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Abstract
Spatial autocorrelation is captured using Moran’s index. The later quantifies the degree of

dispersion (or spread) of events or objects in space. When investigating data in an area, a
single Moran statistic may not give a sufficient summary of the autocorrelation spread. How-
ever, by partitioning the area and taking the Moran statistics of the subareas, patterns of the
local neighbors not otherwise apparent are discovered. We consider the model of the spread
of an infectious disease, incorporate time factor, and simulate a multilevel Poisson process
where the dependence among the levels is captured by the rate of increase of the disease
spread over time, steered by a common factor in the scale. The main consequence of our
results is that our Moran statistic is calculated from an explicit algorithm in a Monte Carlo
simulation setting. Results are compared to Geary’s statistics and estimates of parameters
under Poisson process are given.
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1. Introduction

Spatial structure is an important interface in describing the evolution and progress
of many events, such as disease progression in space and time. The data to analyze
then capture the variations and causality of the underlying process of the events.
As described in design of experiments, the ideas of variation and causality can be
linked to the blocking, randomization, replication and resampling. The density of
the spread follows various sampling and spatial kriging methods. These concepts
are also found in earlier literature as shown in Figure ?? of the Spanish conquest in
the early 1500’s of the current day Guatemala. The map shows the progression of
the conquest in space and time.

As a process, the models that have been proposed may not detect the subtle
changes over space and time. The Moran statistic provides a sufficient summary of
the degree of dispersion (or spread) of events in space. We suggest time-dependent
Moran statistics. However, by segmenting the total area into clusters, the space is
then a random field, where each point or occurrence becomes an event of interest for
the next time point. The process is captured as a conditional probability model, and
the statistics of interests are computed locally. Simulated and real data examples are
performed to validate clustering techniques.

The manuscript is organized as follows. Section 2 presents a review of spa-
tial models. Section 3 generalizes the model of dependent Palm distribution with
a temporal component. Inferences are investigated in Section 4 with Moran statis-
tics. Simulation and real data examples are analyzed in Section 5, and a summary is
provided in Section 6.
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Figure 1. Spatio-temporal map of Spanish conquest.

Figure 2. Spatial point processes.

2. Spatial Models

A point process is a random field where each point represents an event of inter-
est. Point processes have been used to describe events in many fields such as in
life testing and epidemiology (disease cases), astronomy (patterns of stars) and de-
scribed in Cliff and Ord (1981), Coeurjolly et al. (2016, 2017) and in Baddeley
et al. (2016). Referring to the area where the spread will be noticeable, the event
depends on the knowledge during presampling, adequate description in space and
time. The factors that make the prediction challenging are due to the heterogeneity
in the terrain in space and time. By using natural embedding so that compactness
is preserved (Kallenberg, year) and knowledge from time consecutive observations,
we are building a better clustering, and the measure of spatio-temporal pattern is
validated via the Moran statistics.

In a one-dimensional setting, these events are described as arrival of customers
in a queue, adding time to it. In two-dimensional system, the events can be described
in terms of latitude and longitude, showing the terrain characteristics, over time.

Conny Palm, a Swedish telegraphist, applied the stochastic process to telephone
exchanges in 1943. He used a Poisson distribution function for the number of in-
coming calls to an exchange in a given period of time, in studying the properties
point process. By adding conditional probabilities, he formulated the now call Palm
distribution. We apply such an idea to the finite dimensional sequence of distribu-
tions

Considering the area as a measurable spaces with an associated σ-field denoted
as T , we associate a random measure ψ that can be described as the count of occur-
rences of events of interest. In a simple setting, the space can be thought as a real
line or a Borel set, with the Poisson count as process. For any location, denoted as
s, the count generated as that location with respect to the σ-field,

Palm distribution at location s of an event of interest is defined as:

(2.1)
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where ξ is a random measure, with associated finite mean measure µ.
The reduced Palm distribution of the point process at location s is described

as the point process generated at s, after its elimination. It is described as Qs and
defined as Qs = Ps ◦ (µ − δs)

−1, where ξ(s) > 0. Under the reduced Palm Qs,
the process behaves as a superimposed birth process with parents removed and the
count is a weighted part of the space.

3. Spatio-temporal Models

The formulation of the model is based on the spread to the incremental time and
area susceptible. As shown in Stoyan et al. (1995), the expected process extends to
a nested process in time, and is expressed as:

(3.1)

where h is any function of the point process x
˜

, with associated density function f
and qt is the number of subareas at time t. To keep the model tractable, the sequence
of σ-fields are kept time-dependent by nesting them within the previous time σ-fields
and all exchangeable processes capture the probabilistic justification for resolutions
with qt−1 ≤ qt.

Under the proposed Palm distribution, for a set B t
k(t) at time t, 1 ≤ k(t) ≤ qt,

the Palm process is then expressed as:

Pt,s(B
t
k(t)) =

E[ξt(ds); γt ∈ Bt
k(t)]

E[ξt(ds)]
, s ∈ Bt

k(t), B
t
k(t) ∈ T ,

where ξt is a random measure. The reduced Palm distribution is then Qt,s = Pt,s ◦
(µ− δs)

−1.

4. Statistical Inference

Estimation is still of great interest as expressed in Datta et al. (2016), who suggested
a nearest neighbor Gaussian process technique with concern when locations have
large groups. The likelihood form we will consider here is expressed as the depen-
dence of different parameters in space and time. Some of the challenges for the
model formulation are overcome by: allowing flexible area sizes, applying isotropic
properties of the processes, and nesting the areas consecutively in time. Our ap-
proach avoids the use of large rank matrices to invert, and rather introduces the
random field to a finer dimensional conditionally spaced distribution. For the time
series data (Vaillant et al., 2011) and a partitioned time interval with pairs of ob-
servations (ti−1, ti), i = 1, . . . ,m, the Moran statistic based on a nearest neighbor
scheme is defined as:

Mi =
∑

(x,y)∈B

w(x,y)1[0,ti−1](Tx)1(ti−1 ,ti](Ty),

with w(x,y) a weight between neighbors.
The proposed space-time Moran statistic is defined as:

M t
k =

∑

u,u′∈Bt
k(t)

wu,u′1[t−1,t)(Tu, Tu′), k ≥ 1, t ≥ 1,

where Bt
k(t) defines the processes subareas, and nesting the areas consecutively in

time. The chosen weight is a function of the nearest neighbor Gaussian process, and
offers full spatial model at each time period.
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The likelihood of the observed process is time and space dependent. If the total
area at time t is partitioned into qt subareas as B1, . . . , Bqt , with the number of
occurring events as n1, . . . , nqt, then the model counts can be described as:

xk(t) = g(Bt
kt

) + εk(t), 1 ≤ k(t) ≤ qt,

where g is a function of the spread/propagation subareaBk(t) and εk(t) is the spread/propagation
reconstruction error vector. Under span cluster detection,

εk(t) = (ε1k(t)
, ε2k(t)

, . . . εnk(t)
), is such that

f(εjk(t)
) = e

−αk(t)+βk(t)h(εjk(t)
)
, 1 ≤ j ≤ nk(t)

as in Wen and Kedem (2009) and Walther (2009), where h is the tilt function and
αk(t) and βk(t) are scalars depending on h.

The spatial process is guided by the process between observations of the un-
derlying random field. Our intended contribution is to build a fully (Markovian)
parameter estimation and kriging on the residual processes. Turning to predictions,
the likelihood function of the errors is:

Lt(αt, βt) =

qt∏

kt=1

nk(t)∏

j=1

f(εjk(t)
) × pt,s,

and under the reduced palm distribution:

Lt(αt, βt) =

qt∏

kt=1

nk(t)∏

j=1

e
−αkt

+βkt
h(εjkt

)
×Qt,sk(t−1)

(εjkt
).

The computational benefits gained from the simplication in the likelihood form are
described in the next section.

5. Simulation and Data Examples

5.1. Simulation Example

The model is implemented as a series of time dependent routines. In the simulation
setting, we start with a random number of points at time t = 1 that are followed
over four consecutive time points. Figure 3 displays the number of points generated
at time t = 2, and the subsequent points generated at time t = 3 within one of the
selected subareas called disk 1 in shown in Figure 4. The points are generated under
a conditional Poisson model with mean parameter λ = 2, from one time to the next.
For locally dependent processes, and dependent superposition of point processes,
the Poisson process is an approximation from the point of view of the death process
and Palm theory as presented in Chen and Xia (2011). The output in Table 5.1 shows
that at time t = 3, disk 3 did not generate enough points to have a computable Moran
statistic.

Following each of the subareas, clustering within some of the subareas becomes
noticeable (see Figure 5), in conformity with the size of the subarea and the pa-
rameters associated with the Palm parameters. Computing alongside the associated
Moran’s values, the later also captures the measure of spatial dependence within
each of the subareas. Comparing the global Moran with the local ones at each time
points, an oversimplification is avoided, and cluster effects are discovered in the
presence of the spatial dependence.
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Figure 3. Simulation example at t = 1 and t = 2.

Table 1. Moran and Geary Values for time t = 2

Disk Points Area Moran’s Geary’s C
1 10 1.064 158.18 2.444
2 7 0.361 129.29 1.998
3 24 3.096 453.09 7.000
4 9 1.266 111.58 1.724
5 10 1.058 116.03 1.793
6 28 3.415 542.49 8.382

5.2. Real Data Example

The proposed approach is applied to brain image data. For the spatial model, we first
focus on the absolute values of the hemoglobin oxygenation (HbO), deoxygenation
(HbR) and total (HbT) intensity signals observed in three regions, optodes 1, 2 and
15, in the prefrontal cortex (PFC) during speech for two participants with chronic
acquired apraxia of speech and aphasia who participated in a speech motor learning
intervention. We focus on three stages of the intervention over 12 days. The brain
is depicted as a space with optodes as locations (see Figure 6) and the distances are
calculated between optodes with the distance between i and i taken from a central
node along the brain stem.

The spatio-temporal Moran statistics are defined as:

M t
i,j =

∑

i,j

wijf(pi, pj) =
∑

i,j

exp−dij/d̄ |oi − oj |,

where oi and oj are the observed values at optodes i and j for time t.
Calculating distances as described above results in the following distance matrix:

dij =



4 1 7
1 4 8
7 8 4


 .

Next, we calculate the geographical weights defined as wij = e−dij/d̄, where d̄ is
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Figure 4. Disk 1 subareas at t = 3.

Table 2. Non-zero Moran and Geary Values for Disk 1 at time t = 3

Disk Points Area Moran’s Geary’s C
1 28 1.905 779.89 5.101
5 11 1.362 125.23 0.819
8 2 0.065 20.11 0.132
9 15 1.183 337.63 2.208

10 7 0.508 80.63 0.527

the average of distances between all possible pairs of points i and j:

wij =




0.2765 0.7251 0.01054
0.7251 0.2765 0.0764
0.1054 0.0764 0.2765


 .

Then we calculate the Moran statistics for each participant at each stage. Figure 7
shows the graphs of the Moran statistics; a Loess smoothing curve has been added
to easily detect trends between participants.

The degree of correlation measured here by the Moran statistics between the
participants indicates that the correlation between optodes 1 and 2 (BA 46) vs optode
15 (BA 9) is always higher for Participant 1 (red) in stage 1, whereas in stages 2 and
3, the correlations cross. This last remark is especially visible in stage 2 after day
6. This shows that there is a magnitude of PFC activity (HbO, HbR, and HbT)
represented in stage 1 that lessens in stage 2 and 3 over time. This indicates that for
Participant 1, the cognitive control processes to maintain the rules to respond and
the need to inhibit previously learned behavior decrease with practice. There is a
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Figure 5. Apparent spatial clustering through t = 5.

Figure 6. Prefrontal cortex optodes depiction.

decrease in the cognitive effort similar to the tasks completed following a model as
in stage 1 (see Glascher et al., 2012). Indeed, there are signs that BA 46 (optodes
1 and 2) activity changed based on the stage of practice across days. Under HbO,
oxygenation increases mainly in stage 1, suggesting that Participant 1 had a higher
level of activity than Participant 2. From the Moran statistics it appears that over
time the activity effect will stabilize and merge with practice.

6. Conclusion

We have proposed a tractable time-dependent model for spatial point processes and
developed a subarea based spatial estimation analysis. Challenges faced in the for-
mulation and computational burden are overcome by selecting the Palm distribution
and revising the algorithm where resolution is scaled at each time point. The strati-
fication and clustering of events of interest are captured by the Moran statistics over
time. Results in the simulations and application to real data show that the likelihood
method considered yield better estimation , and is able to incorporate the natural
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Figure 7. HbO, HbR, and HbT Moran statistics for Participant 1 and Participant 2
through 12 days of intervention.

design mechanism. Patterns and clusters that are time sensitive are then discovered.
Even with the introduction of covariates, the model shows higher performance than
the naive analysis method.

Extension of the models are under study in the context of Palm measures and
subject specific information. Besides challenges due to the large data set or high
dimensionality, the concepts of sensitivity, specificity and misclassification for the
subject in the location are examined as they depend on the corresponding covariate-
adjusted information.
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