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Abstract 

A model of process control is studied in which items might be incorrectly 
classified. Because of this possibility the items selected are classified multiple 
times before a final judgment is reached as to whether they conform to 
specifications. This final judgment is based on runs of conforming and 
nonconforming classifications of the item which in turn determines whether the 
process is declared to be out of control. Steady state as well as short term 
properties are studied. 
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1. Introduction 

 
In papers by Taguchi, Elsayed, and Hsiang(1989) and Taguchi, Chowdhury, and Wu 
(2004) a model of on-line process control by attributes is studied.  Every hth item produced 
is inspected. Initially, the process is assumed to be in control and that the fraction of items 
conforming to specifications denoted by p1 is close to 1. When the process goes out of 
control there is a shift to p2 (< p1) for the fraction conforming. If an inspected item is judged 
nonconforming, the process is considered to be (possibly) out of control and is stopped and 
there is a search for an assignable cause.   
 
There are several papers that have studied models along this line using a variety of 
assumptions. In Nayebpour and Woodall (1993) the random time until the shift from p1 to 
p2 is assumed to follow a geometric distribution. Items produced are assumed to be 
independent and identically distributed trials with a constant probability of π for each item 
to be the first item produced with the new shifted (smaller) fraction conforming in effect. 
Since only every hth item is inspected, the first item produced under this shifted fraction 
conforming value might not be the one chosen to be inspected and thus it is possible that 
there are  some number of items produced before it is possible to detect the shift. 
 
Borges, Ho, and Turnes (2001) point out that the inspection process itself can be subject to 
diagnostic errors and that a classification can result in a conforming item possibly being 
misclassified as nonconforming. We let pCN be the probability of this misclassification. In 
addition, a nonconforming item can be classified as conforming and let pNC be the 
probability of this misclassification. We also define pCC (pNN) to be the probability of 
correct classification, i.e. the probability that a conforming (nonconforming) item is 
classified as conforming (nonconforming). This gives rise to the idea of making repeated 
classifications of each inspected item prior to making the final judgment of whether the 
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item is conforming or nonconforming. When the item has been judged in this final 
determination to be nonconforming, the process is judged out of control and is stopped for 
a search for an assignable cause, and if one is found an adjustment is made to put the 
process back in control. Since there is the possibility of diagnostics errors in the repeated 
classifications process and since even when the process is in control the item selected might 
truly be nonconforming, there is a possibility that an item is judged to be nonconforming 
and the process is judged out of control, even though the process is actually not. 
Nonetheless, the process is paused for a search for an assignable cause and when one is not 
found the process is then restarted and it is assumed that the process has not somehow been 
put out of control by the stopping and searching for a cause. It is also possible that the 
process goes out of control, but the next inspected item is judged conforming and the 
process is not judged to be out of control at that time. The process will eventually be judged 
out of control at some later time when an inspected item is finally judged nonconforming. 
After the process has gone out of control, it is assumed that the process cannot put itself 
back in control. Thus, once out of control it stays out of control until finally an inspected 
item at some later time is judged nonconforming. At that time, a search is launched, an 
assignable cause is found and corrected, at which time the process goes back into control 
and the model starts anew.  
 
In Trindade, Ho, and Quinino (2007), the final determination of whether the inspected item 
is conforming, and thus whether the process is in control, was based on a pre-specified 
number of repeated classifications using majority rule. In Quinino, Colin, and Ho (2009), 
an item was judged to be conforming and the process to be in control if and only if there 
were k classifications as conforming before f classifications as nonconforming, where k 
and f are some pre-specified positive integers. We will use the acronym TCTN because the 
decision is based on the total number of classifications as conforming and nonconforming. 
Smith and Griffith (2009, 2017) further studied this rule and another rule called CCTN. 
 
In this paper, we continue the study of the alternative rule CCCN in which the final 
determination that an item is conforming, and thus the process is in control, if and only if 
a run of k consecutive classifications as conforming occur before a run of f consecutive 
classifications as nonconforming.  
 

2. Probabilistic Analysis 

 
Proposition 1:  If the item being inspected is conforming (nonconforming), the probability 
that it is judged to be conforming is    

𝑃(𝑗𝑢𝑑𝑔𝑒𝑑 𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔| 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔)

= 𝐶𝐶𝐶𝑁(𝑝𝐶𝐶)
pCC

k-1[1-(1-𝑝𝐶𝐶)f]

1-(1-pCC
k-1)[1-(1-𝑝𝐶𝐶)f-1]

 

 
𝑃(𝑗𝑢𝑑𝑔𝑒𝑑 𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔| 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑛𝑜𝑛𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔) = 𝐶𝐶𝐶𝑁(𝑝𝑁𝐶)

=  
p

NC
k-1 [1-(1-𝑝

𝑁𝐶
)

f
]

1-(1-p
NC
k-1) [1-(1-𝑝

𝑁𝐶
)

f-1
] 

PROOF:  Consider  the Markov chain {Xn} with state space  

{(𝑟, 𝑠): 0 ≤ 𝑟 ≤ 𝑘, 𝑠 = 0} ∪ {(𝑟, 𝑠): 𝑟 = 0, 0 ≤ 𝑠 ≤ 𝑓} 
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where Xn = (r,s) means that after the nth classification there are r consecutive successes 

and s consecutive failures.  Let pCC  ( pNC) be the probability that a conforming 

(nonconforming) item is classified as conforming.  In the analysis below, we p will be 

equal to pCC  or pNC depending on the true nature of the item. The transition probabilities 

when beginning in a transient state are of the form  

P(Xn = (r + 1,0)| Xn-1 = (r,s)) = p and P(Xn = (0,s + 1)| Xn-1 = (r,s)) = q. 

The situation is depicted in Figure 1.      
 

 

Figure 1. 

Given that we are in the first column, we move down the column with probability p and 

move to state (0,1) with probability 1-p.  Given that we are in the first row we go across 

the row with probability 1-p and move to state (1,0) with probability p.  The state (k,0) is 

the absorbing state corresponding to item is judged conforming and state (0,f) is the 

absorbing state corresponding to item is judged nonconforming.   

 
Consider figure 2 with a reduced state space and transition probabilities. 
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Figure 2.   

For example, when the chain is in state (1,0), there are either k-1 consecutive successes 

(causing the chain to enter state (k, 0)) or there are not k-1 consecutive successes (causing 

the chain to enter state (0,1) upon a failure).  Similarly, when the chain is in state (0,1), 

there are either f-1 consecutive failures (causing the chain to enter state (0,f)) or there are 

not f-1 consecutive failures (causing the chain to enter (1,0) upon a success). 

 To find the probability of judging the item to be conforming we may reason as 

follows.  Starting in state (0,0), the chain enters state (1,0) with probability p and state 

(0,1) with probability 1-p.  If the process enters (1,0), it can eventually get to (k,0) by 

going directly, or by going to (0,1) and back to (1,0) any integer number of times and 

then to state (k,0) directly.  Hence the probability of reaching state (k,0) from state (1,0) is 

 

𝑝𝑘−1 + ∑[(1 − 𝑝𝑘−1)(1 − (1 − 𝑝)𝑓−1)]
𝑛

∞

𝑛=1

𝑝𝑘−1 =
𝑝𝑘−1

1 − (1 − 𝑝𝑘−1)(1 − (1 − 𝑝)𝑓−1)
 

On the other hand, if the process enters (0,1), it can eventually get to state (k,0) only by 

going to state (1,0) (rather than state (0,f) which is absorbing).  The probability of 

reaching state (k,0) from state (1,0) has been calculated above.  Hence, 

P(Judged Conforming)

= 𝑝 ∙
𝑝𝑘−1

1 − (1 − 𝑝𝑘−1)(1 − (1 − 𝑝)𝑓−1)
+ (1 − 𝑝)[1 − (1 − 𝑝)𝑓−1]

∙
𝑝𝑘−1

1 − (1 − 𝑝𝑘−1)(1 − (1 − 𝑝)𝑓−1)
=

𝑝𝑘−1[1 − (1 − 𝑝)𝑓]

1 − (1 − 𝑝𝑘−1)(1 − (1 − 𝑝)𝑓−1)
   

 
Proposition 2:  If the process is in control, the probability that it is judged to be in control 
is 

 
𝑃𝐼𝐼 = 𝑃(𝑗𝑢𝑑𝑔𝑒𝑑 𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙| 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑐𝑜𝑛𝑡𝑟𝑜𝑙)

= 𝑝1𝐶𝐶𝐶𝑁(𝑝𝐶𝐶) +  (1 − 𝑝1)𝐶𝐶𝐶𝑁(𝑝𝑁𝐶) 
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Proof:  If it is in control, then the inspected item is conforming with probability p1 and 
nonconforming with probability 1-p1. In light of proposition 1 and using the law of 
total probability the result follows. 
 

Proposition 3:  If the process is out of control, the probability that is judged to be in control 
is 

𝑃𝑂𝐼 = 𝑃(𝑗𝑢𝑑𝑔𝑒𝑑 𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙| 𝑜𝑢𝑡 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙)
= 𝑝2𝐶𝐶𝐶𝑁(𝑝𝐶𝐶) +  (1 − 𝑝2)𝐶𝐶𝐶𝑁(𝑝𝑁𝐶) 

 
Proof:  If out of control, then inspected item conforms with probability p2 and fails to 
conform with probability 1 – p2. In light of proposition 1 and using the law of total 
probability the result follows. 
 

Proposition 4:  When the process is out of control, the average run length is 1

1−𝑃𝑂𝐼
. 

Proof:  This is geometric distribution with parameter 1 − 𝑃𝑂𝐼. 
 

Proposition 5: When the process is in control, the average run length is 1

1−𝑃𝐼𝐼
. 

Proof:  This is geometric distribution with parameter 1 − 𝑃𝐼𝐼. 
 

3. Short Term Analysis Using Markov Chains 

 

Markov chains will be the tool used to study the probability of judging the process to be 
out of control when it is in control as well as judging it to be out of control when it is out 
of control. We will also study the distribution of the time until the process is declared out 
of control using first passage probabilities in order to determine the number of items 
inspected until the process is finally declared out of control. We create a Markov Chain 
whose state space contains four ordered-pairs whose elements are 1 or 0. We use a 1 to 
stand for in control and a 0 to stand for out of control. The first coordinate is the actual 
state of the process and second coordinate is the judgment. For example, (1,1) means that 
at a decision point the process is in control and judged to be in control. Whereas, (0,1) 
means that the process is actually out of control but judged to be in control. Let 𝜃 =  1 −
(1 − 𝜋)ℎ. So, 1 − 𝜃 =  (1 − 𝜋)ℎ is the probability that the process has remained in control 
while those h items have been produced. The one-step probability matrix for the transitions 
of this Markov Chain is given in the following transition matrix. 
 

   

(1,1) (0,1) (1,0) (0,0)
(1,1) 1 1
(0,1) 0 0 1
(1,0) 0 0 1 0
(0,0) 0 0 0 1

II OI IO OO

OI OI

P P P P
P P

    

  

 
First step analysis can be used to get the probability of absorption into states (1,0) and (0,0). 
First-passage probabilities can be used to find the probability distribution of the time until 
the process is declared out of control. One can do this by finding the probability of first 
reaching each absorbing state in n steps and adding these probabilities to obtain the 
probability that it takes n steps (cycles of item inspections) to declare the process out of 
control. Note: 𝑃𝐼𝑂 = 1 - 𝑃𝐼𝐼  and 𝑃𝑂𝑂 = 1 - 𝑃𝑂𝐼. 
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4. Long Term Analysis Using Markov Chains 

 
The long-term behavior of this process control can also be studied. When we reach state 
(1,0) or state (0,0) the process is judged out of control. When the cause is found and 
corrected or when it is determined that the process is in control and there is no cause, the 
process is put back online and the transitions are like the transition from state (1,1). This 
allows us to analyze the long term behavior of the decision process by using a one-step 
transition probability matrix in which the rows in the matrix that correspond to transitions 
out of (1,0) and (0,0) are identical to the transitions out of state (1,1). Therefore, the one-
step transition probability matrix useful for long term analysis is given below.  
 

   

   
   

(1,1) (0,1) (1,0) (0,0)
(1,1) 1 1
(0,1) 0 0 1
(1,0) 1 1
(0,0) 1 1

II OI IO OO

OI OI

II OI IO OO

II OI IO OO

P P P P
P P

P P P P
P P P P

   

   

   

 



 

 

 

 
This one-step transition probability matrix is that of an irreducible, aperiodic, positive 
recurrent Markov Chain and the limiting probabilities exist and are independent of the 
starting state. These limiting probabilities can also be interpreted as the long-term 
proportion of time spent in each state and can be found by solving a system of linear 
equations.  
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