safety, for each AE we propose to use AE occurrence and severity as co-primary endpoints and to
perform a statistical test of the composite null hypothesis that the incidence rate and severity are
equivalent between groups. The p value of the test of the composite null hypothesis is obtained by
combining the p values of the Fisher’s exact test for AE incidence and the test for AE severity. The
test for AE severity is based on a biased sampling model, which is an extension of the work by
Gilbert et al. (2003, Biometrics 59, 531-541) to ordinal response. We conduct simulation studies to
investigate the power and type I error rate of the proposed tests of the composite null hypothesis and
compare them with the test of equality of AE incidence rate. The simulation results show that, in
general, the proposed method performs as well or outperforms the test of equality of AE incidence
rate in detecting a safety signal.

Key Words: Adverse events; Causal inference; Composite null hypothesis; Posttreatment selection
bias; Principal stratification; Safety monitoring; Severity.

1. Introduction

Drug safety evaluation is critically important in clinical trials. In recent years, the US
Food and Drug Administration (FDA) has issued guidance regarding safety monitoring
and reporting for an investigational new drug (IND) to assist fuller development of safety
profiles, as shown in the US FDA guidance [FDA, 2010, FDA, 2012, FDA, 2015]. Drug
safety is evaluated on the basis of adverse events (AE) reported in the clinical trials. AEs are
typically classified into body systems. Each body system contains AEs that are biologically
related. Close analysis of the safety data containing incidence and severity information of
AEs improves the timing of identifying risks and justify the safety of the treatment that
warrant a next stage clinical trial or regulatory agency approval.

Drug safety evaluation include two major areas: “safety monitoring” and “safety signal
detection” (Zhu et al., 2016). Safety monitoring aims at monitoring an adverse event of
special interest (AESI) in an ongoing trial, while in safety signal detection, all AEs instead
of just an AESI are included in the analysis. The goal of safety signal detection in a two-
arm clinical trial is to compare the incidence rates of all AEs between a control group
and a treatment group. If the incidence rates of some of the AEs in the treatment group
are significantly larger than those in the control group (or vice versa), these AEs will be
∗Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS
†Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS
‡Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS
§Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas

City, KS
¶Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS

 
1479



“flagged” and further investigation is needed about the safety of the drug. Simultaneously
comparing the incidence rates of many AEs leads to multiplicity issues. This is a common
challenge that faces statisticians. Bayesians and frequentists alike. Ignoring multiplicities
will give excess false positive findings, thus needlessly complicating the interpretation of
the safety profile of the experimental drug.

From the frequentist perspective, to assess the equality of incidence rate of every AE
encountered in the clinical trial and detect safety signal while adjusting for multiplic-
ity issues, p value for testing the equality of incidence rate is generated for every AE
and is adjusted and evaluated by the multiple testing procedure. Among several multi-
plicity adjustment methods, a double false discover rate (DFDR) procedure proposed by
[Mehrotra & Heyse, 2004] is a novel method for controlling the false discovery rate (FDR)
to a desired level. It is a two-step application of the false discovery rate procedure pro-
posed by [Benjamini & Hochberg, 1995]. [Mehrotra & Adewale, 2012] improved DFDR
procedure that significantly lowers the FDR without materially compromising the power
for detecting true signals.

In addition, some Bayesian methods have also been proposed for safety signal detec-
tion and adjustment of multiplicity issues. [Berry & Berry, 2004] proposed a three-level
Bayesian hierarchical model to account for multiplicities in adverse event assessment. The
hierarchical model provides an explicit method for borrowing information across types of
adverse events. [Xia et al., 2011] expanded Berry’s method into a hierarchical Poisson mix-
ture model which accounts for the length of the observation of subjects and improves the
characteristics of the analysis for rare events. [DuMouchel, 2012] described a multivari-
ate Bayesian logistic regression (MBLR) method for model-based analysis of safety data
when there are rare events and sparse data from a pool of clinical trials. The logistic regres-
sion model examines the relationship between AE frequencies to multiple covariates and
to treatment by covariate interactions, which enables a search for vulnerable subgroups.
[Gould, 2008, Gould, 2013, Gould, 2018] proposed an alternative Bayesian screening ap-
proach to detect potential safety issues when event counts arise from binomial or Poisson
distributions. The method assumes that the adverse event incidences are realizations from
a mixture of distributions and seeks to identify the element of the mixture corresponding to
each adverse event.

As we can see from the literatures, safety signal detection is often based on comparing
only the incidence of adverse events between two groups, regardless of the AE severity. It
is possible that for some AEs, the incidence rate might be the same in both groups but the
severity is “greater” for one group versus the other. For example, suppose the severity of an
adverse event has three levels: mild, moderate or severe. The probabilities that the severity
of an adverse event is moderate or severe are both higher for one treatment versus the other
even if the incidence rates of an adverse event are the same in both groups. In this case it
would be unappealing for the AE not to be flagged.

To fully capture the presence and severity of adverse events, it is important to incorpo-
rate an endpoint that describes the severity of each AE. [Klingenberg et al., 2009] proposed
a method for investigating the toxicity effect of a chemical compound on animals in an en-
vironmental study. They introduced a single primary endpoint to represent the presence and
severity of every type of toxicity effect of the chemical compound. They used permutation
test and a bootstrap method for testing the simultaneous marginal homogeneity for all the
toxicity effect of the chemical compound and adjusted the p values to control for family
wise error rate (FWER). The method can be readily carry over to safety analysis in clinical
trials. However, power of the test based upon single endpoint for each type of AE is low
for detecting certain alternatives of interest, for instance, when the AE incidence rate is
the same but the severity is different. Recently, [Duan et al., 2019] proposed a three-level
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Bayesian hierarchical non-proportional version of the cumulative logit model for assessing
the incidence and severity of drug AEs in two-arm clinical trials. Their method not only
controls for false discovery rate but also performs well in detecting safety signals when
either the incidence rate or the severity is greater in the treatment group.

In this article, we seek to enhance the p value for evaluating each AE. We propose
to use AE occurrence and severity as co-primary endpoints and to perform a statistical
test of the composite null hypothesis that the incidence rate and severity are equivalent
between groups. The first endpoint, AE occurrence, is a binary variable. The second
endpoint, AE severity, is a 3-level ordinal categorical variable. For more information about
the severity level used in clinical trial, see “Common Terminology Criteria for Adverse
Events” published in the National Cancer Institute. The p value of the test of the composite
null hypothesis is obtained by combining the p value of the Fisher’s exact test for AE
incidence and the p value of the test for AE severity using Simes’ method [Simes, 1986]
and Fisher’s method [Fisher, 1932]. See [Shih & Quan, 1997] and [Mehrotra et al., 2006]
for a discussion of the statistical testing of the composite hypothesis.

The test for AE severity is restricted to subjects who are selected based on a post-
randomization event (AE occurrence). This poses a major challenge to making an unbiased
inference of the treatment effect on AE severity. [Gilbert et al., 2003] and [Mehrotra et al., 2006]
proposed methods for adjusting post-randomization selection bias in the context of HIV
vaccine trials. Their methods are based on the principal stratification framework devel-
oped by [Frangakis & Rubin, 2002]. However, the second endpoint they considered is the
viral load set point of a subject infected by HIV, which is a continuous variable but the
second endpoint in our problem is an ordinal categorical variable. We extend the method
of [Gilbert et al., 2003] to adjust for selection bias. Simulation studies are conducted to
investigate the power and type I error rate of different tests and to investigate the power of
the combined tests after adjusting for potential selection bias.

The rest of the paper is organized as follows. In Section 2, we introduce notation and
define the composite null hypothesis. In Section 3, we describe the combined test for testing
the composite null hypothesis. In Section 4, we introduce a proposed method for adjusting
for selection bias. In Section 5, we compare the power of different tests in a comprehensive
simulation study and then in Section 6 we apply the proposed method in a clinical trial
safety data. We conclude the article in Section 7.

2. Notations and Composite Null

Suppose the safety evaluation is performed in a two-arm trial for a drug: a control arm and
a treatment arm. Our goal is to detect those AEs with safety signals among all the AEs.
An AE has a safety signal if it has greater incidence rate or greater severity in the treatment
arm. Greater AE severity will be defined later.

To establish the safety of the drug, two primary endpoints will be used for each AE: AE
occurrence and AE severity. AE occurrence is a binary endpoint, indicating whether an AE
occurs or not. AE severity is an ordinal categorical endpoint. Without loss of generality,
we assume there are three AE severity levels: mild, moderate and severe (or 1,2 and 3).
This can be easily extended to more severity levels, for example, grade 1 to 4 severity level.
See “Common Terminology Criteria for Adverse Events” published in the National Cancer
Institute.

Suppose there are a total of N subjects in two groups and the number of subjects in
the control group and treatment group are N1 and N2 respectively. For a specific AE, let
y1i = 1 if the ith subject in the control group experiences the AE and 0 if he or she does
not experience the AE. i = 1, ..., N1. Let y2i = 1 if the ith subject in the treatment group
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experiences the AE and 0 if he or she does not experience the AE. Denote θ1 = P (y1i =
1), θ2 = P (y2i = 1) as the incidence rates of the AE in control and treatment group
respectively. Denote x1 =

∑N1
i=1 y1i, x2 =

∑N2
i=1 y2i as the number of subjects with the AE

in control and treatment group respectively. Thus x1 ∼ Bin(N1, θ1), x2 ∼ Bin(N2, θ2).
Let z1i and z2i be the severity score (1,2 or 3) of the ith subject in the control group

and treatment group respectively. Of course z1i(z2i) exists only if y1i = 1(y2i = 1). Also
denote z1 and z2 as two vectors of severity scores of the subjects with adverse event in the
control and treatment group respectively. For subjects with the AE, letn1 = (n11, n12, n13)
be a vector of the number of subjects whose AE severity level is 1, 2, 3 respectively in the
control arm, where

n11 =
N1∑
i=1

I{z1i = 1}, n12 =
N1∑
i=1

I{z1i = 2}, n13 =
N1∑
i=1

I{z1i = 3}

And let n2 = (n21, n22, n23) be a vector of the number of subjects whose AE severity level
is 1, 2, 3 respectively in the treatment arm, where

n21 =
N2∑
i=1

I{z2i = 1}, n22 =
N2∑
i=1

I{z2i = 2}, n23 =
N2∑
i=1

I{z2i = 3}

Let π1 = (π11, π12, π13)
T ,π2 = (π21, π22, π23)

T be two vectors of probabilities that the
AE severity is 1, 2 or 3 respectively in control and treatment groups, where

π11 = P (z1i = 1|y1i = 1), π12 = P (z1i = 2|y1i = 1), π13 = P (z1i = 3|y1i = 1)

π21 = P (z2i = 1|y2i = 1), π22 = P (z2i = 2|y2i = 1), π23 = P (z2i = 3|y2i = 1)

Thus n1 ∼ multi(x1,π1),n2 ∼ multi(x2,π2).
Denote Fc(z) and Ft(z) (z = 1, 2, 3) as the cumulative density functions of the severity

score of subjects who experience the AE in the control group and treatment group respec-
tively.

The research goal is to test the composite null hypothesis

H0 : H
(1)
0 ∩H

(2)
0

whereH(1)
0 : θ1 = θ2 andH(2)

0 : Fc(z) = Ft(z) versus the one-sided composite alternative
hypothesis:

H1 : H
(1)
1 ∪H

(2)
1

where H(1)
1 is θ1 < θ2, and H(2)

1 is the AE severity is “greater” in the treatment group than
that in the control group.

Greater AE severity is defined as follows: The AE severity is greater in the treatment
group than that in the control group if Fc(z) > Ft(z), z = 1, 2, or equivalently, if 1 −
Fc(z) < 1− Ft(z), x = 1, 2. This means that

π13 ≤ π23, π12 + π13 ≤ π22 + π23

where at least one inequality is strict. We use this definition as the greater severity of
an AE because among several formally defined notions, the least stringent is stochastic
order. See [Cohen & Sackrowitz, 2000] and [Cohen et al., 2000]. Thus H(2)

1 is π13 ≤
π23, π12 + π13 ≤ π22 + π23 where at least one inequality is strict.

 
1482



3. Combining Separate Tests for Testing the Composite Null

To test the composite null hypothesis, we conduct the individual test of H(1)
0 and H(2)

0

separately and combine the p values of tests using Simes method or Fisher’s method. In
this section we introduce the methods for testingH(1)

0 andH(2)
0 and then introduce methods

for combining the p values.

3.1 Testing H(1)
0 : θ1 = θ2 and H(2)

0 : Fc(z) = Ft(z)

The non-model based methods for testing H(1)
0 is the one-sided Fisher’s exact test. Denote

p1 as the p value for one-tailed test of

H
(1)
0 versus H

(1)
1

The test for the second individual hypothesis H(2)
0 : Fc(z) = Ft(z) is restricted to

subjects who are selected based on a post-randomization event (AE occurrence) and it is
possible that the severity endpoints of subjects in control group and the treatment group are
not from a completely randomization procedure and thus may not be comparable.

To test H(2)
0 , we proposed a test for comparing the severity score z1, z2 of the sub-

jects who experience the AE. The test is based on a biased sampling model proposed by
[Gilbert et al., 2003]. Details about the test will be introduced in Section 4. Denote p2 as
the p value of the test:

H
(2)
0 versus H

(2)
1

3.2 Methods for Combining Separate Tests

We consider the following two methods for testing the composite null hypothesis of an
AE at one-sided level α based on a combination of the p-values (p1, p2) introduced above.
Note that p1 and p2 derived from Fisher’ exact test for AE incidence and the proposed test
for AE severity respectively are stochastically independent under H0. This result has been
proved by [Shih & Quan, 1997] in an unrelated context and it establishes the validity of the
combination tests.

1. Simes’ method [Simes, 1986]: Reject H0 if max(p1, p2) < α or min(p1, p2) < α/2

2. Fisher’s method [Fisher, 1932]: RejectH0 if p < αwhere p = P (χ2
4 > −4 log(

√
p1p2))

The performances of the above two methods have been studied by [Shih & Quan, 1997].
No method is uniformly superior to the other. The choice between Simes method and Fisher
method requires prior knowledge of the alternative hypothesisH1. As [Shih & Quan, 1997]
pointed out, unless the AE severity is stochastically greater in the treatment group but the
AE incidence rate is similar in both groups (or the opposite), we would expect the Fisher
test to be superior than Simes test.

4. Test for Causal Treatment Effect on AE Severity

In this section we will introduce a biased sampling model and how we use it to test the
causal treatment effect on the AE severity, i.e., to test H(2)

0 : Fc(z) = Ft(z) unbiasedly.
The biased sampling model originally proposed by [Gilbert et al., 2003] is based on the
principal stratification framework developed by [Frangakis & Rubin, 2002] for causal in-
ference.
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4.1 Biased Sampling Model

Following [Gilbert et al., 2003] and [Mehrotra et al., 2006], theoretically, each subject has
two potential outcomes of adverse event occurrence: one under the assignment to the con-
trol group Yi(c) and one under assignment to the treatment group Yi(t). Yi(c) = 1(Yi(t) =
1) if the subject has the adverse event under the assignment to the control group (treat-
ment group) and Yi(c) = 0(Yi(t) = 0) if the subject does not have the adverse event
under the assignment to the control group (treatment group). In addition, each subject
with the adverse event under assignment to control group has a potential severity outcome
Zi(c) and under assignment to treatment group has a potential severity outcome Zi(t). For
each subject, only one of Yi(c) or Yi(v) is observed and Zi(c)(Zi(v)) is defined only if
Yi(c) = 1(Yi(v) = 1).

By property 2 of [Frangakis & Rubin, 2002], a causal treatment effect on the severity
of the adverse event can be defined based on the comparison between the sets {Zi(c) :
Yi(c) = Yi(t) = 1} and {Zi(t) : Yi(c) = Yi(t) = 1} because the comparison is made
within the principal stratum of subjects who would always experience the AE regardless of
randomization to control or treatment drug.

For subjects in the set {Zi(c) : Yi(c) = Yi(t) = 1}, suppose Zi(c) are identically dis-
tributed as F alw.(c) (z) and for subjects in the set {Zi(t) : Yi(c) = Yi(t) = 1}, suppose Zi(t)
are identically distributed as F alw.(t) (z), also denote falw.(c) (z) and falw.(t) (z) as the probability
mass function that corresponds to F alw.(c) (z) and F alw.(t) (z) respectively. Then any functional
that measures a contrast of the distributions

F alw.(c) (z) = Pr(Zi(c) ≤ z|Yi(c) = Yi(t) = 1) and

F alw.(t) (z) = Pr(Zi(t) ≤ z|Yi(c) = Yi(t) = 1)

is a causal estimand [Gilbert et al., 2003]. Thus to test the second null hypothesis that there
is no causal treatment effect on the severity of adverse event (H(2)

0 : Fc(z) = Ft(z)), we
compare F alw.(c) (z) and F alw.(t) (z). Or equivalently, to compare falw.(c) (z) and falw.(t) (z). The

second null hypothesis can thus be rewritten as H(2)
0 : F alw.(c) (z) = F alw.(t) (z).

Unfortunately, because neither distribution in is readily identifiable for us to make com-
parisons (because Yi(c) and Yi(t) are not both observed). To test the causal effect of treat-
ment on severity of AE,we need to make the following assumptions:

1. The potential AE occurrence outcomes for each subject are independent of the treat-
ment assignments of other subjects

2. The treatment assignment for each subject is independent of his or her potential out-
comes

3. The intervention used in the control group does not increase the risk of experienc-
ing the AE compare to the treatment group, or the experimental treatment does not
purposely cure the AE. Thus the incidence rate of the AE in the control group is less
than or equal to that in the treatment group

Assumption 1 is actually implied by Rubin’s (1978) stable unit treatment value assump-
tion (SUTVA) [Gilbert et al., 2003]. With this assumption, the potential AE occurrence
outcome of a subject can be written as a function of the treatment assignment of the sub-
ject instead of being written as a function of the treatment assignment of the subject and
all other subjects, i.e., it can be written as Yi(c) and Yi(t). Assumption 2 holds due to
randomization and blinding of the clinical trial.
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Assumption 3 means that for a subject, if he/she experience the AE after being ad-
ministered the intervention of the control group, he/she will experience the AE after being
administered the intervention of the treatment group, given all the other experimental con-
ditions are the same. The assumption is reasonable as the control group is usually a group
of subjects who are administered the lower dose of the treatment (or placebo) and the treat-
ment group is usually a group of subjects who are administered the higher dose of the
treatment. The incidence rate of the adverse event in the group with lower dose is likely to
be less than that in the group with higher dose. Assumption 3 can be checked by testing
if the AE incidence rate is higher in control group than treatment group recipients for any
participant subgroup.

These three assumptions are very important because only based on these assumptions
are we able to make the following statistical inferences.

Denote f(c)(z) and f(t)(z) as the probability mass function (pmf) of the AE severity
level in subjects with AE under randomization to control group and the pmf of the AE
severity level in subjects with adverse event under randomization to treatment group, re-
spectively. F(c)(z) and F(t)(z) are the corresponding cumulative density function. Under
assumption 2, f(c)(z) and f(t)(z) are also the pmf of the AE severity level outcome of
subjects with AE from control group and treatment group respectively.

Table 1 shows the principal stratum or strata to which a subject with AE must belong,
and lists the information available on potential severity level outcome. The tables makes
clear that the set of subjects {Yi(c) = 1, Yi(t) = 1} is the natural subpopulation for causal
inference on severity level since it is the only stratum in which severity level outcome is
observable from the data.

Table 1: Principal Stratum
Randomized Is AE Principal Stratum {Yi(c), Yi(t)}
assignment present

Control group Yes {Yi(c) = 1, Yi(t) = 0} {Yi(c) = 1, Yi(t) = 1}
(empty set by assumption 3) Zi(c) observed, Zi(t) unobserved

Treatment group Yes {Yi(c) = 0, Yi(t) = 1} {Yi(c) = 1, Yi(t) = 1}
Zi(c) undefined, Zi(t) observed Zi(t) observed, Zi(c) unobserved

From Table 1 we know F alw.(c) (z) = F(c)(z), or equivalently, falw.(c) (z) = f(c)(z). Thus
F alw.(c) (z) is identified from the observed data. F alw.(t) (z) cannot be identified by the above
assumptions. However, from Table 1 we know the subjects who experience the AE in the
treatment group consists of the subjects who will always experience the AE regardless of
randomization to control or treatment group and the subjects who will not have the AE if
he/she is administered control group treatment. For subjects in the set {Zi(c) : Yi(c) =
1, Yi(t) = 0}, denote fprot.(t) (z) as the pmf of Zi(c). Thus f(t)(z) can be written as a mixture

of fprot.(t) (z) and falw.(t) (z) [Gilbert et al., 2003]:

f(t)(z) = P (Yi(c) = 0|Yi(t) = 1)fprot.(t) (z) + P (Yi(c) = 1|Yi(t) = 1)falw.(t) (z)

It can be proved that P (Yi(c) = 0|Yi(t) = 1) = 1−RR−1 so that

f(t)(z) = (1−RR−1)fprot.(t) (z) +RR−1falw.(t) (z)

where RR = θ2
θ1

= Yi(t)=1
Yi(c)=1 is the relative risk of of the AE between treatment group and

control group.

 
1485



Thus

f(t)(z) = P (Yi(c) = 0|Yi(t) = 1)fprot.(t) (z) + P (Yi(c) = 1|Yi(t) = 1)falw.(t) (z)

= (1−RR−1)fprot.(t) (z) +RR−1falw.(t) (z)

With some calculations , the above mixture can be re-expressed as a biased sampling
model [Gilbert et al., 2003]:

falw.(t) (z) =W−1w(z)f(t)(z)

where w(z) = Pr(Yi(c) = 1|Zi(t) = z, Yi(t) = 1) and W−1 = (
∑3
z=1w(z)f(t)(z))

−1

is a normalizing constant equal to RR. The weight function w(z) is the probability that a
subject who is randomized to treatment group and has the adverse event with severity level
z would have the adverse event if randomized to control group.

If w(z) were known then falw.(t) (z) would be identified. However, w(z) is unknown
and it is not possible to test whether a particular w is correctly specified. The approach to
this problem by [Gilbert et al., 2003] is to assume w() is known. They proposed a logistic
function forw(z). In their context, the response variable is a continuous variable. However,
the severity endpoint in our context is an ordinal categorical variable. Thus, the logistic
function may not be used here. Instead, we set value for each w(z), z = 1, 2, 3, guided by
our beliefs about plausible degrees of selection bias. We propose the following measure
of weight: w(1) = w(1|γ, r) = γ,w(2) = w(2|γ, r) = rγ, w(3) = w(3|γ, r) = r2γ,
r(> 0) is the relative risk of the occurrence of adverse event under randomization to control
group given the occurrence of adverse event under randomization to treatment group with
severity level z versus with severity level z − 1, z = 2, 3. In this way, the unidentified
sensitivity functionw() is interpretable, which makes the approach fruitful and is important
[Gilbert et al., 2003]. Thus,

falw.(t) (z) = RR× w(z|γ, r)f(t)(z) = f(t)(z|r)

F alw.(t) (z) =
z∑
d=1

RR× w(d|γ, r)f(t)(d) = F(t)(z|r)

Given fixed r, γ is determined as the solution to the equation F(t)(3|r) = 1.
If RR = 1, i.e., W = 1 and thus w(z) = Pr(Yi(c) = 1|Zi(t) = z, Yi(t) = 1) = 1,

then there is no selection bias and falw.(t) (z) = f(t)(z). If RR > 1, then whether there is
selection bias depends on the value of w(z) and thus depends on r.

Fixing r = 1 specifies a constant weight, i.e., γ = RR−1 and the weights will be
w(1) = w(2) = w(3) = RR−1 and reflects an assumption of no selection bias. Thus when
RR = 1 and/or we fix r = 1, there will be no selection bias and the second null hypothesis
H

(2)
0 : F alw.(c) (z) = F alw.(t) (z) can be tested by simply comparing the severity of the subjects

with the adverse event in both groups.
Fixing r > 1 makes w(z|γ, r) an increasing function of z and it means some factors

other than treatment make the severity levels of the subjects in treatment group small, then
to be fair for control group, we should adjust the distribution of the treatment group so
that its severity is stochastically larger. The larger r is from 1, the higher degree of bias
we believe. Similarly, r < 1 makes w(z|γ, r) an decreasing function of z and it means
some factors other than control group treatment make the severity levels of the subjects in
control group small, then to be fair for treatment group, we should adjust the distribution
of the treatment group so that its severity is stochastically smaller. The smaller r is from 1,
the higher degree of bias we believe.
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We estimate RR with R̂R = x2/x1. We estimate f(c)(z), F(c)(z) and f(t)(z), F(t)(z)
with the maximum likelihood estimator.

f̂(c)(1) = n11/x1, f̂(c)(2) = n12/x1, f̂(c)(3) = n13/x1, π̂1 = (n11/x1, n12/x1, n13/x1)

F̂(c)(z) =
z∑
d=1

f̂(c)(d), z = 1, 2, 3

f̂(t)(1) = n21/x2, f̂(t)(2) = n22/x2, f̂(t)(3) = n23/x2, π̂1 = (n21/x2, n22/x2, n23/x2)

F̂(t)(z) =
z∑
d=1

f̂(t)(d), z = 1, 2, 3

Thus the estimator of falw.(t) (z) and F alw.(t) (z) are

f̂alw.(t) (z) = f̂(t)(z|r) = R̂R× w(z|γ, r)f̂(t)(z)

F̂ alw.(t) (z) = F̂(t)(z|r) =
z∑
d=1

R̂R× w(d|γ, r)f̂(t)(d), z = 1, 2, 3

Given fixed value of r, γ in w(z|γ, r) can be obtained by solving F̂(t)(3|r) = 1.

4.2 Hypothesis Testing of Causal Effect

If selection bias is presumed to follow the selection bias model, then the causal null hy-
pothesis of interest for the severity of adverse event is H(2)

0 : F alw.(c) (z) = F alw.(t) (z), the

corresponding alternative hypothesis of interest is: H(2)
0 : F alw.(c) (z) > F alw.(t) (z). This

means that the severity endpoint of the subjects in the treatment group is stochastically
larger than that in the control group. Thus the composite null hypothesis can be rewritten
as

H
(1)
0 : θ1 = θ2(RR = 1) and H

(2)
0 : F alw.(c) (z) = F alw.(t) (z)

We obtain the p value (p1) for testing H(1)
0 using Fisher’s exact and we obtain the p

value (p2,r) for testing H(2)
0 using a proposed test to be introduced in this section. Simes’s

method and Fisher’s method are then used to combine p1 and p2,r. The combined test
using Simes’s method and Fisher’s method are referred to as Simes test and Fisher test
respectively.

To test the second null hypothesisH(2)
0 : F alw.(c) (z) = F alw.(t) (z), we propose a test statis-

tic, denote as Tr, that is the Wilcoxon rank sum test statistic calculated using the adjusted
and observed AE severity of subjects in the control and treatment groups, respectively.
(z1, z2,r). The adjustment of the AE severity of the subjects in the treatment group is: we
replace the vector n2 with

n2,r = (x2f̂(t)(1|r), x2f̂(t)(2|r), x2f̂(t)(3|r))

which is the mean vector of the estimated distribution F alw.(t) (z). (n2,r) thus indicates the
number of subjects with severity level 1, 2, 3 in z2,r. We reject the null if the p value is less
than the significance level α.
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4.3 Bootstrap Resampling

Because the data we obtained (z1, z2,r) are not exactly from the distributions F alw.(c) (z)

and F alw.(t) (z) (z2,r is the estimated data from F alw.(t) (z)), we cannot use the p value we
obtained from the usual Wilcoxon rank sum test. Thus the null distribution of Tr is in-
tractable under H(2)

0 : F alw.(c) (z) = F alw.(t) (z). The p-value based on Tr, denoted by p2, r is
obtained using the following modification of the parametric bootstrap procedure developed
by [Hudgens et al., 2003].

Suppose N1 = N2 (that is, there are an equal number of trial participants in each arm)
and we estimate RR with R̂R = x2/x1 if x1 < x2 and we estimate RR with 1 if x1 ≥ x2.
Then for R̂R > 1, generate bootstrap sample n∗2 from multinomial distribution with pa-
rameter x2 and π̂2. Generate bootstrap sample n∗1 from multinomial distribution with pa-
rameter x1 and (f̂(t)(1|r), f̂(t)(2|r), f̂(t)(3|r)). For R̂R = 1, generate bootstrap sample n∗1
from multinomial distribution with parameter x1, π̂ and n∗2 from multinomial distribution
with parameter x2, π̂, where π̂ = (n1 + n2)/(x1 + x2) is the estimated probabilities of
three severity levels.

The bootstrap test statistic T ∗r is the Wilcoxon rank sum test statistic calculated using
the bootstrap sample and adjusted bootstrap sample in the control and treatment groups,
respectively (z∗1 , z

∗
2,r). The adjustment of bootstrap sample in the treatment group is the

same as that in Section 2.5.2. We generate 500 bootstrap test statistic T ∗r and the p-value is
obtained by calculating proportion of the 500 bootstrap test statistic that is smaller than the
observed test statistic Tr

5. Simulation Study

We conduct simulation study to compare the empirical power and type I error rate of dif-
ferent tests, including traditional Fisher’s exact test for AE incidence rate (FET), Wilcoxon
rank sum test for stochastic order of 4 level AE toxicity endpoint (WT), proposed test for
AE severity (SEV), proposed test for the composite null using Simes’ method (PS) and
Fisher’s method (PF). Note that the null hypotheses that correspond to FET and SEV are
the equality of AE incidence rate and the equality of AE severity respectively. The null hy-
pothesis that corresponds to PS, PF or WT is the composite null hypothesis. WT is actually
the Wilcoxon rank sum test applied to the 4 level severity score w1,w2.

We assume equal sample size in both the control group and treatment group. Data
was generated in two steps: in the first step, the number of subjects who experience the
AE in each group was generated and then the number of subjects who experience the AE
with severity outcomes classified into each severity level was generated. In the first step,
given the incidence rate of the AE in the control group and treatment group respectively
(θ1, θ2), we generated a random variable from Bernoulli distribution with parameter θ1 for
the control group, and then we generated a random variable from Bernoulli distribution with
parameter θ2 for the treatment group. We continued generating Bernoulli random variable
like this for each group until the summation of the Bernoulli random variables generated in
control group (x1) plus that in treatment group (x2) is at least x. x was given in advance.
The reason why we fix x is to investigate how the power changes as we increase x, which
can be directly observed from the data, and with what sample size does the proposed tests
perform as well as or outperform the Fisher’s exact test for incidence rate. In the second
step, the number of subjects who experience the AE with severity outcomes classified into
each of the 3 severity levels in the control group (n1) was generated from a multinomial
distribution with parameter x1 and (f(c)(1), f(c)(2), f(c)(3)) and the number of subjects
under each AE severity level in the treatment group (n2) was generated from a multinomial
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distribution with parameter x2 and (f(t)(1), f(t)(2), f(t)(3)). Note that f(c)(z) and f(t)(z)
are determined by falw.(c) (z) and falw.(t) (z) and the true degree of selection bias rtrue. Thus
we set true values for falw.(c) (z) and falw.(t) (z) respectively and obtained the true values of
f(c)(z) and f(t)(z) by transforming falw.(c) and falw.(t) according to the equations introduced in

Section 4 as follows, f(t)(z) =
falw.
(t)

(z)

RR×w(z|γ,rtrue) , z = 1, 2, 3. RR = θ2/θ1, w(1|γ, rtrue) =
γ,w(2|γ, rtrue) = γrtrue, w(3|γ, rtrue) = γr2true. γ is determined by solving the equation
of f(t)(1) + f(t)(2) + f(t)(3) = 1. Besides, by assumption 2, (f(c)(1), f(c)(2), f(c)(3)) is
equivalent to (falw.(c) (1), falw.(c) (2), falw.(c) (3)). We considered three possible values of the true
amount of selection bias rtrue (1.25, 1, 0.8), representing moderate selection bias that is in
favor of not flagging the AE, no selection bias and moderate selection bias that is in favor
of flagging the AE. With data generated in this way, we can investigate the power and type
I error rate of PS, PF and SEV when the prior knowledge of the degree of selection bias is
correctly set (r = rtrue) and when it is not (r 6= rtrue).

Different parameter configurations include θ1 = 0.05, θ2 = 0.05 or 0.1, falw.(c) =

(0.6, 0.3, 0.1)T and falw.(t) = (0.5, 0.3, 0.2)T , (0.4, 0.2, 0.4)T or (0.3, 0.2, 0.5)T . To mea-

sure the true difference between θ1 and θ2, we introduce odds ratio OR = θ1/(1−θ1)
θ2/(1−θ2) as an

effect size measure and to measure the true difference between falw.(c) and falw.(t) (or equiva-
lentlyπ1 andπ2), we use a ordinal effect size measure g = P (z1i < z2i)+0.5P (z1i = z2i).
[Ryu & Agresti, 2008, Agresti, 2010]. This measure summarizes the probability that an
outcome from one distribution falls above an outcome from the other, adjusted for ties.
[Vargha & Delaney, 1998] called g a measure of stochastic superiority of z2i over z1i. The
measure can be written as: g = πT2 Aπ1 where 0.5 0 0

1 0.5 0
1 1 0.5


g has range [0, 1]. If z1i and z2i are identically distributed, then g = 0.5. If z2i is stochasti-
cally larger than z1i, then g > 0.5. We finally obtain the following scenarios for simulation
study.

Table 2: Scenarios for simulation study
Scenario θ1 π1(f

alw.
(c) (z)) θ2 π2(f

alw.
(t) (z)) OR g

1 0.05 (0.6, 0.3, 0.1)T 0.05 (0.6, 0.3, 0.1)T 1 0.5
2 0.05 (0.6, 0.3, 0.1)T 0.05 (0.5, 0.3, 0.2)T 1 0.565
3 0.05 (0.6, 0.3, 0.1)T 0.05 (0.4, 0.2, 0.4)T 1 0.65
4 0.05 (0.6, 0.3, 0.1)T 0.1 (0.6, 0.3, 0.1)T 2.11 0.5
5 0.05 (0.6, 0.3, 0.1)T 0.1 (0.5, 0.3, 0.2)T 2.11 0.565
6 0.05 (0.6, 0.3, 0.1)T 0.1 (0.4, 0.2, 0.4)T 2.11 0.65

For each of 500 datasets simulated under each parameter configuration, p values for
the proposed test for severity and the proposed tests for the composite null are determined
using 500 bootstrap replications.

Using a nominal 5% type I error level, Table 3 shows the estimated type I error rate and
power of the proposed test for AE severity (SEV) and the proposed test for the composite
null hypothesis based on Simes’ method (PS) and Fisher’s method (PF) with different pre-
sumed degree of selection bias (r) when the number of subjects who experience the AE in
both groups is either 50 or 100 and when OR = 1 with θ1 = 0.05 and g = 0.5, 0.565, 0.65
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with π1 = (0.6, 0.3, 0.1)T (Scenario 1-3). Since OR = 1, i.e., θ1 = θ2, according to Sec-
tion 4, there is no selection bias, so rtrue always has to be 1. The the estimated type I error
rate and power of the traditionally used Fisher’s exact test for incidence rate (FET) and the
Wilcoxon rank sum test for stochastic order of 4 level toxicity endpoint (WT) under cor-
responding parameter configurations were also included in the table. The estimated type I
error rates (4th and 5th column) that correspond to different tests were controlled at the de-
sired significance level of 0.05 if r is presumed to be 1. When one conservatively presume
r to be less than 1, the estimated type I error rates decrease accordingly and when r is set
to be greater than 1, the estimated type I error rates are inflated. As long as the true amount
of selection bias is specified (r is set to 1), PS and PF perform well in detecting the safety
signal (rejecting the composite null hypothesis, 6th and 9th column) when the total number
of subjects who experience the AE in both groups and/or the ordinal effect size g is large
enough. In addition, PS has larger power than PF. This is because the control group and the
treatment group differ in one aspect (AE severity) but not in the other (AE incidence rate).
This is consistent with the conclusion made by [Shih & Quan, 1997]. In contrast, FET and
WT did not effectively detect safety signal. When one conservatively presume r to be less
than 1, the estimated power (6th and 9th column) decrease accordingly.

Table 3: Type I error rate×100% and power×100% of Fisher’s exact test for AE incidence
rate (FET), Wilcoxon rank sum test for stochastic order of 4 level AE toxicity endpoint
(WT), proposed test for AE severity (SEV), proposed test for the composite null using
Simes’ method (PS) and Fisher’s method (PF), given that x = 50, 100, OR = 1, g =
0.5, 0.565, 0.65 with θ1 = 0.05, 0.1 and π1 = (0.6, 0.3, 0.1)T

Method True Presumed OR = 1, g = 0.5 OR = 1, g = 0.565 OR = 1, g = 0.65

r r 50 100 50 100 50 100
θ1 = 0.05

FET n/a n/a 3 4.8 4.2 3.6 2.8 3.4
WT 1 n/a 6.6 6.6 7.2 5 5.8 5

SEV
1 1.25 6.2 10.2 35.8 46.6 74.8 94.6
1 1 3.8 4 23.6 33.2 63.2 90.8
1 0.8 3 2.6 16 23 48.8 72.4

PS(PF)
1 1.25 5.4 (7) 7.4 (9.4) 27.8 (27.2) 36.8 (34.4) 66.4 (60) 90.2 (85.2)
1 1 4.2 (4.6) 3 (3.4) 17.6 (16.2) 24.6 (24) 53.6 (47.2) 84.6 (82.2)
1 0.8 3.6 (2.4) 2.2 (2) 11 (9.6) 17 (11) 40.2 (37) 63 (63.6)

Table 4 shows the estimated power of the proposed test for AE severity (SEV) and
the proposed test for the composite null based on Simes’ method (PS) or Fisher’s method
(PF) with different presumed degree of selection bias (r) when the true degree of selection
bias is determined by rtrue = 1.25, 1, 0.8 and the number of subjects who experience
the AE in both groups is either 50 or 100 and when OR = 2 with θ1 = 0.05 and g =
0.5, 0.565, 0.65 with π1 = (0.6, 0.3, 0.1)T (Scenario 4-6). The estimated power of the
traditionally used Fisher’s exact test (FET) for incidence rate and the Wilcoxon rank sum
test for stochastic order of 4 level AE toxicity endpoint (WT) under different parameter
configurations were also included in the table. As long as the true amount of selection bias
is specified, PS and PF perform well in detecting the safety signal (rejecting the composite
null hypothesis) when the total number of subjects who experience the AE in both groups
and/or the ordinal effect size g is large enough. In addition, PF has larger power than PS.
This is because the control group and the treatment group differ consistently in both aspect
of the composite null hypothesis (AE incidence rate and AE severity) [Shih & Quan, 1997].
In contrast, the power of FET and WT are as good as or better than PS and PF when the
total number of subjects who experience the AE in both groups is small, but as the ordinal
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effect size g increases, especially with large value of g(≥ 0.65), the powers of PS and
PF are both greater than FET and WT, meaning they can detect the safety signal more
effectively. However, in scenarios when the AE severity is the same in both groups but the
AE incidence rate is greater in the treatment group compare to that in the control group,
FET and WT perform better than PS and PF when the sample size (x1 + x2) is small. This
is of not surprising because we tend to lose some power to gain the ability to detect the
safety signal with respect to AE severity.

We next illustrate the power of the proposed tests when an incorrect amount of selection
bias is presumed. When there is actually no selection bias (rtrue = 1), but one conserva-
tively presumes r = 0.8, the power decreases. For larger presumed amount of selection
bias, larger price will be paid (we lose more power). When there is actually no selection
bias, but one conservatively presumes r = 1.25, the power increases. Thus making a con-
servative assumption of selection bias can cause certain degree of power loss and power
gain. If zero selection bias is presumed (r = 1) but in truth there is moderate selection
bias that is in favor of flagging the AE (rtrue = 0.8), the power increases. Since we are
concerned about the composite null hypothesis, incorrectly presume the degree of selection
bias when the true value of r < 1 does not cost us much and we might even gain some
power. If zero bias is presumed (r = 1) but in truth there is moderate selection bias that
is in favor of not flagging the AE (rtrue = 1.25), we are losing power. We will lose more
power to detect safety signal if in reality the selection bias is even larger (rtrue > 1.25).
This illustrates the importance of accounting for the possibility of selection bias to avoid
missing potential safety signal.

6. Application

We applied the proposed method in the analysis of safety data obtained from a random-
ized, double-blinded phase III clinical trial conducted by National Cancer Institute (NCI).
The safety data were published and analyzed by [L.G. Leon-Novelo & Muller, 2010]. The
purpose of this trial is to verify the efficacy of isotretinoin that may help control second
primary tumors and mortality for stage I non-small-cell lung cancer (NSCLC) patients.
1166 patients with stage I NSCLC were randomly assigned to receive either placebo or
isotretinoin (30 mg/day) for 3 years. 589 patients received isotretinoin while the remaining
patients received placebo.

The safety data collected from the trial (shown in Table 5) consists of the number of
patients who experienced each of the 7 AEs of interest and the corresponding number of
patients within each severity level. The severity of AEs was graded using Common Toxicity
Criteria for Adverse Events used by the NCI. We combined the last two severity levels into
one in our analysis.

We first conducted one sided Fisher’s exact test of θ1 ≤ θ2 versus θ1 > θ2 to verify
the assumption that placebo does not increase the risk of experiencing the AE compare to
the intervention used in the treatment group. The two columns under “Fisher’s exact test of
θ1 ≤ θ2 vs θ1 > θ2” in Table 6 show the p values and adjusted p values of the Fisher’s exact
test for incidence for each adverse event. The adjusted p values were obtained by Hochberg
procedure. We can see that it is statistically significant to conclude that the incidence rate
of “Headache” is greater in the control group compare to that in the treatment group. Thus
the assumption that placebo does not increase the risk of experiencing the AE compare to
the intervention used in the treatment group does not hold for this adverse event. So our
method is inappropriate for the analysis of AE “Headache” and we excluded it from our
safety analysis.

Figure 1 shows how p values of the following tests change as we change the degree of
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Table 4: Power ×100% of Fisher’s exact test for AE incidence rate (FET), Wilcoxon rank
sum test for stochastic order of 4 level AE toxicity endpoint (WT), proposed test for AE
severity (SEV), proposed test for the composite null using Simes’ method (PS) and Fisher’s
method (PF), given that x = 50, 100, OR = 2, g = 0.5, 0.565, 0.65 with θ1 = 0.05, 0.1
and π1 = (0.6, 0.3, 0.1)T

Method True Presumed OR = 2.11, g = 0.5 OR = 2.11, g = 0.565 OR = 2.11, g = 0.65

r r 50 100 50 100 50 100
θ1 = 0.05

FET n/a n/a 73.8 96.6 73.8 96.6 73.8 96.6

WT
1.25 n/a 80.2 97 81.8 97.6 82 97.2

1 n/a 82.2 98.4 81.2 96.2 83.4 96.6
0.8 n/a 75.4 98.4 80.2 98.2 80.8 98.2

SEV

1.25 1.25 4.4 5.4 17.8 26.2 58.8 85.6
1.25 1 2 1 7.8 7.2 29.8 57.2
1.25 0.8 0 0.4 1.8 1.4 10 17.4

1 1.25 13.4 18.4 40.2 59 88.2 99.2
1 1 4.8 8.4 19.2 32.8 64.6 87.8
1 0.8 1.6 1.6 6.4 10 31.2 51.2

0.8 1.25 24.4 40.4 66 89 94.6 100
0.8 1 13.2 15.8 42.4 66.4 84.6 98
0.8 0.8 4.2 2.6 20.8 28.8 61.4 85.2

PS(PF)

1.25 1.25 61.2 (61.6) 95 (92.8) 67.4 (73.6) 96 (96.8) 80 (91.2) 98.8 (98.6)
1.25 1 60.6 (57) 94.8 (89.4) 64.4 (65.8) 95.2 (93.4) 68.6 (80) 96.8 (98.2)
1.25 0.8 60.2 (52.6) 94.8 (87.8) 63 (60) 95.2 (90.6) 63.2 (98.2) 93.2 (93.8)

1 1.25 64.2 (69.8) 96.4 (95.8) 73.8 (83.2) 97.6 (98.8) 95.2 (97.6) 100 (100)
1 1 62.4 (64.2) 96 (93.4) 66.6 (75.6) 96 (96.2) 85.8 (93.4) 99 (100)
1 0.8 61.8 (58.8) 96 (91.6) 62 (65.4) 94.4 (93.2) 70.2 (85.4) 95.6 (97.8)

0.8 1.25 64.8 (72) 95.8 (96.2) 82.2 (92) 99.4 (99.8) 98.4 (99.6) 100 (100)
0.8 1 60.8 (64.2) 94.4 (94.4) 75.8 (84.2) 98.4 (99) 93.4 (96.8) 100 (100)
0.8 0.8 57.8 (58.4) 94 (91.2) 66.8 (76.2) 96.8 (97.8) 81.6 (91.4) 99.4 (100)

selection bias (either in favor of flagging the AE or of not flagging the AE) for each adverse
event: Fisher’s exact test, the proposed test for severity, the proposed test for incidence and
severity using Fisher’s method. In each plot, the red dotted line shows how the p value of
the proposed test for incidence and severity using Fisher’s method changes with degree of
selection bias. The black solid line shows how the p value of the proposed test for severity
changes with degree of selection bias. The blue dashed line represents the p value of the
Fisher’s exact test of θ1 ≥ θ2 vs θ1 < θ2 and it does not change with the degree of selection
bias. To analyze each adverse event individually, as for AE incidence rate, “Abnormal
vision” and ‘Fatigue” both have same incidence rate in the control and treatment group.
All other AEs have greater incidence rate in the treatment group.

As for AE severity, “Abnormal vision” and “Fatigue” both have similar overall AE
severity in the control and treatment group. Note here that severity for these two AEs does
not change dramatically as we change the degree of selection bias, this is because both
AEs seem to have same incidence rate in the control and treatment group and there will
be no selection bias according to our model, no matter what degree of selection bias we
set. “Conjunctivitis” has great overall severity in the treatment group. “Arthralgia” and
“Hyper-triglyceride” may have greater overall severity in the treatment group if we believe
that the selection bias is in favor of not flagging the AE (r > 1).

If we were to evaluate all the AEs simultaneously, p value of the proposed test for in-
cidence and severity for each AE can be reported with multiple testing procedure such as
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Table 5: Toxicity frequency for randomized eligible patients by study arms. In the placebo
(isotretinoin) group, 171 (427) of 577 (589) patients exhibited some type of toxicity. The
proportion of patients in the study arm belonging to the cell is given in the parenthesis

Toxic effect No tox G1 G2 G3 G4
Placebo

Abnormal vision 565 (0.979) 9 (0.016) 0 (0) 2 (0.003) 1 (0.002)
Arthralgia 548 (0.95) 19 (0.033) 10 (0.017) 0 (0) -
Cheilitis 493 (0.854) 76 (0.132) 8 (0.014) 0 (0) -

Conjunctivitis 530 (0.919) 43 (0.075) 3 (0.005) 1 (0.002) -
Fatigue 558 (0.967) 12 (0.021) 5 (0.009) 2 (0.003) -

Headache 554 (0.96) 16 (0.028) 3 (0.005) 4 (0.007) -
Hyper-triglyceride 551 (0.955) 22 (0.038) 4 (0.007) 0 (0) -

Isotretinoin
Abnormal vision 579 (0.983) 8 (0.014) 1 (0.002) 1 (0.002) 0 (0)

Arthralgia 544 (0.924) 30 (0.051) 10 (0.017) 5 (0.008) -
Cheilitis 212 (0.36) 245 (0.416) 122 (0.207) 10 (0.017) -

Conjunctivitis 449 (0.762) 98 (0.166) 31 (0.053) 11 (0.019) -
Fatigue 572 (0.971) 14 (0.024) 3 (0.005) 0 (0) -

Headache 580 (0.985) 9 (0.015) 0 (0) 0 (0) -
Hyper-triglyceride 514 (0.873) 64 (0.109) 10 (0.017) 1 (0.002) -

Table 6: P values and adjusted p values using Hochberg procedure of the Fisher’s exact
test of θ1 ≤ θ2 vs θ1 > θ2

Fisher’s Exact Test
of θ1 ≤ θ2 vs θ1 > θ2

Toxic effect Raw Adj.
Abnormal vision 0.396 1

Arthralgia 0.975 1
Cheilitis 1 1

Conjunctivitis 1 1
Fatigue 0.408 1

Headache 0.008 0.056
Hyper-triglyceride 1 1

Holmes, Hochberg and Benjamini-Hochberg procedure being used to adjust for multiplic-
ity.

7. Discussion

Traditional analysis of safety data for AEs in clinical trials simply groups the toxicities
levels into no toxicity and some toxicity and compares only the AE incidence rate between
two randomized groups using a Chi-squared test or Fisher’s exact test. In this article we
improve the traditional evaluation of safety data by proposing to test a composite null hy-
pothesis for each AE that the AE incidence rate and severity are equivalent. The test for
the composite null involves the combination of the traditional Fisher’s exact test for the AE
incidence rate and a proposed conditional testing procedure for AE severity. The proposed
test for AE severity is based on an extension of a bias sampling model originally developed
for continues HIV viral load outcome in a vaccine trial by [Gilbert et al., 2003]. It is an
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Figure 1: Plot of p values of the following tests versus the degree of selection bias for
each adverse event: Fisher’s exact test, the proposed test for severity, the proposed test for
incidence and severity using Fisher’s method. The red dotted line represents the p value
of the proposed test for incidence and severity using Fisher’s method. The black solid line
represents the p value of the proposed test for severity. The blue dashed line represents the
p value of the Fisher’s exact test of θ1 ≤ θ2 vs θ1 > θ2

innovative applications of causal inference method to safety signal detection area that has
not been previously employed. The bias sampling model provides us a way of adjusting
for severity scores of subjects in the treatment group in order to control for selection bias.
The Wilcoxon rank sum test statistic is calculated to compare the adjusted severity scores
of subjects in the treatment and the unadjusted severity of scores of subjects in the control
group. The test does not reply on large sample theory and is applicable to rare event.

In addition to the Wilcoxon rank sum test statistic, different test statistic can also be
used, for example, if we believe the distribution is skewed, Anderson-Darling type and
Kolmogorov-Smirnov-type statistic may also be considered. It is worthy to note that the
test statistic introduced by [Lu et al., 2013] can be treated as the mean difference statistic
being used on the adjusted and unadjusted severity scores of subjects in the treatment and
control group respectively.

The proposed method can also be applied to general randomized clinical trials, for
testing causal treatment effects in the subpopulation of subjects who would experience a
postrandomization event when the outcome is a ordinal categorical variable.

Some limitations remain. With only a p value of the test for the composite null reported
for each AE, we may not be able to identify whether the AE has greater incidence rate or
greater severity in the treatment group. One solution to this problem is to report both the p
value of the Fisher’s exact test for AE incidence rate and the p value of the proposed test
for AE severity.

The metric (r) that describes the degree of selection bias is determined after we re-
view the subjects’ characteristic information, thus the determination of r is subjective. We
may further develop methods (for example Bayesian method) to more accurately and ob-
jectively estimate r or w(z) from the data. In addition, we can assign values to each weight
w(z), z = 1, 2, 3 to incorporate our prior knowledge about the potential selection bias in-
stead of assuming that two consecutive weights (w(z)) have same ratio r, and thus making
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the proposed method more flexible.
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