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Abstract

It is difficult to design and conduct a survey because prior information on response rates and
the like are likely generated from a different random process than the target one governing the
surveys to be designed. The survey process, such as text classification, also makes the
development of a survey difficult as it may vary from one human or machine to another. The
impact of each error-prone set of information on the properties of the estimator can be
significant. We are concerned with reducing the side effects of both the prior information and
the processed information on the quality of the estimator of the parameter of interest during
the data collection period. Nowadays, computer-assisted survey methods provide an instant
variety of observations on the survey process and on the target random process governing the
survey under consideration. These paradata, data, and quality measures enable the survey
producer to make decisions regarding the need for methodology-process revision during the
data collection period, which involves the consideration of both a model that represents how
the target information relates to the error-prone information and the design that describes how
the observations are obtained. We think of the error-prone and target information as a random
variable that has a joint distribution with some probability function. Then, at each time of data
collection — after receiving the information that the target random process has taken specific
values — we update the joint probability distribution to revise the design specification in the
course of the data collection period. In addition, the coefficient of reliability for a survey as

both a whole set of processes and a single process is further discussed.

Key Words: Multiple sources of information, Optimal resources allocation, Responsive

design, Two-phase sampling, Unit classification, Wisdom design.

1. Introduction

There are a wide range of areas, such as health, biometrics, industrial, commercial, finance,
insurance, actuarial, and more, that require the estimation of quantities related to uncertain or
imprecise information (i.e.y ) to learn, model, and predict units (such as human and market)
behaviours. Vague understanding of y promotes approaches for the development of models to
(1) explain known observations on prior information yx , (2) predict observations on the target

information, and (3) relate prior information with the vague target information after observing

some of its realisations. It is hoped that the approach possesses some desirable properties, such as:
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The fourth step incorporates prevention and correction. It is also desired that the approach can be
used for tasks that are executed by humans. For instance, in the context of pattern classification,
artificial neural networks are inspired by the way biological neural networks in the human brain

process information. It first learns a mapping w, = f(v,;4) from input v, to output y, given a
sample of training examples @ ={(y,,v,);k=1...,n} of input-output pairs (y,,v,) for unit %,
where 4 is a large vector of weights expressing the importance of the respective inputs to the

output (Rosenblatt 1958, 1962) and » is the number of training examples in the sample . It then
uses the uncovered patterns to predict unknown output using the best guess , = f (vk;i) , Where

J is the solution to an error minimization problem used to train the artificial neural network. Each

training input v, is a vector of numbers, representing units (possibly complex in nature) such as a

person, an image, a sequence of characters or words, a video, etc. These are called features. The

form of the output can in principle be anything, but most methods assume that v, is a categorical

variable. Artificial neural network is used universally to (1) capture similarities within a set of
labelled units represented by features, (2) to represent high feature dimensionality, and (3) when
the relation between input and output information is vague or difficult to describe. Well known
application includes text classification, email spam filtering, image classification, handwriting
recognition, face recognition, fraud detection, and natural languages translation. Artificial neural
network achieves, to some extent, the first two desired properties stated by (1.1) based on a
substantial sample of examples. It helps to realize the fact that in order to train an artificial neural
network, one needs a large sample that is random with no errors. Therefore, these questions arise:
How can we collect observations on the target process in the absence of a training sample? How
can we prevent and correct processing errors when collecting observations? It also helps to realize

that there is a cost associated with each stage of the process of obtaining the random sample such
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as: (1) the selection of units, (2) the optional follow-up in an attempt to receive a response from
non-respondents, (3) the mode of data collection (e.g. in-person, by phone, by mail, or via the
internet), and (4) the validation. In this study, we examine the general problem which includes the

four desired properties stated in (1.1) in the context of survey studies.

Survey or census studies start with a collection of distinct units of interest known as the
population. There are multiple random variables attached to each unit, as each unit holds their own
individual characteristics and aptitudes. Each particular study targets a small subset of these
random variables. Measurements on some of these variables of interest are intended to be
collected during the data collection stage from each selected unit and involve a questionnaire used
to collect the data from the respondents. Meanwhile, measurements on the other set of these
variables of interest are intended to be derived from one or more observed variables. These other
variables are not directly included as items in the questionnaire. Both observed and derived
measurements are used at the estimation stage to draw inferences about the parameter of interest

associated with the given study.

At the planning stage of a survey, the question of determining resources and allocating them
between and within different stages (such as sampling, nonresponse follow-up, data collection,
validation) of the survey design is a difficult and critical one. Survey developers must justify
resources to be used, and the survey managers should review the justification to ensure the survey
produces results that fall within resource, quality, and timing constraints. Efficiency is an
important issue because inefficient determination or allocation resources may lead to imprecise
results and a misuse of these resources. To optimally determine the design parameters such as (1)
the duration of the survey and (2) the amount of resources and their allocation between and within

stages of the survey design, design pre-specification requires four steps:

1) Specification Step. Specification of: (1) the population of interest, (2) the parameter of
interest, (3) the sampling frame and the sampling schemes, (4) the mode of data collection, (5)
the nonresponse follow-up activities, (6) the validation activities, (7) the estimator to be used,
(8) the precision function, (9) the cost function, and (10) the desired precision or the global

cost.
2) Prediction Step. Obtaining prior information from the sampling frame, the administrative

files, or the previous surveys is required to compute unknown quantities in formulas for both

precision and cost functions.

1347



JSM 2019 - ENAR

3) Optimization Step. Optimization of some objective function — that involves both precision

and cost functions.

4) Decision Step. Determination of the survey design parameter using the solution to the

objective function.

Suppose previous surveys suggest that the conditional probability of responding % (in a time
period) for a unit in the population of interest is constant over time. When the conditional response
probability % is constant over time, then the marginal response probability over I time periods is

given by & =1-(1-h)". To reach a marginal probability of response close to 1 under constant

conditional response probability, it will take around 17 time periods when #=.5, and over 100
time periods when % =.1. Collecting data over such a long period is time consuming, costly, and
the results may lack consistency between time periods. Because of this, the method of survey
sampling when capturing information from (or estimating parameters with respect to) a population
generated from such random processes is as follows: (1) selecting a random sample of units from
the population, (2) increasing the level of efforts in terms of follow-up activities to improve units
cooperation, and (3) monitoring the survey process to evaluate its quality and stability. Sampling
is based on the idea that, within a certain margin of error, one can infer something about the
parameter of interest from a small sample as long as the sample was chosen at random. Efficient
nonresponse follow-up requires information on the target response mechanism governing the
survey under consideration. It is difficult to pre-specify the design for certain surveys because
prior information is more likely to be generated from a different random process than the target
one under consideration. A naive approach simplifies the problem under the assumption that
resources should be big enough to have good estimates. However, a survey usually has a limited
budget and time, and those, in combination with the resource allocations used within the stages of
the survey design based on prior information, determine its achievable quality. Nowadays,
computer-assisted survey methods provide an instant variety of observations about the survey
process and the target random process that can be used to revise survey design during its process.
Although previous survey designs are predominantly done deterministically using prior
information, there is a widespread need for adaptive or responsive design where the design is
revised during the data collection period. The intent of such revision is to reduce errors attached to
design pre-specification on prior information grounds. Groves and Heeringa (2006) introduced the
concept of responsive design, formulated its objectives, and used paradata to guide mid-survey
decisions affecting properties of the estimates. Peytchev et al. (2010) used paradata and other
information to estimate the likelihood of any sample member becoming a non-respondent and
suggested to employ a more effective survey protocol for the sample cases (the least likely to

respond) to gain unit cooperation. Schouten et al. (2013) considered adaptive design where each
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unit is assigned a follow-up treatment or strategy from a set of candidate strategies. A detailed
literature review on adaptive and responsive designs is the paper by Tourangeau et al. (2016). In
Demnati (2016), we formulated an optimization problem for designing a survey, and identified
steps for its revision in the course of the data collection period. We considered the error-prone,
prior information and the error-free, target information as a random variable with a joint
distribution with some probability function. Then, we updated the joint probability distribution
after observing some of realizations of the target random process, to revise the design
specification in the course of the data collection period. The proposed approach makes full use of
error-prone, prior information while requiring only a few observations from the expensive, target,
random process. A reliability coefficient for a survey as a whole set of processes, as well as for a
single process, was also discussed. Such a coefficient when supplied with the Mean Squared Error
(MSE) enhances information on (1) the survey results, (2) the comparisons between surveys, and
(3) the contribution of the given survey as an addition to prior information. In Demnati (2018), we

extended our work to cover the survey process.

A survey process such as data collection, measurement, text classification, or imputation is the
process, by human or machine, of taking provided responses and deriving them into a set of values
that represent the targeted values of the complete survey variables of interest. Once obtained, the
complete set of values is analyzed in the same way a set of complete observed responses can be.
Here, automatic text classification, also known as automatic text or document categorization, is
the task of automatically sorting a set of texts into predefined groups based on its inputs.
Automatic classification systems learn from previously classified texts the characteristics of one or
more groups. Automatic classification means the automatic (1) assignment of texts on the basis of
their contents to a predefined set of groups which may not be predefined and (2) the automatic
definition of each group. The advantages of automatic classifiers are obvious: (1) considerable
savings in terms of both cost and expert manpower, and (2) domain independence. A text is a
sequence of characters or words representing, in the context of survey sampling, the answer given
in response to an open-ended question in a questionnaire. For example, open-ended questions are
used to classify units by industry code on the business register. This classification on the business
register offers a convenient way for sampling and variance reduction, which is an example of
partitioning a set of units into meaningful and useful groups. Even when the survey process is
undertaken carefully, the process can be subjective, open to judgment and interpretation, and the
results can vary from one human or machine to another. This means that the derived values cannot
be determined with certainty, which in turn means that any survey process is fallible. It is thus
customary for statistical agencies to both monitor survey process and collect data to evaluate its
quality and stability. Although the accuracy of machines rivals that of humans, random sampling,

in combination with human validation, is still widespread for quality controls. The drawback of
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this approach is the cost of human power required for validation. Thus, survey process can be very
tedious, cost consuming, and the challenge is to maintain a high degree of quality and stability of

the survey process with a small validation sample.

Design pre-specification as well as survey process are special cases of measurement error which
refers to the case where the error-prone prior information, say “”y , and the error-prone processed
information, say ””y , are not necessarily identical to the error-free (or target) information, say
v , of the process underlying the population of interest. We assume that the assessment of error in
z can be carried out based on observations on y , where y =(“"y", " ") . We also assume that
the error-prone information y has a potential bias » when used to estimate y and that the error-
free information y has no error. Thus, the assessment of errors allows quantification of such bias.
Under two random processes, we are interested in the error-free random variable y , knowing its
probability function, the probability function of another random variable y , together with the joint
probability function of (y”,y”)” with vector parameter denoted by 4. It is assumed that the

sampling frame has no coverage bias. It is also assumed that values of the error-prone prior
information are available for all units in the population, while values of the error-free variable are

unknown but observable.

Once an estimate of 4, of a realization of y, or of the parameter of interest is obtained, the
question follows: what is the reliability of this estimate? In a general sense, reliability of an
estimate refers to the degree to which the estimate is free from error and therefore, truly measures
the parameter that it is intended to measure. When reliability measures are available at all various
stages of the survey process, they can serve as performance measures. Such measures enable the
survey manager to make decisions regarding the need for methodology-process modification. As
there is no general reliability measure that would capture all information on the impact of each
stage of the survey design on the ultimate estimate, the survey manager tends to combine various
measures to get a broader effect and interactions between different factors of the survey process. A

key step in defining reliability was the introduction of an error criterion that measures, in a

probabilistic sense, the error between the desired parameter  and an estimate 6 of it. Possible
sources of error in surveys include sampling frame, sampling scheme, measurement, nonresponse,
editing, imputation, disclosure-avoidance, etc. A criterion which is commonly used in judging the
performance of an estimator 0 ofa parameter 6 is its MSE defined by M ()= E{©6-0)"} . Here,
the parameter 6 can be seen as the quantity that would be obtained under the ideal situation which

consists of a census case with complete response and without any processing errors. We can also
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interpret the MSE formula via the MSE decomposition. For any random variable z, we have
E(z*) = E{{z—E(2)]'} +{E(z)}* . Applying thisto z=6-0 we get

E{(0-0)") = E{[(0-0)~ EG-0)} +{E©O-0))". (12)
The first term of (1.2) is the variance of 6—0 . It is the error of the estimator due to the random

processes involved. The second term of (1.2) is the square of the bias of © ; the best we can do is

make this zero. Given that the remaining relative error or the relative missed information about 6

based on the knowledge of § is given by Var(0|0)/Var(9) , Demnati (2016) defined the coefficient

of reliability as the proportion of knowledge or the proportion of attained information about 6
obtained after observing ) ,l.e.,

Var(© | é)

K0y =1~ Var(0)

(1.3)

If Var(0]0)=Var(®) then K{0;0}=0 and if Var(0]6)=0 then K{0;0}=1; so that 0<K{0;0}<I.
Under the normality assumption, the coefficient of reliability (1.3) reduces to the square of the

correlation coefficient

N2
K, {e;é}:[MJ =pl. (1.4)
0%
Tenenbein (1970) introduced the square of the correlation coefficient given by (1.4) as a measure
of reliability between the error-prone and error-free classification variables to measure the strength
of the relationship between the true and fallible classifications (i.e. it measures how well the true
classification can be predicted from the fallible classification on a given unit). Expression (1.4)
gives a convenient way to compute the coefficient of reliability: It is reasonable to replace
conditional variance, which depends on the joint distribution, with correlation as it can be

calculated more easily. That being said, conditional independence is more meaningful and

preferable than zero-correlation.

In an attempt to further discuss side effect reduction of both errors sources of information on the
quality of the estimator of the parameter of interest during data collection period, our work below
is organized as follows: in Section 2, we give a straightforward prescription of our wisdom design
for designing and conducting a survey design; in Section 3, we study an example detailing the
steps required for design pre-specification in the absence of processing errors; in Section 4, we
revise the example design after 10 periods of data collection; in Section 5, some estimation
methods for model parameters are discussed; in Section 6, classification model parameter is
revised. Results of a simulation study are presented; and, in Section 7, response model parameter

is revised.
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2. The Wisdom Design

To revise the survey design in discrete intervals, we divided the continuous time of the entire data

collection period into a sequence of continuous time periods: 1, 2, etc., and let I, denote the

minimum length of the data collection period to obtain full responses. Suppose the survey limited

length of duration of data collection is made up of P, phases, the p” being of size n, time
periods, so that the limited duration of data collection is made up of I =" n time periods,

with I <I

max min *

Therefore, there would be an NxP

' . rectangular array of phases of data
collection, where N is the size of the finite population. Because the design parameter ® is the
solution to some objective function O(®;y,4) that requires the target information, we first
considered the error-prone and error-free information as a random variable that has a joint
distribution f(y,y;4) with vector parameter 4 . Then, at each time of survey data collection, after
receiving the information that the target random process has taken specific values, we update the

parameter 4 of the joint probability distribution f(y,y;4) to revise the design specification ® in

the course of its progress.

Our simplest prescription for designing and conducting a survey design is as follows:

a. First specify the
(1) the population of interest, (2) the parameter of interest, (3) the sampling frame and the
sampling schemes, (4) the mode of data collection, (5) the nonresponse follow-up
activities, (6) the validation activities, (7) the estimator to be used, (8) the precision

function, (9) the cost function, and (10) the desired precision or the global cost.

b. Then repeat continuously the following five steps until the end of data collection

b.1 Observation Step
Obtain the next phase p of observation from respondents
» For design pre-specification: Obtain observations from the sampling frame,
administrative files, or from previous surveys,
» This information is needed to compute unknown quantities in formulas for both the
precision and cost functions.
b.2 Validation Step. Randomly validate some of the obtained values.

b.3 Revision Step. Update the vector parameter 4 and the missing values of y using all

available information i.e., (1) Update 2, to get 4 using d_, ; and (2) Impute missing

op 2

values of each component y of y to get v, =E, (vy,|d,,,4), where d  denotes all

op?
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observed information until the end of phase p of data collection, and E, denotes
expectation with respect to the random process governing the component . Note that
v, =V, whenitem vy, is observed.

b.4 Optimization Step. Optimize the objective function O(®;wy,4,) — that involves both the
precision and cost functions parameter, i.e., determine the optimal design parameter ®,
conditional on y_ and 2, for possible future data collection periods.

b.5 Decision Step. Decide if the data collection should stop (i.e., P=p). If not (i.e. P>p),

revise the specification of the design as necessary and repeat the five steps (b.1 to b.5)
continuously after observing some realizations of the target process. Here P denotes the

number of periods of data collection.
c. Finally, stop data collection and produce survey estimates.
We refer to the above five steps as the Observation-Validation-Revision-Optimization-Decision

(O-V-R-0-D) steps. The revision step incorporates learning and prediction, while the decision step

incorporates actioning.

The OY-R-0-D Stepe

L —
-
* "’
Dosiaian
Ponicatan
1 :
. ”
L -
- a h

So, our approach is embedded in a continuous learning process that permits changes in
methodology-process at any time of the data collection period as a result of an increase in
acquiring information and facts, while relating phases and stages of the design to each other. Such

changes are guided by the primary survey objective. Therefore, this method does not use a fixed
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design, although, an expected design is always pre-specified. Depending on the relationship
between the error-prone information, the target information, and the stopping rules, only a few

time periods may be sufficient to stop the data collection period.

3. Example of Design Pre-specification under No Processing Errors

There will be a survey to be conducted on a population of size N, where the sampling frame had
the covariate u on it; an address and contact information. The initial request for response is by
Web or mail. The main interest is to estimate a domain total of the variable of interest y, where
the sampled units are to be classified to the domain of interest based on their response to an open-
ended question in the questionnaire. The upper limit on the coefficient of variation of the estimator

is set to 0.05. The budget is constrained to a global cost of C__, while the maximum duration of

max 2

the survey data collection is constrained to 1 time periods. After I, time periods of data

collection under self-enumeration, there will be an optional follow-up for those who had not

responded. The duration of a follow-up is D, periods of time. Poisson sampling is to be used for

the selection of the sample. Known values of survey design parameters such as N, C, I

max > “max ? IF >

and D, are provided in Table 1. The first task is to pre-specify the design to better enhance the
quality of the estimator while respecting the survey design constraints. In particular, we have to:
(1) derive steps required for design pre-specification, (2) present briefly available prior
information, (3) determine the resources and their allocation within stages of the survey design for

each given period of data collection, and finally, (4) decide for the parameters of the design.

3.1 Specification Step

3.1.1 Parameter of Interest

Estimate is wanted for specific subpopulation «, called domain x. The methodology behind
estimating parameters for domains, based on observation of randomly selected units, is well
described by survey literature. See for example Cochran (1977); or, Sarndal et al. (1992). Let the
specific subpopulation x of the units of interest or domain x be denoted as P, and let
I, =1,(P.|P)=1(k e P.|keP) be the domain x membership indicator variable for unit & , where

I(condition|.) is the truth function, i.e., 1(condition|.)=1 if the condition is true and

I(condition|.) =0 if not. The domain total Y_ of a characteristic y may be written as

Y =2 i =2 Vs 3.1

1354



JSM 2019 - ENAR

where X, denotes sum overall population units, y=(y,,...,y,)" is the vector of values of the
characteristic of interest y, and y,, =/_v,. The parameter Y_, obtained under the assumed ideal

situation which consists of census case with complete response and without any processing error,

acts as the "gold standard".

3.1.2 Response Mechanism

We now give a brief account of the Demnati modeling approach of the response indicators as
discrete-time hazard. See for example Demnati (2017). Let ¢ represent the discrete random
variable that indicates the time period i when the response occurs for a randomly selected unit
from the sample. We assume that every unit in the sample lives through each successive discrete
time period until the unit responds or is censored by the end of data collection. Then each unit &

is observed until some period I, , with I, <I . Observation of the unit could be discontinued for

two reasons: (1) the unit response, or (2) the survey data collection period ends. In the first case,

t, =1, . In the second case, we only know that ¢, >1__ . Units with ¢, >1,__ are right-censored —

max * max

when they respond is unknown. Because response occurrence is intrinsically conditional, we
characterized ¢ by its conditional probability function — the distribution of the probability that a
response will occur in each time period given that it has not already occurred in a previous time

period — known as the discrete-time hazard function. Discrete-time hazard #,(v,,,4,), &, for

short, is defined as the conditional probability that unit £ will respond in time period i, given that
the unit did not respond prior to i:

h, =Pr(t, =i|t, 27),
where v, refers to both time-invariant and time-varying explanatory variables and 4, is the
unknown ¢, x1 vector parameter to be estimated. For units with ¢, =i, the probability of obtaining

a response at time period i could be expressed in terms of the hazard as
Pr(t, =i)=h, [T (1-h,) . (3.2)

For units with ¢, > i, the probability of obtaining a response can be expressed as
Pr(r, >i)=I1',(1-h) . (3.3)
The marginal probability of obtaining a response after I time periods of data collection is given by
Sk =1-TI_,(-h,) =2, Pr(t, =i). 3.4
Demnati (2017) also developed a discrete-time model for multiple kinds of results or events such
as refusal, ineligibility, and mode of data collection, by extending the Bernoulli model to the
multinomial model. Assume that there are E specific results and the (E+1)" category of no

response, where E >1. Define a vector of result indicator variables as 7\ =1 if outcome e occurs
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from unit k at time period i, and r?=0 if not, where eec{l,...E}, E.(r\)=h?,
Var,(r")=hY(1-h), and for e=e'  Cov,(r\?,r\")=-h{"hS . The combined discrete-time hazard
is

hy =25 B =Pr(t, =i|t, i),
and the marginal probability of obtaining result e after 1 time periods is given by

1(;2} =2, Pr(n” =1).

3.1.3 Modeling the Sample Selection Probabilities

We define the sample @ membership indicator variable as a, =1,(¢|P); i.e., a, =1 if unit & is
selected in the sample g, and a, =0 if not. The conditional probability =, =7, (g¢|P), that unit k£
will be selected is constructed as

log{z, /(1-7,)}=v, Q,,

@3k

where v, =(1,/,,)" is the vector predictor, ®  =(®_,,® )" is the unknown vector parameter to

§:0°

be determined, 7, (Q|Q)=FE{1,(Q|Q")} is the set Q inclusion probability for unit & given

keQ’, and E denotes expectation with respect to the inclusion mechanism.

3.1.4 Specification of the Follow-up Activity

We define the nonresponse follow-up indicator variables as /,, =1 if unit k is assigned to the
follow-up activity, and /,, =0 if not, where [, are realizations of independent distributed
variables according to a Bernoulli distribution, B(¢4,,), ¢, is the probability of a follow-up, and
the subscript " /" stands for "follow-up". The follow-up probability is constructed as

log{,, (1=} =v], @,
where v, =(1,5,,)" is the vector predictor and @, =(®,,,®,,)" is the unknown vector parameter

to be determined.

3.1.5 Estimator to be used

Suppose that the response probabilities &, after I time periods of data collection are known for

all population units. Then after I time periods of data collection and for general sampling design

with known positive inclusion probabilities, 7, , an unbiased estimator of the domain total Y, is

given by

1356



JSM 2019 - ENAR

Vo =T (3.5)
with

Wige = dig (g / S10)
where d, =d, (@, |P)=1,(p,|P)/x, are the design weights associated with the random sample

¢, obtained after I time periods of data collection.
3.1.6 Derivation of the Variance Function

We may decompose the variance of 17“ given by (3.5) as

Var(Y,,)=E,E Var,(Y,)+E Var,E, (Y, )+ Var,E E (Y, )=V, +V, +V, =V,

wope

(3.6)
where Var,, Var, and Var, denote variance with respect to the sampling design, the response
mechanism and the model on y respectively, and the subscript “wope” in V,,, stands for
“without processing error”. Under independent mechanism on r,, the first component
V. =E EVar (X, d\ (/&0 of (3.6) is given by

vr :Zk Em(.j}i;k)(l751;/()/(7[1;/(61;/() . (37)

Under Poisson sampling, the second component V, =E, Var, (¥, d,,.,) of (3.6) is given by

vp = Zk E, (yfk - ”I;k)/”l;k . (38)

Finally, under independent model mechanisms on y, , the last component of (3.6) is given by

vV, =2 Var,(3.) - 3.9)

The sum of (3.7), (3.8), and (3.9) constitutes V

wope

=V, +V, +V,, the variance of )7“ given by
(3.5). It follows that, we can express Var(flw) as
Var(?l:/r) = Vwope;(] + zh vw()pe;k /(”l:k é:l:k) )

where Viopess =~ 2 {E(yk—;k)}z , and Viopeik :E(j/:';k) :

3.1.7 Specification of the Cost Function

We may decompose the initial global cost over I time periods of data collection as

Chppe =C+C, +C,+C,.

wope
The fixed cost C, is given by C,=cxI, where ¢ is a fixed cost per time period. The sampling

component C, is given by C, =%, 1,(¢, | P)c,, , where ¢, is the sampling cost for unit & . The

@ik
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follow-up component C, is given by C,=%,1,(p, |P)1-r"")

iy where £ represents the

response indicator under self-enumeration over i time periods of data collection, e,, is the

f ik
follow-up entry time period for unit &, and c¢,, is the follow-up cost for unit k. The data

collection cost C,, is givenby C, =%, 1,(p,|P){r" i) +1cil)} , where the superscripts “ M ”

and “W ” stand for “Mail” and “Web” respectively, and ¢, is the data collection cost associated

with mode me{M , W} .

3.1.8 Specification of the Objective Function

To create a design, we determine the number of time periods I of data collection (or equivalently

P

the number of phases P with 1=%_ n ), the sample selection parameter ® ,, and the follow-up

0

model parameter @, by minimizing the variance, rrgn Var(ﬁx) , subject to constraint on the

expected cost, C, . <C,

wope max ?

and constraint on the duration 1<I<I where @ =(L,®",®")",

max 2 @2 f

_ C o o C - C - (self )y 4 (),
=C,+C,+C, +C,, C, =2, T1yCoy » C, =%, m, (A=EE"Npie, . s and

wope eruik

Cpo =2, M AEW M +Ecty . n this case and for any duration of data collection, a Lagrange
multiplier can be used to find the constraint minimum of the variance. Therefore, in any duration
of data collection, the objective function is given by

O@) =%, v,,, (7, &) +6(C.p =), (3.10)
where ¢ is the Lagrange multiplier. The optimization problem obtains a constrained minimum at
the point where the estimating equations (EE) are set to zero, o(®)=00(®)/o® =0 . Kokan (1963)
discussed a similar allocation problem extensively under stratified simple random sampling and
showed how it can be adapted to cover many common sample allocations. We have used the
concept of EE to define a set of simultaneous equations involving both the data and the unknown
parameter which are to be solved in order to define the estimate of the parameter. This concept of
EE is more general than the concept of estimating functions having zero mean for the k”

component at the true parameter, which includes the log-likelihood estimating functions as well as

least square estimating functions.

We do not have an explicit solution, but nonlinear programming can be used to get a constraint
minimum @ =®(y), where v, = (y,.[... 2" (=1, 1,).¢54)", A=(4],4.,4],4))", 4, is the vector

parameter associated with the model on y, 4

K

is the vector parameter associated with the domain
k classification, 4. is the vector parameter associated with the response model, and 2, is the

vector parameter associated with the cost model on ¢, = (c,;.c,,.¢;,)" - The first two components
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v, and [, of y, arereferred as data in adaptive design literature, while the rest of the vector ,

is referred as paradata.
3.2 Prediction Step

It is clear from (3.10) that the optimization problem cannot be performed since y, are unknown.
From the sampling frame, the variable u is used to approximate y. From the modeling of
previous surveys, it was possible to assign to each unit & in the sampling frame: (1) an initial

estimated probability " p_, of being a member of the domain of interest x« given the covariate,
(2) an initial estimated conditional probability “”A\” of responding by mode m and by time
period i, and (3) an initial estimate of the vector cost “”¢, . To reduce the follow-up burden, we

generated the follow-up entry time period e, from the uniform interval [I.+1,1, —D,—-2]. So

that the vector of available prior information for each unit & in the frame is
2= "p O (=100, ), e54,)" . Hence  the  estimator used for design pre-
specification is

Oy _ O] O] [OF 0]
)]I;K_del:k( P V8 L Ve

2 (pri)

1 O] —(pri) (8] — (O] —(pri) — 2 2 (pri)
with V7 =1, Pye=u, VEL="T8L, Viopeo =~ 2 U P and v

=u; " p.. are the

wopek
components of the variance under the assumptions that u, are constants, where
Ea=(=¢, )EST +¢,, 570, and E5Y) s the probability of response under follow-up in
addition to self-enumeration for unit £ during I time periods of data collection. Table 2 gives the

initial estimate of the size of the domain of interest and its total of u , while Table 3 displays the

response rates for different durations of data collection under the prior response model parameter.

Table 1. Prior Information on the Survey

c (M) o)
N 1 I, C c c, c el D,

max max P

5000 40 3 5000 20 1 3 2 1 3

Table 2: Prior Information on the Domain of Interest

Domain Size Domain Total

2495 46 238

Table 3: % of Expected Number of Respondents based on Prior Information

Duration of Data Self-enumeration Only With Follow-up
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Collection Mail Internet Both Mail Internet Both

5 5 5 10 6 5 11
10 9 9 18 20 12 32
15 12 12 25 32 18 50
20 15 15 31 42 23 65
25 18 18 35 51 26 77
30 20 20 40 59 30 89
35 22 21 43 66 32 98
40 24 23 47 67 33 100

3.3 Optimization Step

Using the error-prone prior information as input to the optimization problem, Table 4 displays the

values of the design parameters: the expected sample size, the expected number of follow-ups, the

expected number of respondents, and the expected coefficient of variation in percentage. Table 4

also displays the expected ratios in percentage for the fix cost, the sampling cost, the follow-up

cost, and the data collection cost. Finally, for more information, Table 4 displays estimates of

regression parameters ® , and @, .

Table 4: Resources Allocation Based on Prior Information

Expected % Cost Ratio Regression Parameter Estimates
Sample #Follow- | # CvV Total Fixed Sampling Follow- | Data Sampling Follow-up
Duration Size up Respondents Cost up Collection q)p;o D, CD/;() (D/;l

5 4174 0 413 8 5000 2 83 0 15 1.62 .001 | -.27.46 A7
10 3205 0 578 6 5000 4 64 0 32 .58 .000 -21.22 .33
15 2613 0 649 6 5000 6 52 0 42 .09 | ..001 -24.03 .39
20 2235 0 683 6 5000 8 45 0 47 -21 .000 -148.5 4.12
25 1734 229 720 6 5000 10 35 11 44 -.63 .001 -1.77 .00
30 952 951 834 6 5000 12 19 41 28 | -1.43 .005 523 5.56
35 894 894 877 5000 14 18 39 29 | -1.52 .000 11.87 428
40 868 867 867 5000 16 17 38 29 | -1.56 | .013 7.89 19.12

Note: The required coefficient of variation (cv) of .05 is reached only when the data collection

period exceeds or equals 35 (1>35).

3.4 Decision Step
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It was decided to proceed with a data collection period of length 35 (1=35), ®_ =(-1.525,.002)" as
the regression parameter for sampling, and ®, =(11.87,4.28)" as the regression parameter for

nonresponse follow-up.

4. Revision after 10 Periods of Data Collection — Example Continuation

We computed descriptive statistics on the observed data and on the predicted data based on the
prior information, after observing realisations over 10 time periods of data collection. Table 5
displays the realized sample size, the number of respondents, and the number of follow-ups. Table
6 displays the distribution of the cost. Table 7 represents respondents and non-respondents, while
Table 8 displays the classifications of the respondents. These tables show that the first phase,
composed of 10 time periods, goes better than predicted in the selected sample. Using only 147
follow-ups instead of the predicted number of 165, the number of respondents improved from the
predicted 284 to the observed 389 (Table 5). This improvement in the number of respondents,
increased the data collection cost from the predicted cost of 452 to the cost spent of 682 (Table 6).
Tables 7 and 8 show clearly that there are errors in the prior information (e.g. domain
classification and response behavior). The question is whether to decide between proceeding with
the pre-specified design or whether the eventual efficiency of the estimator would be better
enhanced by updating the design parameter. In Section 4.1, we optimize the objective function
using the revised information; and in section 4.2, we update design parameters for the remaining
time periods of data collection. Details on the revision of the prior information are given in

sections 5,6, and 7.

Table 5 : Observed Counts After 10 Time Periods of Data Collection

Sample Size 878
Observed Counts # Respondents 389

# Follow-up 147
Predicted Counts # Respondents 284
(Based on Prior # Follow-up 165
Information
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Table 6 : Observed Costs After 10 Time Periods of Data Collection

Observed Costs Sampling 878
Follow-up 441

Data Collection 682

M 586

w 96

Fixed 200

Total 2201

Predicted Costs (Based on Sampling 878
Prior Information Follow-up 495
Data Collection 452

M 336

w 116

Fixed 200

Total 2025

Table 7 : Counts of Respondents and Nonrespondents after 10 Time Periods of Data Collection

Observed Information Total

Respondents Non Respondents

Prior Information Respondents 196 88 284
Nonrespondents 193 401 594
Total 389 489 878

Table 8 : Respondents Classification after 10 Time Periods of Data Collection

Observed Information Total
In Domain Outside Domain
Prior Information In Domain 110 63 173
Outside Domain 106 110 216
Total 216 173 389

Table 9 : Domain Estimation after 10 Time Periods of Data Collection

Estimation based on

Prior Values Observed Values (%estimated cv)
Domain Size 2127 2476 (7.38)
Domain Total 38 789 142 089 (7.47)

4.1 Optimization Step
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So we use the phase 1 (10 time-periods of observations): (1) updated domain classification model,
(2) updated response model, and (3) updated values of the variable of interest; to determine the
extra number of time periods I of data collection (or equivalently the extra number of phases P

with 10+1=>""n and n =10), and the follow-up model parameter @, by minimizing the
p=l Tp 1 f

variance, rgin Var(floﬂx) for each remaining period of data collection, subject to constraint on the
f

expected cost, C,,, <C,, —C,, and constraint on the duration 0<I<I  —10, where ® =(I,®})",

wope

and C,, is the total cost spent in the first phase, Here the estimator used for design revision is
(2)Y10+IZK = Zk d10+12k ((2)}’104-1:/{/(2)5104-1;[{ )(2)1)(;/( (Z)yk >

with & =(U=4,)E00 + .8t b, =1-T1,, ¢, and ¢ is the conditional follow-up

probability given that the unit was not followed-up. Note that ¢, is known, and ¢} is to be

determined.

Using the revised information as input to the optimization problem, Table 10 displays the revised
values of the design parameters: the expected duration to reach the required cv, the expected
number of follow-ups, the expected number of respondents, and the expected coefficient of
variation in percentage. Table 10 also displays the expected fix cost, the expected follow-up cost,

and the expected data collection cost.

Table 10: Extra Resources Allocation

Extra Expected Number of Extra Expected Extra Cost
Duration Follow-up | Respondents CvV Extra Cost Fixed Follow-up Data Collection
5 0 203 740 300 0

Note that the expected coefficient of variation of .03 is less than the required one when the

duration of data collection is 15(=10+5) time periods or more.

4.2 Decision Step

It was decided to proceed without follow-up for a maximum of 5 time periods of data collection.
Instead, after a time period of data collection is complete, the new observations are included, and

the follow-up decision is revised. This would be conducted on a continual basis for however many

time periods needed to complete the data collection.

5. Some Estimation Methods for Model Parameter
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To proceed with the estimation, two elements are essential: (1) a set of known observations, and
(2) a model that describes the distribution of the variable governing the observations. The purpose
of the estimation methods is to find the parameter of the model that best explains the observed
values. Two commonly used approaches to estimate model parameter from a random sample are
the least squares estimation method and the maximum likelihood estimation method. In the least
squares approach, we find the parameter of the model that yield the minimum sum of squared
errors, while the purpose of the maximum likelihood approach is to find the parameter of the
model that best explains the observed values in the sense of yielding the largest probability or
likelihood of explaining the observed values. Thus, the least squares approach differs from the
maximum likelihood approach mostly in terms of the criterion for estimating parameters: the
former minimizes the sum of squared errors; the latter maximizes the probability of a model fitting
the observations. A second difference is that in using maximum likelihood, one must make explicit
assumption about the distribution of the variable. This precise distributional assumption is not
necessary in least squares approach. In this section, the two methods of estimating the unknown

parameter are discussed.

The problem of estimation reduces to find the parameter so that a criterion is to be maximized.
The problem with finding the optimum of a function with respect to the parameter consists on: (1)
differentiating the criterion with respect to the parameter, (2) setting this derivative to 0 to get the
EE, and finally (3) solving the EE. The optimization process with respect to the model parameter
is often solved using iterative methods. The iterative method continues until the convergence
criteria is met, which is declared when the absolute of the estimates change is less than tolerance,
while the maximum iteration number is respected. At convergence, the resulting estimate, usually
denoted with a “hat”, “tilde”, etc., defines the estimator of the parameter. In this paper, we set the

convergence criteria to 1E-8 and the maximum number of iteration to 500.

Solving the EE is usually difficult, if not impossible, in the cases of (1) non-linear forms such as
multivariate normal distributions with explanatory variables, and artificial neural networks with
multiple hidden layers, and (2) missing observations. In case of missing observations, the
difficulty lies in: (1) the EE involve known observations, missing observations, and unknown
model parameter, (2) the solution to the parameter requires the missing values and vice versa, and
(3) the substitution of one EE into the other produces an unsolvable equation. The expectation-
maximization (EM) algorithm used to find parameter estimate of models in case of missing

observations is discussed in this section and applied in sections 6, and 7.

5.1 Revision of a Design in the Course of its Progress

1364



JSM 2019 - ENAR

When the duration of data collection period is taken into account, the likelihood function of the

joint distribution under census data is defined for unit £ as

L@ =2 W x0) (5.1

simplify our notation we drop the superscript 1, and write (5.1) as L, ,(A)=f, (w,,x,). The

likelihood function under census case is L(4)=Il, f, (w,,x,), and the census parameter 4, is

defined as the solution to

S, ()=0dlogL(2)/02=Y, dlog f, (W, x,)/04=0. (5.2)

|||||

The census parameter 2, , obtained under the assumed ideal situation which consists of census

case with complete response and without any processing error, plays the role of a "gold standard".

After observing 1 time periods of data collection, the joint observations on y, and y are known
during the I time periods, while only observations on y are known for the rest of the periods.

Consequently, we decompose the likelihood of observed data for unit £ in two parts

Ll;k(}’):f}mu ) fiwelx) s (5.3)
in which case the log-likelihood is given by
O (Ain) = logflm,r () +log fi(w, [x,)» (5.4

where flmin () :Jfl Xe-Wo)dy, , and S x)=400v) ! () - Note that

xxxxxx

S i lx) = i, (we,x,) as I= 1 . In arriving to (5.3), we decomposed y in two parts:

2=y 1> Xitiis) » Where x - denotes observation during the interval [, 1], while ..,

denotes observation during the interval [I+1,1 1, and e, , denotes the entry time period for unit
k into data collection window. The joint distribution is given by

f(la \V) = f(l[e‘,‘:k,l]al[m,lm]s\V) = f(l[e‘,“k,1])f(l[1+1,1mm] | X[e‘,‘:k,l])f(\l’ ‘ Z[e,,u,(,l]) = f(X)f(\Il | X[e,h;‘,l]) .

Taking the derivatives of (5.3) and adjusting for unequal probability of selection and response, we

get the weighted EE
S(D=X s, (L D+T, wes, (W,52] 2,) =0, (5.5)

with

s, (x;A)=0logf, (x,)/04,and s (y,;4|x,)=0logf(w,|x,)/ 0%, (5.6)

where 1, is the response indicator during the interval [e,,,I], and &, =E(r,) denotes the

marginal probability of obtaining a response during [e,.,,I]. The EE given by (5.5) is unbiased for
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xxxxxx

Raphson-type iterative method or the expectation maximization type algorithm gives the estimator

& of 4.

Taylor linearization of S,(4,) around 2 gives the approximation
0=S,(2)~S,(A") =88] (A)/0h] 0 (4 —4),
or 4 =20+ (3,118,

where J,(4)=-0S7(4)/d4 . Starting with a guessed value, 2” =4, then for b=12,... updates are

p-1°
made using Newton-Raphson method as follows

20 — j0- {jl(l(bil})}ilsl(l(bil}) )
5.2 The Expectation Maximization Algorithm

The Expectation Maximization (EM) algorithm introduced by Hartley (1958)—formalized and
termed by Dempster et al. (1977) — has become a major tool for finding maximum likelihood

estimate of 4 in situations considered practically intractable such as missing data. Let d,,d,,...,d,,

be independent identically distributed random variables from a distribution indexed by an
unknown parameter 4. For each unit &4, we divide the vector d, into an observed and an

unobserved (or missing) parts: d, =(d’,,d} )" . This notation does not imply that always the same

dimension of the vector is not observed. Any dimension could not be observed. The observed data

d, are supposed to be generated from the density f(d,;4). The objective is to estimate 4 by

A= argmax/(d,;4), where /(d,;A)=logf(d,;4). Let f(d,|d,;4)=f(d2)/f(d,;4) the

conditional density of the unobserved part d, given the observed part d,. Using some initial

value for 4, say i, the E-step of the EM algorithm requires the calculation of a function of 4,
0(4,4") , such that

0(4,49) = E{l (d:2)|d,; 4"} =[log f(d:2) /@, |d,;4)ed,,, (5.7)
where /¢,(d;2)=logf(d;2), 4 is the parameter of interest, and A is the value of 4 in the
previous iteration. Then, the M step of the EM algorithm intent to choose the value of 4, say

2 | that maximizes Q(4,4), i.e., A“" =argmaxQ(4,4). If we iterate the E-step and M-step

until convergence, under regularity conditions, the algorithm converges to the maximum

likelihood estimate. Substituting f(d,, |d,;4“)= f(d;4)/ £(d,;4) into (5.7), we get

m

02,4 ={f(d,;2)} " [log £ (d; 2) f(d;2))ed,, .
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The M-step gives
00(4,4")/ 04 =7 {0log f(d; 1)/ 6i}od

where 7 = £(d;4)/ f(d,; i) .
As noticed by Anderson and Hinde (1988), the EM algorithm based on the complete data
likelihood gives an iterative procedure that maximizes the marginal likelihood of x . In particular,

we may write (5.6) as

s, (Ax,)=0logf, (x,)/0A={f, (ll()}ilj‘f‘[v(Xkﬁ‘Vk){aIng‘l (21 w,)/ OA}dy

min min min min min

=[r, ,{0logf, (x,.w,)/ Ay,
and

s\ (v, | x,)=0log fi(w,|x,)/ 0A=0log fi(w,,x,)/ 0A—0log f,(x,)/ 04
=0log f,(y,,x,)/ 04—t {0log f,(x,, W, )/ OA}dv,

where 7, = f,(x,.w,)/ f,(x,). We have assumed that the differential can be taken inside the

integral sign.
6. Revision of the Classification Model Parameter

The effects of misclassification in categorical data on estimators have been discussed for some
time by Bross (1954) and others. Tenenbein (1970, 1972) proposed two-phase sampling to protect
against error, assuming that error-free classification is possible to obtain, though it is expensive.
Misclassification assumes that two measuring devices are available to classify units into one of
numerous mutually exclusive groups. The first device is a cheaper procedure, which tends to

misclassify units; the second device is an expensive procedure, which classifies units correctly.

6.1 Basic Aspects of the Bernoulli Distribution

The Bernoulli random variable y is one with binary outcomes chosen from {0,1}. Denote

p,=Pr(y=i),i=0,1, with X! p, =1, then its probability density function is

y

SO =p'p"-
Next, consider the bivariate Bernoulli random vector (y,,y,), which takes values from (0,0),
1,0), (0.), and (L1). Denote p,=Pr(y, =iy, =j),i,j=01, with ¥ ¥' p, =1, then the

probability density function of (y,,y,) can be written as

Viv2

S»,) =1l

y(I=y2) o (1=y1)y2

R e (6.1)
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The marginal distribution of y, in a bivariate Bernoulli vector (y,,y,) is univariate Bernoulli with
probability (p,, + p,,) , and the conditional distribution of y, given y, is also univariate Bernoulli

with density
SO y)=Fuy) f(,)-

When there are N observations from a population with outcomes denoted as

V=i Ya) seees Ve = s Vo) 5eees Yy = (Vins oy ) » the log likelihood of the complete data is
C (A p)=logL (Ap) =2, 108 f (¥4 Vo) -
We now consider the E-step on the (e+1) th iteration of the EM algorithm, where 1 denote the
value of 4 after the " EM iteration. Suppose now that values of the second variate y, is
sometime missing, the current conditional expectation of the complete data log-likelihood is
QA =B (&) 9.4} = Xy 7" log f (v )

where Lo _ 1(j=y,) if Vo 18 observed
* Pr(yz;k ‘yl;ks}-m) if not.

6.2 Census Estimating Equation

The error-prone classification indicator “”7_, for unit k is characterized by the matrix P_, who
depends on two conditional probabilities: p. =Pr(“’I_, =1|I_, =1) which consists of the
probability of classifying the domain of interest given that unit belongs truly to the domain of
interest, and p® =Pr(“’1_, =1|I_, =0) which consists of the probability of classifying the domain

of interest given that unit do not belongs truly to the domain of interest. Hence

-t gl
Px;k :[ 10) ! an i
P P

The error-prone marginal probability “”p,, is given by
(""}p’(;k = pr(:;‘llf}pr(;k + p,((];‘,(:}(l - p/(;/t ) >

where p,_, =Pr(l,, =1).

The census parameter is defined as the solution of
S, (4)= >, Olog S ((””lk;k ey )04, =0, (6.2)
where the joint distribution of (“’I_,/.,) is given by (6.1) with (y,y,)=(“"1.l.),

P =pK;kpl((l;‘,lf} > Puo =pk;k(1_p/(<];‘;¢)) > Po :(1_17;«;/()17;(«[;‘2) , and  p,, :(l_px;/‘)(l_p:;‘:) . Subsisting the

expression of f(“”l_,./ ) into (6.2) and taking the derivative, we get
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S, (2)=28_ (45 ,.0.,)=0, (6.3)
with s, )=, (Gl )+s, (A1) +s(As100)
where (Aeilei) = Prs Uy = P P 1= P}

Limin

st =L DIVl = pID I = pIDE ',

Limin

s Gl ==L )0 (1, = pI) p!) - p)y ',

Pew =0y 104, PV =p /04, , and pU% =opl? /o, .

6.3 Sample Estimating Equation

After observing I periods of data collection, an estimator of the census parameter based on only

observed values from respondents is the solution to the following sample EE

S (4) =X w1 (351, ) = 0. (6.4)

The solution to (6.4) is denoted by 4", where the superscript r stands for respondents.

In order to use all error prone values in addition to the error free observed values during 1 periods
of data collection, we follow section (5.1) and decompose the joint distribution for unit £ in two

parts
Sl = fi, (L) ) -
Taking  the  derivatives of the logarithm  of the  likelihood  function

L) =TI, f, (“"1.)f(,“"1,) and adjusting for the unequal selection probabilities and

k- Tmin

response probabilities, we get the sample EE
- (er
8172 = dy Xty s (03 )

. (6.5.2)
+2, wlk{s ()“Ks(m)l;«kv Kk) Z/ 0 1;( = sl()“;«5(m)l;<;krj)}:07

(P) 2 Z 3! (/\( 'm) yRC I
or (4,)= =0 Ty sk ( « Kk )] (65b)

X 19 A ol =t (35 DY =0,

The solution to (6.5) gives an estimator of the census parameter. Note that (6.5.a) uses error prone
information from sampled units only, while (6.5.b) uses all error prone information from the

frame. We may write (6.5) as

S1”(A) =y Wi (A o l) + oy =)o 7l s (23, ) =0, (6.6:)

720 Flnik Imin

or ST A) = X W (Al L )+ 2 (L= wy ) 708 (451, ) =0, (6.6.b)

Linin

6.4 The EM Algorithm Estimator
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Similarly, the EM algorithm can be applied to both the frame and the sample information. In both
cases, the E step of the EM algorithm involves creating a set of “pseudo-data” in which the
respondents are left intact and the non-respondents are fractionated into 2 partially complete
pseudo-observations. The weight assigned to this pseudo-observation is the conditional probability
that unit belongs to an associated domain given the observed data and prior estimation of the
parameters. Once 4 has been obtained, estimates of the conditional probabilities can be formed
for each k. The conditional probability that a non-respondent k¥ belongs to domain je{0,1} is

jller

ey 1€ ey .
Gl e )(e) is T,i/

e I, . . iery
<X where 7} ) evaluated at 2. Estimation of 4, and ¢ "

: t
given by r, %

are alternated repeatedly, where in their subsequent execution, the initial fit 4“ is replaced by the

current fit ¢ for 4_. The two versions of the current conditional expectation of the complete

data log-likelihood are
0 (42 =2, dy Ty log (A ). (6.7.2)

and 0" (432 =%, 2, 7 log (2,57, ) - (6.7.)

6.5 Simulation Study

We conducted a small simulation study to illustrate the performances of each estimator of the

classification model parameter under (6.4), (6.5.a) and (6.7.a). We first used values «, and e, for

each unit & of the finite population of size N=2000. Then, we generated the domain «

membership indicator [/, from Bernoulli distribution with probability of membership
Prex =exp(vL, A )/ {1+exp(vy, 2.} with v, =(Lu,)" and 2_=(1.03)" =(2P,24>)" . Then we generated
the error-prone indicator “/_, from the conditional Bernoulli distribution with probability of
membership satisfying logitp" =1_+(1-1_)p!® with logitp" =v] 2", logitp{" =v! 4"
2.0 =101 =42, 4" and 21" =(=1,05)" = (A2, A9)" . Table 11 displays values of ¥, 7 .1, ,

>, and X1, .

Table 11: Values of X "1 /.., ¥ "I, and X [,

Error Free Classification /.,
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Error-prone 0 1 Total
Classification “OLy 0 177 396 573
1 177 1250 1427
Total 354 1646 2000

We maintained the population values (u,,e.,."l,,.l.) fix for k=1..,N, and we selected

A=1000 Poisson samples each with probability of selection p, =exp(v,, ® )/{l+exp(v,,®@ )}

3k ik

from the population with v, =(1,/.,)" and @, =(-1.525-3)". The process of generating

respondents and nonrespondents from the simulated population is as follows. Self-enumeration

response indicators for sampled unit k are generated using r, ~M (LA, "0, With

0 W=+ eXp(v,M wh)+ eXp(Vﬂ st )) hm, = ho di X exp(vrm w5 and vrm e /1(”‘) + /1(”% + /1(”‘) for

me{M,I} and i=1,. For unit %4 under follow-up data collection in addition to self-

200 de N

enumeration we used v A =A%+ A+ A%, +(i-e,, +DA" for i=e,,..e +D,. Table 12
displays  values of the response model parameter 4 =(1"7,A°7)",  where
(M) (W) (M) (’\4) 1} Iy 9(NT
(ﬂ“ro LR | ’ﬂ“r;Z > ) and )“ (//i’r()’ rl’//i’VZ’ﬂ“ 33 *

Table 12: Response Model Parameter

Mail Internet
Ao -4 -5
s .008 .005
Avr .005 .01
A 6 6

The probability of a follow-up is model as p,, =exp(v;, ®,)/{l+exp(v;, ® )} with v =(u)"
and ®, =(-2,2)" . Table 13 displays statistics on the realized samples.

Table 13: Statistics on the Realized Samples

Average over samples

Sample Size 426
Pop. Size Estimate 1999
# Follow-ups 50
# Respondents 146
By Mail 107
By Internet 39

The vector parameter of interest is 4_, the parameter associated with the model generating the

domain membership indicators. Table 14 displays values of the classification model parameter 4, .

Let 6 denote an estimator of the parameter of interest 6. We calculated 6 from each repetition

th

a(a=1..,4), and its average 6 A'Y 6, where 9 is the value of 6 for the " sample. The

a=1 “a>
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simulated bias is calculated as B(0) =(5—6) . We calculated 5 and B(0) for each component of
the parameter of interest and those values are reported in Table 14. Table 14 clearly demonstrates
that the bias is small for each response model parameter. The MSE of 6 is calculated as
M@©)y=4" P (éa —0)*. We calculated MSE ratios for each estimator 6 with the estimator solution
to (5.4) and those values are reported in Table 14. Table 14 clearly indicates that all relative biases
are small. Estimator using more prior information is more efficient than an estimator using only
respondents. Our proposed estimator rivals the EM estimator under correct specification of the

model generating the finite population; while it is more robust than the EM estimator under failure

of the model” specification.

Table 14: Estimator Average and Bias ( 0 , B(0) ); and MSE ratios M (8)/M (1))

Parameter
A a2 A A9 A A0
EE Statistics 1.0 03 1.00 -01 1.0 05
H 95 .03 1.04 .006 -1.02 .09
(6.4) B(®) -.05 .007 .04 016 -.02 .04
MO/ MU 1 1 1 1 1 1
H 95 .03 1.00 .007 -1.01 .09
(6.5a) B(®) -.04 .006 .004 .02 -.01 .04
MO/ MU .04 .02 004 02 01 .03
H 1.00 .04 91 .009 -1.0 .08
(6.7a) B(®) .003 012 -.08 .02 -01 .03
M@O)/ MG .003 01 08 01 07 .06

Finally, Table 15 displays statistics on the number of repetitions to converge. It is clear from Table

16 that the EM algorithm requires much more iteration to converge than the proposed approach.

Table 15: Statistics on the Number of Iterations

Proposed Method EM Method
Average 10,13 27.29
Variance 16.37 92.37

7. Revision of the Response Model Parameter

Let “¢z, represent the error-prone prior discrete random variable that indicates the time period i

when the response occurs for a randomly selected unit k¥ from the sample. After 1 time periods of
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data collection, each unit & is observed until the period “’1,, with “’1, <I. If the unit responses

then “’¢,="1,, otherwise we only know that “’z, >1.

To specify a model for a joint distribution, it is often practice to parameterize the relationship
between the two hazards in one of two ways. One way is that the joint distribution arises from the
dependence of two survival times, which may result because a result of one affects the probability
of responding of the other. A second way is that the joint distribution arises from shared observed
or unobservable heterogeneity of the two observations. Hout, Duncan, and Sobel (1987) discuss
these alternatives on the joint distribution of variables in multivariate contingency tables. The joint
distribution of a discrete-time hazards, ¢, =(“¢,.,¢,)", could be specified in terms of the joint
probability mass function
Pr(t,) =Pr(“"1, =i,t, = j), for i, j=12,....
Shaked et al. (1995) defined the discrete bivariate conditional hazard rate function of #, using the
following five functions:
1) A first response occurs from the error-free process
hy =Pr(t, =i,"t, >i|t, 2,1, 20),i=12,..,
2) A first response occurs from the error-prone process
O, =Pr(“t, =i t, >ilt, 21, 2i) ,i=12,...,
3) Responses occur simultaneously from both processes
“Op, =Prt, =i,""t, =i|t, 2i,""t, 2i),i=12,.,
4) A response occurs from the error-free process given that a response has been obtained from
the error-prone process
COh, . =Pr(t=i|t=i'"t=j),i>j=12,. and
5) A response occurs from the error-prone process given that a response has been obtained
from the error-free process

(M/)h,

o =Pr(t =i 2t = ), i> =12,

provided the conditions in the above conditional probabilities have positive probabilities.
Otherwise, we set these functions to be 1. The narrow sense bivariate geometric distribution
(Esary and Marshall 1973), and results for the case of more than two discrete variables can be
found in Shaked et al. (1995), who also give necessary and sufficient conditions on the five

functions which ensure that they are hazard rate functions of some random vector ¢, .

7.1 EE for the Target Response Mechanism

We have

1373



JSM 2019 - ENAR

f(t)=Pr(t, =1)% Pr(t, > 1), (7.1)
where &, =1 if unit £ is uncensored (responds) under the true response mechanism and &, =0 if
unit £ is censored. Substituting (3.2) and (3.3) into (7.1), yields

S @)= {hy, [A=h ) T1E (=) (7.2)
Expression (7.2) can be rewritten (Allison 1982) as

@) =TT by, (=R )Y T (1= hy,)
where 7, is a sequence of the true response indicators defined for each unit & whose values are
defined as 7, =1 if the unit does respond in period i and 5, =0 if the unit does not respond in
period i. Taking the first derivatives of the logarithm of the objective function L(4,)L =TI, f(z,)
yields the census EE of the true response mechanism
D8(2,)=2,"s,(4,)=0, (7.3)

where s, (4,)=dlog f(t,)/ 04, =X Iy (r, —hy){h,(1—h,)}™", and h, =oh, /04, . For the logistic
regression model log{h, /(1-h,)} =v", 4, , h,=v .k, (~h,), “s,(4)=X%v, . (r,—h,), and the
matrix of second partial derivatives is

0vS"(4,) _

o -2 Z:lil v, il (1= hk{)vrT;ld =-J(4,).

7 .2 Joint Distribution of the Error-prone and Error-free hazards

The conditional joint distribution of (“’r,,r,) is characterized by the matrix H,, which depends

on two probabilities: h\" =Pr(“"r, =i t, 2i,r, =1) and A} =Pr(“"r, =i t, Zi,r, =0),

(110) amn
H _(l_hla l_hla J
ki | qj0) am >
hlu‘ hlu‘

where “’r,, is a sequence of the error-prone response indicators defined for each unit 4 whose
values are defined as 7, =1 if the unit does respond in period i and “’r,, =0 if the unit does not
respond in period i. Hence, the conditional joint distribution of (“’r,,r,) is given by (6.1) with

>22) :((er>rki’rki) s P = hkihliim) s P =h(1 _hZ:H)) » P =(1 _hki)hlirm) , and Do =(1=h)(1 _hl(am)) .

After 1 time periods of data collection, we may decompose the joint distribution of #, as
St ) = (Ot ) (@)

where f(¢,) is given by (7.1). Taking the first derivatives of the logarithm of the likelihood

function L(4,) =TI, f(“"¢,.t,) yields the census EE of the true response mechanism

S(2,)=2,8,(4;"t,t,)=0, (7.4)
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where s, (4,:t,,t,)=0log £(“t,,t,)/04,="S(2,)+“"S(A,), ©S(1) is given by (7.3),
“08(4)=2,5,(4,;"t, |t,) and s,(4;"t, |t,)=0log f(“t,|t,)/04, . The solution to (7.4) defines

the census parameter.
7.3 Sample Estimating Equation

Taking the derivatives of the logarithm of the objective function L(Z,)=TI, f, (“"t,)f, 1" 1)
and adjusting for the unequal selection probabilities, we get the sample EE
$1(2,) =28, (A5 V1) +  dyyds (3,378 =5,(3,51)1 =0, (7.5)

where s(4,;"t,)=0log f(“t,)/ 04, .

Now, taking the derivatives of the logarithm of [, f(‘“’¢,) yields the census EE associated with
the error-prone response mechanism

“8(A)=2,5,(2:"1,)=0, (7.6)
with s, (4.;t) = 610gf((”">rki)/6@:“’”hM(“’”rki—(”")hh.)/{(”"’hk‘.)(l—(””hh.)} R
where  “h, =h"h, +h""(1—h,) and h, =0k, /04, . We use the EM algorithm to derive the
solution of (7.6). The E-step on the (e+1)" iteration of the EM algorithm,

O(,; ") = EZ, 8, 20, Lo f (D1t 1,4 + 2, (=8, > D f (1,01, 217}
=2, 8, 2 Pr(t =11, A1) log f (1, 1, =1)
+ zk(l =6, Pr(t, > I|(w>tka}'y(L’))lng((mtkatk >1),

where 2 denote the value of 4, after the ¢” EM iteration. It remains to derive the conditional

Probabilities of “¢, |¢, and its derivatives.

7 .3 Conditional Probabilities of “’z, |1,

The conditional probability of obtaining a response under the error-prone response mechanism at

time period i could be expressed in terms of the hazard as

Case 1.1. [, >, &rumlk =1

For unit with “’¢,=“"1,, the probability of obtaining a response at time period i could be

expressed in terms of the hazard as

ey,
i=1

Pr(“ 1, =1, | 1,21, ,r,, =1)=II

k> k("”'lA

(1= hI")R (7.7.2)

%( mlk

For units with “”¢,>"1, , the probability of obtaining a response can be expressed as
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Pr(“t, > 1,2, =0) =17 A=AI™)A=AL, ). (7.7.b)

ke,

Case 1.2. >’ & r

ke =0
For unit with “’¢,=“"1,, the probability of obtaining a response at time period i could be
expressed in terms of the hazard as

Pr(t =1, [ 2T, =0) =TLS A= AR, (7.8.2)

For units with “”¢,>"1, , the probability of obtaining a response can be expressed as

Pr((e")t;{ >(W)Ik |I >(er Ik ’rk(t 1, O) H: I’IA (1 h<”0)) (78b)
Case 2.1. [, <"1, &r, =1
For unit with “’z,=“’1,, the probability of obtaining a response at time period i could be

expressed in terms of the hazard as

(er), _(er) (er) T g (10)
Pr(*’t,=""1, |1, < L7y, =) =[[(1-h;

x(1— hV
(7.9.2)
T (L= V) + (L= By )= B
X B, + (U= A

For units with “¢z,>“"1, , the probability of obtaining a response can be expressed as
Pr(“1,> L, |1, <1, r, =1 =TT%" (1~ A"
x (1= Ry (7.9.b)
)Tt (L= B + (L= A= B}
Case 2.2. I, <"1, &r, =0
For unit with “’z,=“"1,, the probability of obtaining a response at time period i could be
expressed in terms of the hazard as

Pw”wJWAhémuﬂu=m=H%a—w”)

x5 U (L= BP) + (=)A= ™)} (7.10.2)
X{hkm)h ,i(”!,))lk +(1-h,, )h(m) 1.

For units with “”¢,>"1, , the probability of obtaining a response can be expressed as
Pr(‘“t, > 1, [1, <1, ,r, : =0) :H:i (l—hﬁ”‘”)
k k k k>t kL 1 o ki . N (710.b)
X 1_[1:1A il {hki (1 - h/fi‘ >) + (1 - h/q )(1 - h/fi‘ )}
7.4 Derivatives of the Conditional Probability of “’z, |z,

We have
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S8, 18, =Pr(Dt, =1, [ 1) Pe(“O, > 1, 1) (7.11)
where 8, =1 if unit k£ is uncensored (responds) under the error-prone response mechanism and
“)s =0 ifunit k is censored.

Consider first the form given by
g =1{q/0-9)}"(1-9q).
Taking the first derivatives of the logarithm of the objective function g(y) yields

dlogg(y)/0i=q(y-q){q(1-q)},

where ¢=0q/04 .

Case 1.1. [,>“"1, &, =1
Substituting (7.10) into (7.11) yields
FCt |8y =R, =0 3T L A=A -A(0, ). (7.12.1.a)

Expression (7.12.1.a) can be rewritten as

ey, -

(er) .
(er) _ 1¢7.(10) 10)\y “rg g7, (1) () k(er)
S( b | tk) - HI:I {hki Q- hld " {hkm I a- hk“"‘)u )} o

(7.12.1.b)
I (=)A=, ).
Taking the first derivatives of the logarithm of (7.12.1.b) yields
502,31 18,) = 0log £ (“t, ) = Z5 " RS (=B RGO (1= RS}
A B VI (- ). (7.12.1.c)
For the logistic regression models
$,(4,; 1, [1,) =2 Wy (0 p0ry 4 Vi, (O, R ) -
Case 1.2. [ >“"1, & T, =0
Substituting (7.10) into (7.11) yields
S 160 =, A= P T A=) (7.12.2.2)
Expression (7.12.2.a) can be rewritten as
S 15 =TI 0 =Ry T (= h™) (7.12.2.)

Taking the first derivatives of the logarithm of (7.12.2.b) yields
$0(25 1, ) =0log (1, ) =T, WO (D ")V A=)} (7.12.2.0)
For the logistic regression models

(w')lk

.« 10) /¢ a0
s, (4, mtk [t) =2 vki‘ ( @V)rki _hki‘ ).

Case 2.1. 1, <"1, &r, =1
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Substituting (7.10) into (7.11) yields

) R (en) s
T8 =y 10D 0
ALY Ky, Ko . (7.12.3.3)

T U= ) 1= BT 0=,

Expression (7.12.3.a) can be rewritten as

(er) I

o (pri),, o o er),
SO0 =T = BY ™ P 1= g} X Tk 0= )y

o (7.12.3.b)
)15 A= RGPy < (1= hg?) < T, L (=“hy,).
Taking the first derivatives of the logarithm of (7.12.3.b) yields
$c (457t 11, =Blog £(“t, [1,) = T R (“n, — BI) ALY (1= h(™))
R (g, B A ) (7.12.3.0)
+ 2 R (O = ) (=)}
Case 2.2. [, <"1, &r, =0
Substituting (7.10) into (7.11) yields
er _g(er er g,
f(( )tk |t/<) _{( )hkiw‘tilk /(1_( )hk:::”l,t )} d (7124&)
X Hzlil (1 - h/iil‘m) x l_[i:l,tljl (1_(”)1/’/”' )-
Expression (7.12.4.a) can be rewritten as
f((er)t |t,)= H,Ii {h(:\o) a _h(:\o))}“’”"m XH,‘:)& {(Bf)h ) /(l_(w)h i}(m%
k k 1 ki ki 1 +1 ki ki (7- 12.4.b)

("”lk

X H:lil (1 - hl(;‘O))X Hi:lA + 1_(ell)hki)'

Taking the first derivatives of the logarithm of (7.12.4.b) yields

sk()'r;(w>tk [t,)= 6logf((”>tk [£)

= X0 R (O =R Y (1= B (7.12.4.0)
FE O (=R ) {7 (1=, )

Concluding Remarks

We formulated an optimization problem for designing a survey and we identified steps for its
revision during the survey data collection period. We considered the error-prone prior, the error-
prone processed, and the error-free information as a random variable with a joint distribution with
some probability function. Then, we updated the joint probability distribution after observing
some realizations of the error-free random process at each phase of the survey process to revise
the survey design specification. The proposed approach makes full use of both error-prone sets of

information while requiring only few observations from the error-free and expensive target
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information. Since revision of a design indicates when a design is nearly "optimal" and how the
error-free information varies from the error-prone prior and processed information, the revision of

the design has an important role to play in survey quality and cost.
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