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Abstract 

Seasonal adjustment is done using the X-12-ARIMA method at Statistics Canada. 
Appropriate variance estimates are needed to support inference based on seasonally 
adjusted estimates. In their absence, cross-sectional quality indicators of precision of the 
unadjusted series estimates are sometimes provided to data users along with the seasonally 
adjusted series estimates. Those indicators are often based on the estimated coefficient of 
variation of the unadjusted estimates. Statistics Canada is currently exploring options for 
estimating the variance of the seasonally adjusted series for its sub-annual surveys. A 
method suitable for every statistical program is sought. This paper discusses the 
methodologies considered and recent progress. 
 
Key Words: X-12-ARIMA, X-11 filters, replication methods, linearization techniques, 
sample surveys 
 

 
1. Introduction 

 
In repeated infra-annual surveys (e.g. monthly or quarterly), estimates of the raw series and 
estimates of the seasonally adjusted (SA) series can be disseminated. With either of those, 
estimates of the variance of the point estimates are needed to support inference. For most 
survey programs, estimates of variance of the raw series are produced and quality 
indicators based on those estimates are disseminated. However, it is less customary to 
produce variance estimates for the SA series. No quality indicators based on such variance 
estimates are published at Statistics Canada. For most statistical programs, cross-sectional 
quality indicators of the unadjusted/raw series estimates based on their estimated 
coefficient of variation (CV) are provided to data users along with the SA series estimates. 
When analysing the SA estimates, one could make the assumption that the CV of the SA 
estimate is comparable to the CV of the raw estimate of the same reference period, but this 
assumption needs to be validated and could potentially be questionable.  
 
Statistics Canada is thus exploring options for estimating the variance of SA series of its 
infra-annual statistical programs. A method suitable for all programs and applicable to 
various sample designs (such as household and business sample surveys and censuses) is 
sought, given that the X-12-ARIMA method (Findley et al., 1998) is used for seasonal 
adjustment. This exploration is done on two surveys: the Labour Force Survey (LFS) and 
the Monthly Retail Trade Survey (MRTS). They respectively are a household and a 
business survey. This paper presents results of this exploration. 
 
Furthermore, comparison of estimates of different reference periods of a series (e.g. the 
study of the month-to-month movement) is usually the focus of analysis for repeated 

 
1437



 

 

surveys. Appropriate estimates of the covariance between the estimates being compared 
are needed to support this kind of inference. At the moment, no lag-covariance estimates 
are disseminated at Statistics Canada. This means one must use alternatives such as the 
overlapping confidence intervals method to compare estimates of different reference 
periods of a given series. The correlations between the two estimates being compared are 
typically positive in a repeated survey and alternatives which do not require the estimation 
of the covariance between the estimates, such as the overlapping intervals method, are in 
general conservative. This is also studied in this paper for both the raw and SA series. 
 
In Section 2, estimation of the variance and covariance of the raw series is discussed. In 
Section 3, the methodology for estimating the variance and covariance of the SA series 
considered by Statistics Canada is presented. This methodology is based on an unpublished 
paper by Benoît Quenneville and from the comments of collaborators and reviewers. In 
Section 4, empirical results obtained from studying variance estimation of the MRTS are 
presented. The paper ends with a conclusion on variance estimation, on the dissemination 
of quality indicators based on the estimated variance and on possible next steps. 
 

2. Variance Estimation of the Raw Series 

 
Let the vector of the observed raw series be 
 

,y Y e   
 
where Y is the raw series vector one would observe had a census took place and e is the 
vector of sampling errors. When studying the raw series, the parameter of interest is Y (or 
a function of it) and the estimate is y (or the corresponding function of y). When no unit or 
item non-response is present, the variability of y is typically viewed as being design-based. 

Under design-based inference, Y is viewed as fixed. Let e  denote the (design-)variance 
matrix of y and e. Design variance comes from sampling and depends on the sampling 
design and on the estimation methodology used to produce the estimator y. Särndal et al. 
(1992) refer to the combination of sampling design and estimator as a strategy. Variance 
due to non-response will be ignored in the rest of this paper. However, the results presented 
could be extended to include variance components due to non-response and adjustments 
done to compensate for non-response such as imputation. 
 
2.1 Strategy of the Raw Series of the Labour Force Survey 

The Labour Force Survey (LFS) is a monthly survey which provides estimates of 
employment and unemployment. It has a stratified multi-stage design, with a small 
sampling fraction of clusters at the first stage and where households are selected at the last 
stage. Rotating panels are used to create overlap between samples of neighbouring months. 
This is done to increase the precision of estimates of the difference between two 
neighbouring monthly estimates. A given household is in the LFS sample for six 
consecutive months before rotating out.  
 
In terms of estimation, the monthly sample data are weighted to account for probability of 
selection in the sample. Survey non-response is compensated both by imputation and 
adjustment of the weights. Weights are also calibrated to correct for coverage errors. A 
regression composite estimator is used to further improve the estimates of level and change 
(Gambino et al., 2001).  
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The Rao-Wu bootstrap (Rao & Wu, 1988; Rao, Wu & Yue, 1992) is used to produce 
variance estimates of monthly estimates of the LFS. The bootstrap weights are generated 
in a coordinated fashion longitudinally using the coordinated bootstrap method proposed 
by Roberts et al. (2001) to allow for estimation of variance of point estimates involving 
multiple survey months. 
 
2.2 Strategy of the Raw Series of the Monthly Retail Trade Survey 

The Monthly Retail Trade Survey (MRTS) collects sales, e-commerce sales and number 
of locations from a sample of retailers. The same sample of retailers (establishments) is 
surveyed for a period of approximately 5 years. A given 5-year sample is selected 
independently of previous samples using a stratified simple random cluster sampling 
design. Sampling fractions can be large in some strata. Every month, births may be 
observed on the sampling frame (Statistics Canada’s Business Register). To make sure they 
are covered by the survey, a sample of births is drawn every month using again a stratified 
simple random cluster sampling design.  
 
Estimation in the MRTS is performed monthly in a cross-sectional fashion. The sample 
data is weighted to account for the sampling design. Non-response is compensated using 
imputation. The sampling weights are calibrated to Goods and Services Tax (GST) totals 
with a ratio adjustment and the ratio estimator (which is a special case of the calibrated 
estimator and of the Generalized Regression (GREG) estimator) is used. Additionally, 
correction factors might be applied to the survey variables to minimise response error.  
 
To prevent a break in the series the first month a new 5-year sample is used, a “linkage” of 
the old and new samples is performed. To make linkage possible, the old 5-year sample 
and the new 5-year sample are surveyed concurrently until the new sample monthly 
estimates are of quality that is judged adequate. Only the new sample is surveyed the 
following months. Linking consists of modifying the old sample estimates using time series 
benchmarking under the following constraints: 

1. the estimate of the first month of the old sample remains unchanged;  
2. the estimate for the last month the old sample is surveyed is made equal to the new 

sample estimate for that month.  
The benchmarking process ensures that the two constraints are satisfied while preserving 
the original month-to-month movement as much as possible. Some theoretical details on 
the linkage process are provided in Section 2.4. 
 
As is the case for point estimation, variance estimation is performed monthly in a cross-
sectional fashion in the MRTS (i.e. variance estimates of the raw point estimates of the 
reference month are produced, but no estimates of lag-covariances are produced). A 
linearization approach is used to estimate the variance of the ratio estimator. Variance 
estimates are not updated after a linkage is performed. More information on the MRTS 
strategy can be found in Renaud & Laroche (2016) and Laroche (2019). 
 
2.3 Impact of not Estimating the Variance in a Longitudinal Fashion 

Estimating the variance in a longitudinal fashion, such as with the LFS bootstrap, makes it 
possible to get an estimate of the full variance matrix of the raw series e  and not just its 
diagonal. This enables the data user to compare estimates of two reference periods using a 
variance estimate for the difference between the two estimates which takes into account 
the covariance between them.  
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Let s and t be the indices of the two different months for which the estimates need to be 
compared. The 95% confidence interval one would typically use for the difference between 

two totals sY  and tY  is 
 

       ˆˆ ˆ ˆ1.96 1.96 2 , .s t s t s t s t s ty y V y y y y V y V y C y y         
 
This approach will be referred to as the “ideal” approach or method in the rest of the paper. 
When no estimate of the covariance is provided, a first alternative could be to use the 
overlapping intervals method. It consists of verifying if the two confidence intervals 

 ˆ1.96s sy V y  and  ˆ1.96t ty V y  overlap and concluding that the two totals are 
significantly different when the two intervals do not overlap. This is equivalent to using 
the following confidence interval for the difference: 
 

       ˆ ˆ ˆ ˆ1.96 2 .s t s t s ty y V y V y V y V y     
 
It is in turn equivalent to assuming the most conservative value possible for the correlation 
between the two estimates: -1. A less conservative alternative would be to assume a null 
correlation between the estimates. The confidence interval would then be: 
 

   ˆ ˆ1.96 .s t s ty y V y V y    
 

 
 

Figure 1: Ratio of confidence interval lengths for MRTS month-to-month movements as 
a function of the correlation. In blue, the ideal approach vs. the overlapping interval 
method. In red, the ideal approach vs. assuming no correlation. 
 
Let ̂  c𝑜𝑟𝑟̂ ( , ).s ty y  In the rest of this paper, the “month-to-month movement” will 
correspond to the absolute month-to-month movement: the difference between two 
consecutive monthly estimates of a given series. Figure 1 gives for various MRTS raw 
month-to-month movements the ratio of the length of the ideal approach confidence 
interval and of the length of either of the alternative confidence intervals as a function of 
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ˆ ,  when at least one of the two estimated variances is greater than 0. Those ratios are 
respectively given by 
 

     

       

ˆˆ ˆ1.96 2 ,

ˆ ˆ ˆ ˆ1.96 2

s t s t

s t s t

V y V y C y y

V y V y V y V y

 

 

 

 
and 
 

     

   

ˆˆ ˆ1.96 2 ,
.

ˆ ˆ1.96
s t s t

s t

V y V y C y y

V y V y

 



 

 
For the first alternative, the ratio is bounded by  ˆ1 2  when    ˆ ˆ 0s tV y V y   
and by 1 when one of the variances is 0. The first alternative is thus more conservative than 
the ideal approach unless ˆ 1    or unless at least one of the estimated variance is 0.  
 
Similarly, the ratio for the second alternative is bounded by ˆ1   and 1. The second 
alternative is thus more conservative than the correct approach if the estimated correlation 
is positive and more liberal if the estimated correlation is negative.  
 
2.4 Estimating the Variance in a Longitudinal Fashion for the MRTS 

A longitudinal application of the Rao-Wu bootstrap was developed for the study presented 
in this paper to estimate the variance of MRTS estimates in a longitudinal fashion. It 
follows the principles of the coordinated bootstrap method of Roberts et al. (2001). This 
bootstrap can be applied independently to each 5-year sample since before a linkage 
process is applied the estimates of a given 5-year sample are independent of estimates of 

other 5-year samples. This implies that e  is block-diagonal in the MRTS. For each one 
of those samples, the following steps were followed: 
 

1. A set of B = 500 Rao-Wu bootstrap weights were generated for the sample selected 
the first month the 5-year sample was surveyed. 

2. For each of the following months, 500 Rao-Wu bootstrap weights were generated 
for the monthly sample of births. Those bootstrap weights can be generated 
independently of the other bootstrap weights because sampling of births is done 
independently of selection of the rest of the sample. Those bootstrap weights are 
combined to those of Step 1 and to those of previous applications of Step 2 to 
create the set of bootstrap weights used for the month. 

3. An independent ratio-adjustment/calibration of bootstrap weights was performed 
for each month to the corresponding monthly GST totals. After this step, because 
the calibration adjustments vary every month, each month has its own set of 
calibrated bootstrap weights. 

4. Bootstrap estimates were calculated for each month using that month’s set of 
calibrated bootstrap weights. 
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Once Steps 1 to 4 are applied to each 5-year sample, a set of bootstrap (vector) estimates 
( ) ,by  b = 1, …, 500 is obtained. The usual bootstrap formula could be used to estimate the 

matrix e : 
 

  ( ) ( )
• •

1

1ˆ .
B

T
b b

e

b

y y y y
B 

     

 
However, since it is known that e  is block-diagonal, it is preferable to use the 
corresponding formula independently by 5-year sample to estimate each of the blocks and 

assign values of 0 to all other elements of the ˆ
e  matrix. 

 
For the current 5-year sample, when a new month of data becomes available, Steps 2 to 4 
could be applied. Step 2 would further increase the size of the bootstrap weights file. In 
Step 4, new records would be created for the new month’s births. The value of the variable 
of interest should be set to 0 for those records for months before their birth. Since this 
would not change previous months’ bootstrap estimates, in Step 4 it is more efficient to 
simply  

1. calculate the bootstrap estimates for the new month; 

2. update 
( )by  accordingly by making it one element longer; 

3. calculate the new row and column of the bootstrap variance matrix estimate ˆ .e  
 
2.5 Estimating the Variance of a Linked Series 

Time series linking is a special case of time series benchmarking. The general subject of 
benchmarking is discussed in Dagum & Cholette (2006). Let y and z respectively be the 
vector of values of the old sample and of the new sample, and   and   be predetermined 
linking parameters. Linking of the series consists of removing the break in the series caused 
by the change of sample. It is done by replacing the values of y with those of ,  the vector 
of values which minimises the following distance function: 
 

 
22

2 1 11 1

21 1

1 ,
T

t t t t

t t t

y yy

y y y  

 
   

 

    
    

   
  

 
under the constraints 1 1y   and ,T Tz   where t = 1 is the first reference period the 
old sample is surveyed, t = T is the last time it is surveyed and the first time the new sample 
estimates are used (this would be the last overlapping month in the MRTS). Minimizing 
the objective function aims at preserving the relative month-to-month movement in the old 
series when 1.   Linkage is then multiplicative. When 0,   minimizing the objective 
function aims at preserving the original absolute month-to-month movement. Linkage is 
then additive. The solution to the minimization problem can be shown to be 
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 
1

2 12

0
2

2

0

; 1,..., .

t
tT t j

j T T
t t tT

k T

k

z y
y y t T

y





  














 
 

     
 




 

 
Assuming that the linking parameters are not sample-dependent, when a replication 
approach is used to estimate the variance of y, one could apply a linkage to each of the 
series replicate estimates to take linkage into account in variance estimation. 
 
Alternatively, one could approximate the linkage process using a linearization approach 
and adjust the pre-linkage variance matrix estimate. It can be shown that

 1, ..., , ,T

T Ty y z  U  where  
 

 

 

     

 

1

1 1

1

0,...,0 ,1 ,0,...,0 ,

, , , if 1,..., 1,

0,...,0,1 ,  if ,

T T
t t

Tt T t

t t
t T T T t

T T

Y
f Y

Y

Y Y
t f Y Y f t T

Y Y

t T





 

 

 

  



  



  






         


 




U  

 

where   is the census equivalent of   and    
1 2

2 12 2

0 0
.

t T
tT t j k

t

j k

f     
 



 

 
  

 
   A 

linearization variance estimator is thus given by     1
ˆ ˆ ˆ ˆ, ..., , ,T T

T TV V y y z  U U  

where Û  corresponds to U with Y replaced by y and   replaced by .  It is 
straightforward to extend this linearization approach to the full span of the series since 
linkage does not affect the data for t < 1 and t > T. In the case of the MRTS, either approach 
to taking linkage into account in variance estimation would make Section 2.4’s estimator 
of the block-diagonal variance of the raw series not block-diagonal, as they should since 
the target variance matrix to estimate is not block-diagonal after linkage. 
 

3. Variance Estimation of the Seasonally Adjusted Series 

 
3.1 Estimating the Variance of the Seasonally Adjusted Series Under Additive 

Decomposition 

When Y is decomposed additively for seasonal adjustment, one has: 
 

,
y Y e

S C I e

 

   
 

 
where S is the seasonal and calendar component, C is the trend and I is the irregular. In this 
paper, S and C will be viewed as deterministic components and I and e will be viewed as 
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stochastic components. The SA series of interest is given by N = C + I = Y - S. It is not 
directly observable, even when a census of the finite population of interest is performed. 
When seasonally-adjusting y with X-12-ARIMA, y is decomposed as 𝑦 = 𝑆̂ + 𝐶̂ + 𝐼 + 𝑒.̂  
It is not possible to get separate estimates of I and e. The estimated SA series is given by 
𝑁̂ = 𝐶̂ + 𝐼 + 𝑒̂ = 𝑦 − 𝑆.̂ The sampling error is thus part of the SA estimate (except in the 
unlikely event that e is absorbed by the estimate of the seasonal component in X-12-
ARIMA). Furthermore, there are two sources of error in the SA estimate: the sampling 
error and the model error which is made when decomposing the series into its components.  
 
As was mentioned in the introduction, this section of the paper is for the most part based 
on an unpublished paper by Quenneville (2013) and on the comments of collaborators and 
reviewers. Quenneville (2013) shows that the X-12 ARIMA seasonal adjustment method 
can be viewed as a nonparametric smoothing method and estimates the variance of the SA 
series under the assumption that I is a white noise process by following and adapting a 
method of Cleveland (1979, Section 6). The method is adapted for the presence of sampling 
error and for estimation of the variance of smoothed values.  
 
The main steps of the seasonal adjustment of X-12-ARIMA are: 

1. The fitting of a reg-ARIMA model for calendar effects and other priors such as 
outliers; 

2. The estimation of calendar effects, application of prior adjustments to the original 
series, and extension of this series with forecasts; 

3. The estimation of seasonal factors using the X-11 method on the prior adjusted 
series extended with forecasts. 

More details on X-12-ARIMA and the X-11 method are respectively given in U.S. Census 
Bureau (2017) and Ladiray and Quenneville (2001). 
 
The following steps describe how Quenneville (2013) linearly approximates the X-12-
ARIMA method. At the end of those steps, matrices W and R are obtained such that 

N̂ y W  and 𝐼 + 𝑒̂ .y R  The steps are: 
1. Obtain and consider fixed for the following step the orders of differentiation of the 

ARIMA model, the reg-ARIMA regressors, the estimated values of the ARMA 
parameters (and by extension the autocorrelation matrix), the order of the trend 
moving average, the selected seasonal filters and the identified extreme values and 
their weights (in Table C17 of X-12-ARIMA). 

2. Obtain the matrix that transforms y into the prior adjusted series. 
3. For a fixed number of forecasts, using the impulse response method described in 

Ladiray and Quenneville (2001, Section 3.4) or in Findley and Martin (2006), 
obtain the two weight matrices which transform a series (extended with its 
forecasts) into the SA series and into the estimated irregular component. This 
method consists of seasonally adjusting the columns of the identity matrix of order 
equal to the length of the original series plus the number of forecasts, holding fixed 
the items listed in Step 1, but by bypassing the extreme observations identification 
step by increasing sufficiently the sigma limits of the X-11 algorithm. 

4. Matrix W is obtained by multiplying the matrix of Step 2 with the first matrix of 
Step 3 and matrix R is obtained by multiplying the matrix of Step 2 with the second 
matrix of Step 3. 

See Bell (2012) for properties of the X-12-ARIMA smoothing matrices. 
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An alternative to the approach of Quenneville (2013) is to do the following: 
1. For chosen seasonal adjustment options, apply X-12-ARIMA to the original series 

and obtain the estimated SA series (Table D11) and the estimated irregular (Table 
D13). 

2. Using the orders of differentiation, the estimated ARMA parameters and seasonal 
adjustment options of Step 1, except for the sigma limits which should be large 
enough to bypass the extreme values identification step, successively apply X-12-
ARIMA to the original series plus a small value (say  ) times each vector of the 
identity matrix of order equal to the length of the series. Obtain each resulting pairs 
of SA series (D11) and irregular (D13) vectors. 

3. The ith column of W is given by the difference between the ith D11 vector of 
Step 2 minus the D11 vector of Step 1, divided by .  The ith column of R is given 
by the difference between the ith D13 vector of Step 2 minus the D13 vector of 
Step 1, divided by .   

This is the approach that was used in the empirical study of Section 4. Note that to get 
proper non-zero estimates of the columns of W,   should be chosen to be large enough to 
produce D11 and D13 vectors in Step 2 that are different from those of Step 1. 
 
Under the assumptions that I results from a white noise process and that seasonal 

adjustment can be approximated by a linear transformation W, i.e. ˆ ,N y W  one has 
 

    2ˆ ,TT

e IV N N      W W I W I W  

 

where I is the identify matrix and 2
I  is the variance of I. The first component of variance 

of the estimated SA series T

eW W  is design-based. The second component 

  2 T

I  I W I W  is model-based. 
 
In general, the variance matrix of the raw series e  is either estimated using  

 direct/classic formulas combined with the Taylor linearization technique if the 
GREG or the calibration estimator is used,  

 or a replication approach. 
In both cases, the first component of variance of the estimated SA series can be estimated 
by ˆ .T

eW W  When a replication approach is used to estimate ,e  one can instead 
replicate the seasonal adjustment process and the resulting design variance matrix 
estimated would be an estimate of the design-based component of variance of the estimated 
SA series. It might be preferable to use this latter approach if it is thought that the linear 
approximation of the seasonal adjustment process is questionable. Some steps of the X-12-
ARIMA process make it non-linear, namely the estimation of auto-correlations and the 
forecasts in the ARIMA/first half of the process and the correction for extreme values in 
the X-12/second half of the process. 
 
To estimate the model-based component of the variance of the SA series 

  2 T

I  I W I W  requires to estimate 2.I  Quenneville (2013) suggests the 
following estimator of the variance of the irregular component I: 
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 
 2 1 ˆmax 0, trace ,

trace
T T

I eT
r r

       
  

R R
RR

 

 
where r y R  is the linear approximation of the estimate 𝐼 + 𝑒.̂  He also suggests the 
following robust version of the estimator: 
 

 
 2 21 ˆmax 0, trace ,

trace
T T

I eT
r r

             

R R
RR

 

 
where   is a diagonal matrix with values between 0 and 1 in the diagonal that is used to 
down-weight extreme values of the irregular (down-weighting corresponds to values 
smaller than 1).  
 
3.2 Estimating the Variance of the Seasonally Adjusted Series Under Multiplicative 

Decomposition 

Multiplicative decomposition corresponds to: 
 

.
y Y e

S C I e

 

   
 

 
The SA series of interest is given by .N C I Y S    Its X-12-ARIMA estimator is 
given by 𝑁̂ = 𝐶′̂ × 𝐼′̂ = 𝑦 𝑆′̂⁄ . Primes are used in the preceding formula because e 
potentially contaminates the estimation of each of the three components of Y in a more 
significant fashion under multiplicative decomposition. Because of the following 
approximation 
 

log log
log log log .

t t t t

t t t t t

y Y e Y

S C I e Y

 

   
 

  

and assuming that the linearization matrix W is such that ˆlog log ,N y W  an estimator 
of  ˆlog logV N N  is given by 

 

  1 1 2
log

ˆ ˆ ,TT

e I      W W I W I W  
 
where  diag .y   The latter matrix is needed in order to approximate the variance of 
the transformed data using the variance of the original data. The estimate of the irregular 
variance 2

logˆ
I  is equal to either 
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where log ,r yR  or to the corresponding robust version of this estimator 2

log .I  To find 

the variance of the untransformed data  ˆV N N  requires to use the following 

approximations: ˆ ˆ ˆ ˆlog log 1t t t tN E N N E N     
   

 and log tN 

   log 1.t t tE N N E N   In both expressions, only the second term contributes to 

variance and an estimator of  ˆV N N  is thus given by 

 

  1 1 2
log

ˆ ˆ ,TT

e I         W W I W I W         (1) 
 
where   is a diagonal matrix with either N̂  or Ĉ  in its diagonal (both are estimates of 

ˆE N 
 

 and  E N ). As in the additive decomposition case, when a replication method is 

used to estimate the design variance, the design-based/first component of (1) can be 
estimated by replicating seasonal adjustment. 
 

4. Empirical Study 

 
This section presents an empirical study of variance estimation of the raw and SA series of 
the MRTS. Focus is put on this survey because its design features vary more from domain 
to domain than those of the LFS. In particular, the sampling fraction can be large for some 
domains. Moreover, since the LFS estimates primarily counts, no population unit is 
influential on the total to estimate, whereas in the MRTS some population units might be 
a lot more influential than others due to large weights, large values of the variable of 
interest or a combination of the two. 
 
Results presented in this section were obtained using part of the span of the MRTS, namely 
the data of reference periods covering January 2013 to January 2019. This involves two 
“5-year” samples, the first spanning from January 2013 to December 2016 and the second 
spanning from December 2016 to January 2019. A total of 21 retail North American 
Industry Classification System (NAICS) sales series where studied. Those are NAICS 
44111, 44112, 4412, 4413, 4421, 4422, 443, 444, 44511, 44512, 4452, 4453, 446, 447, 
4481, 4482, 4483, 451, 4521, 4529 and 453 (excluding 453993 – Cannabis stores which 
was only recently introduced). Geographic sales series were also studied. Those 
geographies are the 10 provinces, the 3 territories, the 3 largest Census Metropolitan Areas 
(Montreal, Toronto, Vancouver) and their 3 respective provincial complements. 
 
Variance estimation of the raw series was performed using the longitudinal bootstrap 
described in Section 2.4. Linkage was taken into account in variance estimation by 
replicating the linkage for each bootstrap replicate as described in Section 2.5. It was 

furthermore verified that a comparable estimate of e  is obtained when a linearization 
approach is used to take linkage into account. 
 
Variance estimation of the estimated SA series was performed as described in Section 3. 
Most MRTS series are decomposed in a multiplicative fashion to perform seasonal 
adjustment. In that case the diagonal of   was composed of ˆ .N  The design-based 
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component of variance was obtained by replicating seasonal adjustment on each bootstrap 
series. The model-based component was estimated using the non-robust version of the 
estimator of the variance of the irregular component I (or of the log of the irregular 
component in the multiplicative decomposition case). 
 
4.1 Comparing the Variance of the Raw Series and of the SA Series 

When only estimators of the variance of the raw series are available, it is of interest to 
know if the variance of the raw series is a good proxy for the variance of the estimated SA 
series. In the case of a census, 0e   and unless the irregular component is negligible the 
model-based component of the variance of the estimated SA series dominates. Figures 2 
and 3 illustrate this. 
 

 
 

Figure 2: Scatterplot of the design-based component of the CV of the SA series (y-axis) 
and of the (design) CV of the raw series (x-axis). The two lines shown on the graph 
correspond to y = x and to the Deming (1943) regression line y = 0.94 x. 
 

Figure 2 shows that the design-based component of the CV of the SA series and the CV of 
the raw series are very highly correlated. The design-based component of the CV of the 
SA series is globally 6% smaller than the CV of the raw series. This means if the model-
based component was negligible, using the CV of the raw series to qualify the estimated 
SA series would be a bit conservative.  
 
Figure 3 gives the more complete picture by comparing the CV of the estimated SA series 
taking both variance components into account with that of the raw series. The CV of the 
SA series is in general greater than that of the raw series. Taking both components of 
variance into account, using the quality indicators of the unadjusted series to qualify the 
adjusted series is thus in general liberal. It can be very liberal because the model-based 
variance component can be relatively important for some domains. Three domains are 
highlighted on Figure 3. NAICS 4521 – Department stores is at the far left in black. A 
census is conducted for this domain, which means the CV of the raw series is 0, but the CV 
of the estimated SA series is positive. Next to this domain, in red, are the 3 territory series, 
which correspond to near censuses and are volatile in nature. On top in turquoise is the 
NAICS 443 – Electronics and appliances stores series. The sales weighted sampling 
fraction of this domain is around 20%, which is not that large. Short seasonal filters are 

y = x 

y = 0.94 x 
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used for this domain to pick up evolving seasonal effects found in this industry (related to 
Black Friday). This favors a larger model variance component. This series also has had 
more correction factors applied than most series because of a recent redefinition of the 
NAICS. Those factors where not applied to artificially reduce the irregular component and 
most likely have inflated the estimated variance resulting from I + e. Because they have 
the same effect on each bootstrap replicate, the inflation should result in an increased 
estimated model-based component of the variance only. 
 

 
 

Figure 3: Scatterplot of the CV of the SA series (y-axis) and of the (design) CV of the raw 
series (x-axis). The line shown on the graph corresponds to y = x. 

 

4.2 Study of the Month-to-month Movement 

The month-to-month movement in the raw series and in the SA series is studied in this 
section. More specifically, tests of hypothesis that the movement is different from 0 are 
performed using the ideal approach (i.e. by making use of the estimated covariance 
between the two estimates being compared) or using the two alternatives described in 
Section 2. Hypothesis tests at the 5% level were performed for every month-to-month 
movement. 
 
Table 1: Percentage of Significant Month-to-month Movements in the Raw Series at the 
5% Level as a Function of the Correlation Between the Two Estimates Being Compared 

 
Correlation Total number of 

movements 

Ideal 

method 

Overlapping intervals 

method 

Assuming no 

correlation 

[-1, -0.5] 1 100%  100%  100%  
(-0.5, 0]  204 74%  69%  74%1 
(0, 0.5]  346 66%  52%  63%  
(0.5, 1]  2329 83%  45%  55%  

 
Table 1 presents the results for the movement in the raw series as a function of the 
correlation between the two estimates being compared. The vast majority of the month-to-
month movements in the raw series involve a large correlation (greater than 0.5). Most of 

                                                 
1 The result of the hypothesis tests of the “Assuming no correlation” alternative were always in agreement 
with that of the ideal method at the 5% level (they could have been more liberal). 
 

y = x 

NAICS 443 –  
Electronic and  
Appliance Stores 

Territories  
(near censuses) 

NAICS 4521 –  
Department stores  
(census) 
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the movements are also significant at the 5% level with the ideal method. This is not a 
surprising result since the movement could be due for the largest part to the seasonal 
component. The two alternatives most often agree with the ideal method for correlations 
of 0.5 or less. However for correlations greater than 0.5, the two alternatives often fail to 
detect the movements. 
 

Table 2: Percentage of Significant Month-to-month Movements in the SA Series at the 
5% Level as a Function of the Correlation Between the Two Estimates Being Compared 

– Using the Non-robust Estimator of the Irregular Component Variance 
 

Correlation Total number of 

movements 

Ideal 

method 

Overlapping intervals 

method 

Assuming no 

correlation 

(-0.5, 0]  421 7%  3%  7%2 
(0, 0.5]  949 6%  1%  4%  
(0.5, 1]  1510 7%  0%  0% 

 
Table 2 presents the results for the movement in the SA series when the non-robust version 
of the estimator of the variance of the irregular component is used. Compared to Table 1, 
the correlations are reduced quite a bit because of the contribution of the model variance 
component. The percentage of significant movements is very close to the 5% level. Note 
that it was verified that almost every outlier identified in the reg-ARIMA procedure of X-
12-ARIMA are involved in at least one significant month-to-month movement. One reason 
for the small percentage might be the span of the series studied. The series are only 6 years 
long, which is pretty short to estimate the seasonal patterns. Expanding the span further 
should improve the quality of the decomposition of the series and could make more month-
to-month movements significant. Table 2 also shows that the two alternatives are not 
effective at detecting the significant movements, especially for large correlations. 
 

Table 3: Percentage of Significant Month-to-month Movements in the SA Series at the 
5% Level as a Function of the Correlation Between the Two Estimates Being Compared 

– Using a Robust Estimator of the Irregular Component Variance 
 

Correlation Total number of 

movements 

Ideal 

method 

Overlapping intervals 

method 

Assuming no 

correlation 

(-0.5, 0]  339 9%  5%  10%3 
(0, 0.5]  858 10%  3%  7%  
(0.5, 1]  1683 13%  0%  0%  

 
Table 3 presents the results corresponding to those of Table 2, but using instead a robust 
version of the estimator of the variance of the irregular component. The down-weights used 
in matrix   are those of Table C17 of X-12-ARIMA, except for reference periods where 
an outlier was found by the reg-ARIMA procedure, in which case the weight was set to 0. 
When using such an estimator, there is a risk of under-estimating the variance if down-
weighting is too pronounced. Table 3 can thus be seen as results obtained with a liberal 
estimator of the model-based component of variance and the truth may lie between the 

                                                 
2 The results of the hypothesis tests of the “Assuming no correlation” alternative were more liberal than the 
ideal method at the 5% level only twice. 
 
3 The results of the hypothesis tests of the “Assuming no correlation” alternative were more liberal than the 
ideal method at the 5% level only thrice. 
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results of this table and those of Table 2. Though the percentages in the table are higher, it 
can be seen that the results of Table 3 are not drastically different from those of Table 2. 
 

Table 4: Percentage of Significant Month-to-month Movements in the SA Series at the 
5% Level as a Function of the Correlation Between the Two Estimates Being Compared, 

Taking Into Account the Model-based Variance Component Only –  
Using a Robust Estimator of the Irregular Component Variance 

 
Correlation Total number of 

movements 

Ideal 

method 

Overlapping intervals 

method 

Assuming no 

correlation 

[-1, -0.5] 11 0%  0%  0%  
(-0.5, 0]  2576 24%  15%  27%4  
(0, 0.5]  93 28%  22%  28%  
(0.5, 1]  200 100%  100%  100% 

 
Finally, Table 4 presents the results when the design-based component of the variance of 
the estimated SA series is set to 0. This is done to show how many significant month-to-
month movements should be expected if a census of the population were done instead of a 
sample survey. Note that under a census, every raw movement would be significant in 
Table 1. Table 4 shows that most correlations would become null or negative and that 
between 2 or 3 times more significant month-to-month movements could be observed. The 
two alternatives to the ideal method would be detecting the significant movements well, 
especially the one assuming no correlation. 
 

5. Conclusion 

 
Some conclusions can be made in light of the results presented in this paper with respect 
to the quality indicators provided to time series data users at Statistics Canada. The first 
one is that providing quality indicators based on the estimated variance of the raw series 
along with the SA estimates might lead the data user to underestimate the variance of the 
SA estimates, in particular when the sampling fraction is large. However, this 
underestimation might be negligible for household surveys with small sampling fractions. 
Indeed, although no empirical results were presented in the paper for the LFS, our studies 
indicate that the model component of variance represents at most 5% of the total variance 
of the SA estimates for this survey.  
 
The second conclusion that can be made is that when comparing estimates of two different 
reference periods of a series, using an approach not requiring the estimation of the 
covariance between the two estimates might be very conservative. In the case of the MRTS, 
a small fraction of the month-to-month movements were found to be significant. When this 
is the case, one would not want to be too conservative in his or her conclusions. 
 
It would be straightforward to extend some of the developments presented in this paper to 
three Statistics Canada surveys that have a strategy very similar to that of the MRTS: the 
Monthly Wholesale Trade Survey, the Monthly Survey of Manufacturing and the Monthly 
Survey of Food Services and Drinking Places. Extension to other Statistics Canada surveys 
could also be considered. This might be more difficult to achieve, however, for surveys 

                                                 
4 The results of the hypothesis tests of the “Assuming no correlation” alternative were more liberal than the 
ideal method at the 5% level 80 times. 
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that do not have monthly sample overlap schemes which yield variance matrices of the raw 
series as simple as those of the MRTS. 
 
Statistics Canada’s exploration of variance estimation of the SA series will be continued 
with the study of more volatile series (e.g. the domains formed by crossing a geography 
with an industry/NAICS in the MRTS). One would expect the model-based variance 
component to be a decreasing function of the population size and the design-based variance 
component to be a decreasing function of the sample size. Moreover, the analytical 
potential of drilling down series to smaller domains might be limited if variance increases 
and power decreases too much. Increasing the span to its full length (i.e. adding years 2004 
to 2012) in the MRTS study is also of interest. This should improve the quality of the 
decomposition of Y into its components and help lower the model-based variance 
component. Furthermore, other variance structures of the irregular component that were 
suggested in the literature could be studied. For example, Pfeffermann and Scott (1997) 
suggest modeling I using an MA model.  
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