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Abstract 
 
It is difficult to design and conduct a survey because prior information on response rates and 
the like are likely generated from a different random process than the target one governing the 
surveys to be designed. The survey process, such as text classification, also makes the 
development of a survey difficult as it may vary from one human or machine to another. The 
impact of each error-prone set of information on the properties of the estimator can be 
significant.  We are concerned with reducing the side effects of both the prior information and 
the processed information on the quality of the estimator of the parameter of interest during 
the data collection period.  Nowadays, computer-assisted survey methods provide an instant 
variety of observations on the survey process and on the target random process governing the 
survey under consideration. These paradata, data, and quality measures enable the survey 
producer to make decisions regarding the need for methodology-process revision during the 
data collection period, which involves the consideration of both a model that represents how 
the target information relates to the error-prone information and the design that describes how 
the observations are obtained. We think of the error-prone and target information as a random 
variable that has a joint distribution with some probability function. Then, at each time of data 
collection – after receiving the information that the target random process has taken specific 
values – we update the joint probability distribution to revise the design specification in the 
course of the data collection period. In addition, the coefficient of reliability for a survey as 
both a whole set of processes and a single process is further discussed.  
 
Key Words:  Multiple sources of information, Optimal resources allocation, Responsive 
design, Two-phase sampling, Unit classification, Wisdom design. 

 
1. Introduction 

 
There are a wide range of areas, such as health, biometrics, industrial, commercial, finance, 
insurance, actuarial, and more, that require the estimation of quantities related to uncertain or 
imprecise information (i.e. ψ ) to learn, model, and predict units (such as human and market) 
behaviours. Vague understanding of ψ  promotes approaches for the development of models to  
(1) explain known observations on prior information χ , (2) predict observations on the target 
information, and (3) relate prior information with the vague target information after observing 
some of its realisations. It is hoped that the approach possesses some desirable properties, such as:  
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  (1.1) 
 

 
 
 
The fourth step incorporates prevention and correction. It is also desired that the approach can be 
used for tasks that are executed by humans. For instance, in the context of pattern classification, 
artificial neural networks are inspired by the way biological neural networks in the human brain 
process information. It first learns a mapping );( λvkk fψ  from input kv  to output kψ  given a 
sample of training examples },...,1);,{( nkkk  vψ  of input-output pairs ),( kk vψ  for unit k , 
where λ  is a large vector of weights expressing the importance of the respective inputs to the 
output (Rosenblatt 1958, 1962) and n  is the number of training examples in the sample . It then 
uses the uncovered patterns to predict unknown output using the best guess )ˆ;(ˆ λvkk fψ , where 
λ̂  is the solution to an error minimization problem used to train the artificial neural network. Each 

training input kv  is a vector of numbers, representing units (possibly complex in nature) such as a 
person, an image, a sequence of characters or words, a video, etc. These are called features. The 
form of the output can in principle be anything, but most methods assume that kψ  is a categorical 
variable. Artificial neural network is used universally to (1) capture similarities within a set of 
labelled units represented by features, (2) to represent high feature dimensionality, and (3) when 
the relation between input and output information is vague or difficult to describe. Well known 
application includes text classification, email spam filtering, image classification, handwriting 
recognition, face recognition, fraud detection, and natural languages translation. Artificial neural 
network achieves, to some extent, the first two desired properties stated by (1.1) based on a 
substantial sample of examples. It helps to realize the fact that in order to train an artificial neural 
network, one needs a large sample that is random with no errors. Therefore, these questions arise: 
How can we collect observations on the target process in the absence of a training sample? How 
can we prevent and correct processing errors when collecting observations?  It also helps to realize 
that there is a cost associated with each stage of the process of obtaining the random sample such 

Desirable Propreties    
 Learning ability, 
 Prediction ability, 
 Adaptively ability, 
 Monitoring, 
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as: (1) the selection of units, (2) the optional follow-up in an attempt to receive a response from 
non-respondents, (3) the mode of data collection (e.g. in-person, by phone, by mail, or via the 
internet), and (4) the validation. In this study, we examine the general problem which includes the 
four desired properties stated in (1.1) in the context of survey studies. 
 
Survey or census studies start with a collection of distinct units of interest known as the 
population. There are multiple random variables attached to each unit, as each unit holds their own 
individual characteristics and aptitudes. Each particular study targets a small subset of these 
random variables. Measurements on some of these variables of interest are intended to be 
collected during the data collection stage from each selected unit and involve a questionnaire used 
to collect the data from the respondents. Meanwhile, measurements on the other set of these 
variables of interest are intended to be derived from one or more observed variables. These other 
variables are not directly included as items in the questionnaire. Both observed and derived 
measurements are used at the estimation stage to draw inferences about the parameter of interest 
associated with the given study.  
  
At the planning stage of a survey, the question of determining resources and allocating them 
between and within different stages (such as sampling, nonresponse follow-up, data collection, 
validation) of the survey design is a difficult and critical one. Survey developers must justify 
resources to be used, and the survey managers should review the justification to ensure the survey 
produces results that fall within resource, quality, and timing constraints. Efficiency is an 
important issue because inefficient determination or allocation resources may lead to imprecise 
results and a misuse of these resources. To optimally determine the design parameters such as (1) 
the duration of the survey and (2) the amount of resources and their allocation between and within 
stages of the survey design, design pre-specification requires four steps: 
 
1) Specification Step. Specification of: (1) the population of interest, (2) the parameter of 

interest, (3) the sampling frame and the sampling schemes, (4) the mode of data collection, (5) 
the nonresponse follow-up activities, (6) the validation activities, (7) the estimator to be used, 
(8) the precision function, (9) the cost function, and (10) the desired precision or the global 
cost. 

 
2)  Prediction Step. Obtaining prior information from the sampling frame, the administrative 

files, or the previous surveys is required to compute unknown quantities in formulas for both 
precision and cost functions. 
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3) Optimization Step. Optimization of some objective function ‒ that involves both precision 
and cost functions.  

 
4) Decision Step. Determination of the survey design parameter using the solution to the 

objective function. 
  
Suppose previous surveys suggest that the conditional probability of responding h  (in a time 
period) for a unit in the population of interest is constant over time. When the conditional response 
probability h  is constant over time, then the marginal response probability over I  time periods is 
given by I

I )1(1 h . To reach a marginal probability of response close to 1 under constant 
conditional response probability, it will take around 17 time periods when 5.h , and over 100 
time periods when 1.h . Collecting data over such a long period is time consuming, costly, and 
the results may lack consistency between time periods. Because of this, the method of survey 
sampling when capturing information from (or estimating parameters with respect to) a population 
generated from such random processes is as follows: (1) selecting a random sample of units from 
the population, (2) increasing the level of efforts in terms of follow-up activities to improve units 
cooperation, and (3) monitoring the survey process to evaluate its quality and stability. Sampling 
is based on the idea that, within a certain margin of error, one can infer something about the 
parameter of interest from a small sample as long as the sample was chosen at random. Efficient 
nonresponse follow-up requires information on the target response mechanism governing the 
survey under consideration. It is difficult to pre-specify the design for certain surveys because 
prior information is more likely to be generated from a different random process than the target 
one under consideration. A naive approach simplifies the problem under the assumption that 
resources should be big enough to have good estimates. However, a survey usually has a limited 
budget and time, and those, in combination with the resource allocations used within the stages of 
the survey design based on prior information, determine its achievable quality. Nowadays, 
computer-assisted survey methods provide an instant variety of observations about the survey 
process and the target random process that can be used to revise survey design during its process. 
Although previous survey designs are predominantly done deterministically using prior 
information, there is a widespread need for adaptive or responsive design where the design is 
revised during the data collection period. The intent of such revision is to reduce errors attached to 
design pre-specification on prior information grounds. Groves and Heeringa (2006) introduced the 
concept of responsive design, formulated its objectives, and used paradata to guide mid-survey 
decisions affecting properties of the estimates. Peytchev et al. (2010) used paradata and other 
information to estimate the likelihood of any sample member becoming a non-respondent and 
suggested to employ a more effective survey protocol for the sample cases (the least likely to 
respond) to gain unit cooperation. Schouten et al. (2013) considered adaptive design where each 
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unit is assigned a follow-up treatment or strategy from a set of candidate strategies. A detailed 
literature review on adaptive and responsive designs is the paper by Tourangeau et al. (2016). In 
Demnati (2016), we formulated an optimization problem for designing a survey, and identified 
steps for its revision in the course of the data collection period. We considered the error-prone, 
prior information and the error-free, target information as a random variable with a joint 
distribution with some probability function. Then, we updated the joint probability distribution 
after observing some of realizations of the target random process, to revise the design 
specification in the course of the data collection period. The proposed approach makes full use of 
error-prone, prior information while requiring only a few observations from the expensive, target, 
random process. A reliability coefficient for a survey as a whole set of processes, as well as for a 
single process, was also discussed. Such a coefficient when supplied with the Mean Squared Error 
(MSE) enhances information on (1) the survey results, (2) the comparisons between surveys, and 
(3) the contribution of the given survey as an addition to prior information. In Demnati (2018), we 
extended our work to cover the survey process.  
 
A survey process such as data collection, measurement, text classification, or imputation is the 
process, by human or machine, of taking provided responses and deriving them into a set of values 
that represent the targeted values of the complete survey variables of interest.  Once obtained, the 
complete set of values is analyzed in the same way a set of complete observed responses can be. 
Here, automatic text classification, also known as automatic text or document categorization, is 
the task of automatically sorting a set of texts into predefined groups based on its inputs. 
Automatic classification systems learn from previously classified texts the characteristics of one or 
more groups. Automatic classification means the automatic (1) assignment of texts on the basis of 
their contents to a predefined set of groups which may not be predefined and (2) the automatic 
definition of each group. The advantages of automatic classifiers are obvious: (1) considerable 
savings in terms of both cost and expert manpower, and (2) domain independence. A text is a 
sequence of characters or words representing, in the context of survey sampling, the answer given 
in response to an open-ended question in a questionnaire. For example, open-ended questions are 
used to classify units by industry code on the business register. This classification on the business 
register offers a convenient way for sampling and variance reduction, which is an example of 
partitioning a set of units into meaningful and useful groups. Even when the survey process is 
undertaken carefully, the process can be subjective, open to judgment and interpretation, and the 
results can vary from one human or machine to another. This means that the derived values cannot 
be determined with certainty, which in turn means that any survey process is fallible. It is thus 
customary for statistical agencies to both monitor survey process and collect data to evaluate its 
quality and stability. Although the accuracy of machines rivals that of humans, random sampling,  
in combination with human validation, is still widespread for quality controls. The drawback of 
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this approach is the cost of human power required for validation. Thus, survey process can be very 
tedious, cost consuming, and the challenge is to maintain a high degree of quality and stability of 
the survey process with a small validation sample. 
 
Design pre-specification as well as survey process are special cases of measurement error which 
refers to the case where the error-prone prior information, say χ(pri) , and the error-prone processed 
information, say χ(pro) , are not necessarily identical to the error-free (or target) information, say 
ψ , of the process underlying the population of interest. We assume that the assessment of error in 
χ  can be carried out based on observations on ψ , where   TTproTpri ),( )( χχχ  . We also assume that 

the error-prone  information χ  has a potential bias b  when used to estimate ψ  and that the error-
free information ψ  has no error. Thus, the assessment of errors allows quantification of such bias. 
Under two random processes, we are interested in the error-free random variable ψ , knowing its 
probability function, the probability function of another random variable χ , together with the joint 
probability function of TTT ),( ψχ  with vector parameter denoted by λ . It is assumed that the 
sampling frame has no coverage bias. It is also assumed that values of the error-prone prior 
information are available for all units in the population, while values of the error-free variable are 
unknown but observable.  
 
Once an estimate of λ , of a realization of ψ , or of the parameter of interest is obtained, the 
question follows: what is the reliability of this estimate? In a general sense, reliability of an 
estimate refers to the degree to which the estimate is free from error and therefore, truly measures 
the parameter that it is intended to measure. When reliability measures are available at all various 
stages of the survey process, they can serve as performance measures. Such measures enable the 
survey manager to make decisions regarding the need for methodology-process modification. As 
there is no general reliability measure that would capture all information on the impact of each 
stage of the survey design on the ultimate estimate, the survey manager tends to combine various 
measures to get a broader effect and interactions between different factors of the survey process. A 
key step in defining reliability was the introduction of an error criterion that measures, in a 
probabilistic sense, the error between the desired parameter θ  and an estimate θ̂  of it. Possible 
sources of error in surveys include sampling frame, sampling scheme, measurement, nonresponse, 
editing, imputation, disclosure-avoidance, etc. A criterion which is commonly used in judging the 
performance of an estimator θ̂  of a parameter θ  is its MSE defined by })θθ̂{()θ̂( 2 EM . Here, 
the parameter θ  can be seen as the quantity that would be obtained under the ideal situation which 
consists of a census case with complete response and without any processing errors. We can also 
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interpret the MSE formula via the MSE decomposition. For any random variable z , we have 
222 )}({})]({[)( zEzEzEzE  . Applying this to θθ̂ z  we get 

 222 )}θθ̂({})]θθ̂()θθ̂{[(})θθ̂{(  EEEE . (1.2) 
The first term of (1.2) is the variance of θθ̂  . It is the error of the estimator due to the random 
processes involved. The second term of (1.2) is the square of the bias of θ̂  ; the best we can do is 
make this zero. Given that the remaining relative error or the relative missed information about θ  
based on the knowledge of θ̂  is given by )θ(/)θ̂|θ( VarVar , Demnati (2016) defined the coefficient 
of reliability as the proportion of knowledge or the proportion of attained information about θ  
obtained after observing θ̂ , i.e., 
 )θ(

)θ̂|θ(1}θ̂;θ{K Var
Var . (1.3) 

If )θ()θ̂|θ( VarVar   then 0}θ̂;θ{K   and if 0)θ̂|θ( Var  then 1}θ̂;θ{K  ; so that 1}θ̂;θ{K0  . 
Under the normality assumption, the coefficient of reliability (1.3) reduces to the square of the 
correlation coefficient 

 2
θ̂θ

2

θ̂θ

)θ̂,θ(}θ̂;θ{K  



 Cov

N . (1.4) 

Tenenbein (1970) introduced the square of the correlation coefficient given by (1.4) as a measure 
of reliability between the error-prone and error-free classification variables to measure the strength 
of the relationship between the true and fallible classifications (i.e. it measures how well the true 
classification can be predicted from the fallible classification on a given unit). Expression (1.4) 
gives a convenient way to compute the coefficient of reliability: It is reasonable to replace 
conditional variance, which depends on the joint distribution, with correlation as it can be 
calculated more easily. That being said, conditional independence is more meaningful and 
preferable than zero-correlation. 
 
In an attempt to further discuss side effect reduction of both errors sources of information on the 
quality of the estimator of the parameter of interest during data collection period, our work below 
is organized as follows: in Section 2, we give a straightforward prescription of our wisdom design 
for designing and conducting a survey design; in Section 3, we study an example detailing the 
steps required for design pre-specification in the absence of processing errors; in Section 4, we 
revise the example design after 10 periods of data collection; in Section 5, some estimation 
methods for model parameters are discussed; in Section 6, classification model parameter is 
revised. Results of a simulation study are presented; and, in Section 7, response model parameter 
is revised. 
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2. The Wisdom Design 
 
To revise the survey design in discrete intervals, we divided the continuous time of the entire data 
collection period into a sequence of continuous time periods: 1, 2, etc., and let minI  denote the 
minimum length of the data collection period to obtain full responses. Suppose the survey limited 
length of duration of data collection is made up of maxP  phases, the thp  being  of size pn  time 
periods, so that the limited duration of data collection is made up of p

P
1pmax maxI n  time periods, 

with minmax II  . Therefore, there would be an maxPN  rectangular array of phases of data 
collection, where N  is the size of the finite population. Because the design parameter Φ  is the 
solution to some objective function ),;(O λψΦ  that requires the target information, we first 
considered the error-prone and error-free information as a random variable that has a joint 
distribution );,( λχψf  with vector parameter λ . Then, at each time of survey data collection, after 
receiving the information that the target random process has taken specific values, we update the 
parameter λ  of the joint probability distribution );,( λχψf  to revise the design specification Φ  in 
the course of its progress. 
 
Our simplest prescription for designing and conducting a survey design is as follows: 
 
a. First specify the 

(1) the population of interest, (2) the parameter of interest, (3) the sampling frame and the 
sampling schemes, (4) the mode of data collection, (5) the nonresponse follow-up 
activities, (6) the validation activities, (7) the estimator to be used, (8) the precision 
function, (9) the cost function, and (10) the desired precision or the global cost. 
 

b. Then repeat continuously the following five steps until the end of data collection 
 

b.1 Observation Step 
Obtain the next phase p  of observation from respondents  
 For design pre-specification: Obtain observations from the sampling frame, 

administrative files, or from previous surveys, 
 This information is needed to compute unknown quantities in formulas for both the 

precision and cost functions. 
b.2 Validation Step. Randomly validate some of the obtained values.  
b.3 Revision Step. Update the vector parameter λ  and the missing values of ψ  using all 

available information i.e., (1) Update 1-pλ  to get pλ  using po;d ; and (2) Impute missing 
values of each component ψ  of ψ  to get ),|ψ(ψ ppo;ψ;p λdkk E ,  where po;d  denotes all 
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observed information until the end of phase p  of data collection, and ψE  denotes 
expectation with respect to the random process governing the component ψ . Note that 

kk ψψ ;p   when item kψ  is observed.  
b.4 Optimization Step. Optimize the objective function ),;(O pp λψΦ  – that involves both the 

precision and cost functions parameter, i.e., determine the optimal design parameter pΦ  
conditional on pψ  and pλ  for possible future data collection periods. 

b.5 Decision Step. Decide if the data collection should stop (i.e., pP  ). If not (i.e. pP  ), 
revise the specification of the design as necessary and repeat the five steps (b.1 to b.5) 
continuously after observing some realizations of the target process. Here P  denotes the 
number of periods of data collection. 

 
c. Finally, stop data collection and produce survey estimates.  
 
We refer to the above five steps as the Observation-Validation-Revision-Optimization-Decision 
(O-V-R-O-D) steps. The revision step incorporates learning and prediction, while the decision step 
incorporates actioning.  
 
 

  

 
 
 
So, our approach is embedded in a continuous learning process that permits changes in 
methodology-process at any time of the data collection period as a result of an increase in 
acquiring information and facts, while relating phases and stages of the design to each other. Such 
changes are guided by the primary survey objective.  Therefore, this method does not use a fixed 

The O-V-R-O-D Steps 

Goals 
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design, although, an expected design is always pre-specified. Depending on the relationship 
between the error-prone information, the target information, and the stopping rules, only a few 
time periods may be sufficient to stop the data collection period. 
 

3. Example of Design Pre-specification under No Processing Errors 
 
There will be a survey to be conducted on a population of size N , where the sampling frame had 
the covariate u  on it; an address and contact information. The initial request for response is by 
Web or mail. The main interest is to estimate a domain total of the variable of interest y , where 
the sampled units are to be classified to the domain of interest based on their response to an open-
ended question in the questionnaire. The upper limit on the coefficient of variation of the estimator 
is set to 05.0 . The budget is constrained to a global cost of maxC , while the maximum duration of 
the survey data collection is constrained to maxI  time periods. After FI  time periods of data 
collection under self-enumeration, there will be an optional follow-up for those who had not 
responded. The duration of a follow-up is FD  periods of time.  Poisson sampling is to be used for 
the selection of the sample. Known values of survey design parameters such as N , maxC , maxI , FI , 
and FD  are provided in Table 1. The first task is to pre-specify the design to better enhance the 
quality of the estimator while respecting the survey design constraints. In particular, we have to: 
(1) derive steps required for design pre-specification, (2) present briefly available prior 
information, (3) determine the resources and their allocation within stages of the survey design for 
each given period of data collection, and finally, (4) decide for the parameters of the design. 
 
3.1 Specification Step 
 
3.1.1 Parameter of Interest 
 
Estimate is wanted for specific subpopulation  , called domain  . The methodology behind 
estimating parameters for domains, based on observation of randomly selected units, is well 
described by survey literature. See for example Cochran (1977); or, Särndal et al. (1992). Let the 
specific subpopulation   of the units of interest or domain   be denoted as  P , and let 

)|(1)|(1; PkPkPPl kk    be the domain   membership indicator variable for unit k , where 
.)|(1 condition  is the truth function, i.e., 1.)|(1 condition  if the condition  is true and 

0.)|(1 condition  if not. The domain total Y  of a characteristic y  may be written as  
 kkkkk yylY ;;   , (3.1) 
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where k  denotes sum overall population units, T
Nyy ),...,( 1y  is the vector of values of the 

characteristic of interest y , and kkk yly ;;   . The parameter Y , obtained under the assumed ideal 
situation which consists of census case with complete response and without any processing error, 
acts as the "gold standard".  
 
3.1.2 Response Mechanism 
 
We now give a brief account of the Demnati modeling approach of the response indicators as 
discrete-time hazard. See for example Demnati (2017). Let t  represent the discrete random 
variable that indicates the time period i  when the response occurs for a randomly selected unit 
from the sample. We assume that every unit in the sample lives through each successive discrete 
time period until the unit responds or is censored by the end of data collection. Then each unit k  
is observed until some period kI , with maxII k . Observation of the unit could be discontinued for 
two reasons: (1) the unit response, or (2) the survey data collection period ends. In the first case, 

kkt I . In the second case, we only know that maxIkt . Units with maxIkt  are right-censored ‒ 
when they respond is unknown. Because response occurrence is intrinsically conditional, we 
characterized t  by its conditional probability function ‒ the distribution of the probability that a 
response will occur in each time period given that it has not already occurred in a previous time 
period ‒ known as the discrete-time hazard function. Discrete-time hazard ),( ; rkirkih λv , kih  for 
short, is defined as the conditional probability that unit k  will respond in time period i , given that 
the unit did not respond prior to i : 
 )|Pr( itith kkki  , 
where kir ;v  refers to both time-invariant and time-varying explanatory variables and rλ   is the 
unknown 1rq  vector parameter to be estimated. For units with itk  , the probability of obtaining 
a response at time period i  could be expressed in terms of the hazard as  
 )1()Pr( 1

1 kj
i
jkik hhit  
 . (3.2) 

For units with itk  , the probability of obtaining a response can be expressed as  
 )1()Pr( 1 kj

i
jk hit   . (3.3) 

The marginal probability of obtaining a response after I  time periods of data collection is given by 
 )Pr()1(1 I

1
I

1;I ith kikiik   . (3.4) 
Demnati (2017) also developed a discrete-time model for multiple kinds of results or events such 
as refusal, ineligibility, and mode of data collection, by extending the Bernoulli model to the 
multinomial model.  Assume that there are E  specific results and the thE )1(   category of no 
response, where 1E . Define a vector of result indicator variables as 1)( e

kir  if outcome e  occurs 
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from unit k  at time period i , and 0)( e
kir  if not, where  },...,1{ Ee , )()( )( e

ki
e

kir hrE  , 
)1()( )()()( e

ki
e

ki
e

kir hhrVar  , and for 'ee    )'()()'()( ),( e
ki

e
ki

e
ki

e
kir hhrrCov  . The combined discrete-time hazard 

is 
  )|Pr()(

1 itithh kk
e

ki
E
eki   , 

and the marginal probability of obtaining result e  after I  time periods is given by 
 )1Pr( )(I

1
)(

;I  
e

kii
e
k r . 

 
3.1.3 Modeling the Sample Selection Probabilities 
 
We define the sample  membership indicator variable as )|(1 Pa kk  ; i.e., 1ka  if unit k  is 
selected in the sample , and 0ka  if not. The conditional probability )|( Pkk  ,  that unit k  
will be selected is constructed as 
  ΦT

kkk ;)}1/(log{ v , 
where T

kk l ),1( ;; v  is the vector predictor, T)Φ,Φ( 1;0;  Φ  is the unknown vector parameter to 
be determined, )}|(1{)|( **  kk E  is the set   inclusion probability for unit k  given 

*k ,  and E  denotes expectation with respect to the inclusion mechanism. 
  
3.1.4 Specification of the Follow-up Activity 
 
We define the nonresponse follow-up indicator variables as 1; kfl  if unit k  is assigned to the 
follow-up activity, and 0; kfl  if not, where kfl ;  are realizations of independent distributed 
variables according to a Bernoulli distribution, )( ;kfB  , kf ;  is the probability of a follow-up, and 
the subscript " f " stands for "follow-up". The follow-up probability is constructed as 
 f

T
kfkfkf Φ;;; )}1/(log{ v , 

where T
kkf y ),1( ;; v  is the vector predictor and T

fff )Φ,Φ( 1;0;Φ  is the unknown vector parameter 
to be determined. 
 
3.1.5 Estimator to be used 
 
Suppose that the response probabilities k;I  after I  time periods of data collection are known for 
all population units. Then after I  time periods of data collection and for general sampling design 
with known positive inclusion probabilities, k;I , an unbiased estimator of the domain total Y  is 
given by 
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 kkk ywY ;;I;I  
  . (3.5) 

with 
 )/( kI;kI;kI;kI; rdw   
where kkkk PPdd ;III;I /)|(1)|(   are the design weights associated with the random sample 

I  obtained after I  time periods of data collection. 
 
3.1.6 Derivation of the Variance Function 
 
We may decompose the variance of ;IY  given by (3.5) as 
 wopemrrmrmrm YEEVarYEVarEYVarEE=YVar VVVV)()()()( ;I;I;I;I   

  (3.6) 
where Var , rVar  and mVar  denote variance with respect to the sampling design, the response 
mechanism and the model on y  respectively, and the subscript “ wope ” in wopeV  stands for 
“without processing error”. Under independent mechanism on kr ;I , the first component 

})/({V ;;I;I;I kkkkkrmr yrdVarEE     of (3.6) is given by 
 )/()1)((V ;I;I;I

2
; kkkkmkr yE    . (3.7) 

Under Poisson sampling, the second component )(V ;;I kkkm ydVarE=   of (3.6) is given by 
 kkkmk yE= ;I;I

2
; /)1)((V    . (3.8) 

 
Finally, under independent model mechanisms on ky , the last component of (3.6) is given by 
 )(V ;kmkm yVar  . (3.9) 
 
The sum of (3.7), (3.8), and (3.9) constitutes mrwope VVVV   , the variance of ;IY  given by 
(3.5). It follows that, we can express )( ;I YVar   as 
 )/()( ;I;I;0;;I kkkwopehwope vvYVar   , 
where 2

;0; )}({ kkwope yEv  , and )( 2
;; kkwope yEv  . 

 
3.1.7 Specification of the Cost Function 
 
We may decompose the initial global cost over I  time periods of data collection as 
 dcfwope CCCCC  I . 
The fixed cost IC  is given by II  cC , where c  is a fixed cost per time period. The sampling 
component C  is given by kkk cPC ;I )|(1   , where kc ;  is the sampling cost for unit k . The 
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follow-up component fC  is given by  kfkf
self

kekkf clrPC kf ;;
)(

;I )1)(|(1 ; , where )(
;
self
kir  represents the 

response indicator under self-enumeration over i  time periods of data collection, kfe ;  is the 
follow-up entry time period for unit k , and kfc ;  is the follow-up cost for unit k . The data 
collection cost dcC  is given by   }){|(1 )(

;
)(

;I
)(

;
)(

;II
W

kdc
W
k

M
kdc

M
kkkdc crcrPC  , where the superscripts “ M ” 

and “W ” stand for “Mail” and “Web” respectively, and )(
;

m
kdcc  is the data collection cost associated 

with mode },{ WMm . 
 
3.1.8 Specification of the Objective Function 
 
To create a design, we determine the number of time periods I  of data collection (or equivalently 
the number of phases P  with p

P
1pI n ), the sample selection parameter Φ , and the follow-up 

model parameter fΦ  by minimizing the variance, )(min ;I YVar 

Φ , subject to constraint on the 
expected cost, maxCCwope  , and constraint on the duration maxII1  , where TT

f
T ),,I( ΦΦΦ  , 

dcfwope CCCCC  I ,  kkk cC ;;I    , kfkf
self

kekkf cC kf ;
)1(
;

)(
;;I )1( ;   , and 

}{ )(
;

)(
;I

)(
;

)(
;I;I

W
kdc

W
k

M
kdc

M
kkkdc ccC   . In this case and for any duration of data collection, a Lagrange 

multiplier can be used to find the constraint minimum of the variance. Therefore, in any duration 
of data collection, the objective function is given by 
 )()/()(O max;I;I; CCv wopekkkwok  Φ , (3.10) 
where   is the Lagrange multiplier. The optimization problem obtains a constrained minimum at 
the point where the estimating equations (EE) are set to zero, 0ΦΦΦo  /)(O)( . Kokan (1963) 
discussed a similar allocation problem extensively under stratified simple random sampling and 
showed how it can be adapted to cover many common sample allocations. We have used the 
concept of EE to define a set of simultaneous equations involving both the data and the unknown 
parameter which are to be solved in order to define the estimate of the parameter. This concept of 
EE is more general than the concept of estimating functions having zero mean for the thk  
component at the true parameter, which includes the log-likelihood estimating functions as well as 
least square estimating functions. 
 
We do not have an explicit solution, but nonlinear programming can be used to get a constraint 
minimum )(ψΦΦ  , where TT

k
m

kikkk ihly );),I,...,1(,,( max
)(

; λc ψ , TT
c

T
r

TT
y ),,,( λλλλλ  , yλ  is the vector 

parameter associated with the model on y , λ  is the vector parameter associated with the domain 
  classification, rλ  is the vector parameter associated with the response model, and cλ  is the 
vector parameter associated with the cost model on TT

kdckfkk cc ),,( ;;; cc  . The first two components 
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ky  and kl ;  of kψ  are referred as data in adaptive design literature, while the rest of the vector kψ  
is referred as paradata.  
 
3.2 Prediction Step 
  
It is clear from (3.10) that the optimization problem cannot be performed since kψ  are unknown. 
From the sampling frame, the variable u is used to approximate y . From the modeling of 
previous surveys, it was possible to assign to each unit k  in the sampling frame: (1) an initial 
estimated probability k

pri p ;
)(   of being a member of the domain of interest   given the covariate, 

(2) an initial estimated conditional probability )()( m
ki

pri h  of responding by mode m  and by time 
period i , and (3) an initial estimate of the vector cost k

pri c)( . To reduce the follow-up burden, we 
generated the follow-up entry time period kfe ;  from the uniform interval ]2I1,[I max  FF D . So 
that the vector of available prior information for each unit k  in the frame is 

TT
k

pri
kf

m
ki

pri
k

pri
kk eihpu );,),I,...,1(,,( )(

;max
)()(

;
)(

χλcχ   . Hence the estimator used for design pre-
specification is 
  kkkkkk ylrdY )1(

;
)1(

;I
)1(

;I
)1(

;I;I
)1( )/(   , 

with k
pri

k ll ;
)(

;
)1(   , kk uy )1( , k

pri
k ;I

)(
;I

)1(   , 2
;

)(2
0; k

pri
kkwope puv  , and k

pri
kkwope puv ;

)(2
;   are the 

components of the variance under the assumptions that ku  are constants, where 
)(

;I;
)(

;I;;I )1( fself
kkf

self
kkfk

  , and )(
;I

fself
k

   is the probability of response under follow-up in 
addition to self-enumeration for unit k  during I  time periods of data collection. Table 2 gives the 
initial estimate of the size of the domain of interest and its total of u , while Table 3 displays the 
response rates for different durations of data collection under the prior response model parameter. 
 

Table 1. Prior Information on the Survey 
N  maxI  FI  maxC  c  pc  fc  )(M

dcc  )( I
dcc  FD  

5000 40 3 5000 20 1 3 2 1 3 
 

Table 2: Prior Information on the Domain of Interest 
Domain Size Domain Total 

2 495 46 238 
  
 
 

Table 3: % of Expected Number of Respondents based on Prior Information 
Duration of Data Self-enumeration Only With Follow-up 
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Collection Mail Internet Both Mail Internet Both 

5 5 5 10 6 5 11 
10 9 9 18 20 12 32 
15 12 12 25 32 18 50 
20 15 15 31 42 23 65 
25 18 18 35 51 26 77 
30 20 20 40 59 30 89 
35 22 21 43 66 32 98 
40 24 23 47 67 33 100 

 
3.3 Optimization Step   
 
Using the error-prone prior information as input to the optimization problem, Table 4 displays the 
values of the design parameters: the expected sample size, the expected number of follow-ups, the 
expected number of respondents, and the expected coefficient of variation in percentage. Table 4 
also displays the expected ratios in percentage for the fix cost, the sampling cost, the follow-up 
cost, and the data collection cost. Finally, for more information, Table 4 displays estimates of 
regression parameters Φ  and fΦ .  
 

Table 4: Resources Allocation Based on Prior Information 
 

Duration 

Expected % Cost Ratio Regression Parameter Estimates 
Sample 
Size 

#Follow-
up 

# 
Respondents 

CV Total 
Cost 

Fixed Sampling Follow-
up 

Data 
Collection 

Sampling Follow-up 
0;  1;  0;f  1;f  

5 4174 0 413 8 5000 2 83 0 15 1.62 .001 -.27.46 .47 
10 3205 0 578 6 5000 4 64 0 32 .58 .000 -21.22 .33 
15 2613 0 649 6 5000 6 52 0 42 .09 ..001 -24.03 .39 
20 2235 0 683 6 5000 8 45 0 47 -.21 .000 -148.5 4.12 
25 1734 229 720 6 5000 10 35 11 44 -.63 .001 -1.77 .00 
30 952 951 834 6 5000 12 19 41 28 -1.43 .005 523 5.56 
35 894 894 877 5 5000 14 18 39 29 -1.52 .000 11.87 4.28 
40 868 867 867 5 5000 16 17 38 29 -1.56 .013 7.89 19.12 

 
Note: The required coefficient of variation (cv) of .05 is reached only when the data collection 
period exceeds or equals 35 ( 35I  ). 
 
 
 
 
3.4 Decision Step   
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It was decided to proceed with a data collection period of length 35 ( 35I  ), T)002,.525.1(Φ as 
the regression parameter for sampling, and T

f )28.4,87.11(Φ  as the regression parameter for 
nonresponse follow-up. 
 

4. Revision after 10 Periods of Data Collection – Example Continuation 
 
We computed descriptive statistics on the observed data and on the predicted data based on the 
prior information, after observing realisations over 10 time periods of data collection. Table 5 
displays the realized sample size, the number of respondents, and the number of follow-ups. Table 
6 displays the distribution of the cost. Table 7 represents respondents and non-respondents, while 
Table 8 displays the classifications of the respondents. These tables show that the first phase, 
composed of 10 time periods, goes better than predicted in the selected sample. Using only 147 
follow-ups instead of the predicted number of 165, the number of respondents improved from the 
predicted 284 to the observed 389 (Table 5). This improvement in the number of respondents, 
increased the data collection cost from the predicted cost of 452 to the cost spent of 682 (Table 6). 
Tables 7 and 8 show clearly that there are errors in the prior information (e.g. domain 
classification and response behavior). The question is whether to decide between proceeding with 
the pre-specified design or whether the eventual efficiency of the estimator would be better 
enhanced by updating the design parameter.  In Section 4.1, we optimize the objective function 
using the revised information; and in section 4.2, we update design parameters for the remaining 
time periods of data collection. Details on the revision of the prior information are given in 
sections 5,6, and 7.  
 

Table 5 : Observed Counts After 10 Time Periods of Data Collection 
Sample Size  878 
Observed Counts # Respondents 389 

# Follow-up 147 
Predicted Counts  
(Based on Prior 
Information 

# Respondents 284 
# Follow-up 165 
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Table 6 : Observed Costs After 10 Time Periods of Data Collection 
Observed Costs Sampling 878 

Follow-up 441 
Data Collection 682 
             M 586 
             W 96 
Fixed 200 
Total 2201 

Predicted Costs (Based on 
Prior Information 

Sampling 878 
Follow-up 495 
Data Collection 452 
              M 336 
              W 116 
Fixed 200 
Total 2025 

 
 

Table 7 : Counts of Respondents and Nonrespondents after 10 Time Periods of Data Collection 
  Observed Information Total 
  Respondents Non Respondents  
Prior Information Respondents 196 88 284 

Nonrespondents 193 401 594 
Total 389 489 878 

 
Table 8 : Respondents Classification after 10 Time Periods of Data Collection 
  Observed Information Total 
  In Domain Outside Domain  
Prior Information In Domain 110 63 173 

Outside Domain 106 110 216 
Total 216 173 389 

 
 

Table 9 : Domain Estimation after 10 Time Periods of Data Collection 
 Estimation based on 
 Prior Values Observed Values (%estimated cv) 
Domain Size 2 127 2 476 (7.38) 
Domain Total 38 789 142 089 (7.47) 

 
 
 
 
4.1 Optimization Step 
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So we use the phase 1 (10 time-periods of observations): (1) updated domain classification model, 
(2) updated response model, and (3) updated values of the variable of interest; to determine the 
extra number of time periods I  of data collection (or equivalently the extra number of phases P  
with p

P1
1pI10 n
  and 101 n ), and the follow-up model parameter fΦ  by minimizing the 

variance, )(min ;I10 YVar
f



Φ  for each remaining period of data collection, subject to constraint on the 
expected cost, 10max CCCwope  , and constraint on the duration 10II0 max  , where TT

f ),I( ΦΦ  , 
and 10C  is the total cost spent in the first phase,  Here the estimator used for design revision is 
  kkkkkk ylrdY )2(

;
)2(

;I10
)2(

;I10
)2(

;I10;I10
)2( )/(     , 

with )(
;I10;

)(
;I10;;I10 )1( fself

kkf
self

kkfk


   , )p(
;

2
1p; 1 kfkf   , and )p(

;kf  is the conditional follow-up 
probability given that the unit  was not followed-up. Note that )1(

;kf  is known, and )2(
;kf  is to be 

determined. 
 
 Using the revised information as input to the optimization problem, Table 10 displays the revised 
values of the design parameters: the expected duration to reach the required cv, the expected 
number of follow-ups, the expected number of respondents, and the expected coefficient of 
variation in percentage. Table 10 also displays the expected fix cost, the expected follow-up cost, 
and the expected data collection cost.  
 
Table 10: Extra Resources Allocation 

Extra 
Duration 

Expected Number of Extra Expected Extra Cost 
Follow-up Respondents CV Extra Cost Fixed Follow-up Data Collection 

5 0 203 3 740 300 0 440 
Note that the expected coefficient of variation of .03 is less than the required one when the 
duration of data collection is 15(=10+5) time periods or more. 
 
4.2 Decision Step 
 
It was decided to proceed without follow-up for a maximum of 5 time periods of data collection. 
Instead, after a time period of data collection is complete, the new observations are included, and 
the follow-up decision is revised. This would be conducted on a continual basis for however many 
time periods needed to complete the data collection.  
 

 
 

5. Some Estimation Methods for Model Parameter 
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To proceed with the estimation, two elements are essential: (1) a set of known observations, and 
(2) a model that describes the distribution of the variable governing the observations. The purpose 
of the estimation methods is to find the parameter of the model that best explains the observed 
values. Two commonly used approaches to estimate model parameter from a random sample are 
the least squares estimation method and the maximum likelihood estimation method. In the least 
squares approach, we find the parameter of the model that yield the minimum sum of squared 
errors, while the purpose of the maximum likelihood approach is to find the parameter of the 
model that best explains the observed values in the sense of yielding the largest probability or 
likelihood of explaining the observed values. Thus, the least squares approach differs from the 
maximum likelihood approach mostly in terms of the criterion for estimating parameters: the 
former minimizes the sum of squared errors; the latter maximizes the probability of a model fitting 
the observations. A second difference is that in using maximum likelihood, one must make explicit 
assumption about the distribution of the variable. This precise distributional assumption is not 
necessary in least squares approach. In this section, the two methods of estimating the unknown 
parameter are discussed. 
 
The problem of estimation reduces to find the parameter so that a criterion is to be maximized. 
The problem with finding the optimum of a function with respect to the parameter consists on: (1) 
differentiating the criterion with respect to the parameter, (2) setting this derivative to 0 to get the 
EE, and finally (3) solving the EE. The optimization process with respect to the model parameter 
is often solved using iterative methods. The iterative method continues until the convergence 
criteria is met, which is declared when the absolute of the estimates change is less than tolerance, 
while the maximum iteration number is respected. At convergence, the resulting estimate, usually 
denoted with a “hat”, “tilde”, etc., defines the estimator of the parameter. In this paper, we set the 
convergence criteria to 1E-8 and the maximum number of iteration to 500. 
 
Solving the EE is usually difficult, if not impossible, in the cases of (1) non-linear forms such as 
multivariate normal distributions with explanatory variables, and artificial neural networks with 
multiple hidden layers, and (2) missing observations. In case of missing observations, the 
difficulty lies in: (1) the EE involve known observations, missing observations, and unknown 
model parameter, (2) the solution to the parameter requires the missing values and vice versa, and 
(3) the substitution of one EE into the other produces an unsolvable equation. The expectation-
maximization (EM) algorithm used to find parameter estimate of models in case of missing 
observations is discussed in this section and applied in sections 6, and 7.  
 
5.1 Revision of a Design in the Course of its Progress 
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When the duration of data collection period is taken into account, the likelihood function of the 
joint distribution under census data is defined for unit k  as 
 ),()( )I(

I
)I(

;I min
min

min
min kkk fL χλ ψ , (5.1) 

where the subscript I  in )()I(
I min ζf  denotes that ζ  is observed during the interval ]I,0[ . To 

simplify our notation we drop the superscript minI , and write (5.1) as ),()( minmin I;I kkk fL χλ ψ . The 
likelihood function under census case is ),()( minI kkk fL χλ ψ , and the census parameter minIλ  is 
defined as the solution to  
 0ψS  λχλλλ /),(log/)(log)( minmin II kkk fL . (5.2) 
The census parameter minIλ , obtained under the assumed ideal situation which consists of census 
case with complete response and without any processing error, plays the role of a "gold standard".  
 
 
After observing I  time periods of data collection, the joint observations on χ , and ψ  are known 
during the I  time periods, while only observations on χ  are known for the rest of the periods. 
Consequently, we decompose the likelihood of observed data for unit k  in two parts 
 )|()()( II;I kkkk ffL mix χχλ ψ , (5.3) 
in which case the log-likelihood is given by 
 )|(log)(log)( IImin;I kkkk ff mix χχλ ψ , (5.4) 
where kkkk dff ψψ ),()( minmin II χχ  , and )(/),()|( III kkkkk fff χχχ ψψ  . Note that 

),()|()( minmin III kkkkk fff χχχ ψψ   as minII . In arriving to (5.3), we decomposed χ  in two parts: 
TTT

e kdc ),( ]I,1I[]I,[ min;  χχχ , where ]I,[ ; fdceχ  denotes observation during the interval I],[ ;kdce , while ]I,1I[ minχ  
denotes observation during the interval ]I1,[I min , and kdce ;  denotes the entry time period for unit 
k  into data collection window. The joint distribution is given by 
 )|()()|()|()(),,(),( ]I,[]I,[]I,[]I,1I[]I,[]I,1I[]I,[ ;;;min;min; kdckdckdckdckdc eeeee fffffff χχχχχχχχχ ψψψψ   . 
 
Taking the derivatives of (5.3) and adjusting for unequal probability of selection and response, we 
get the weighted EE 
 0ψssS  )|;();()( IkI;II min kkkkk w χλλχλ , (5.5) 
with 
 λχλχ  /)(log);( minmin II kk fs , and λχχλ  /)|(log);( II kkkk f ψ|ψs , (5.6) 
 
where kI;r is the response indicator during the interval ]I,[ ;kdce , and )( kI;kI; rE  denotes the 
marginal probability of obtaining a response during ]I,[ ;kdce . The EE given by  (5.5) is unbiased for 
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the census EE given by (5.2), i.e., )()}({ minII λλ SS 
rE . The solution to (5.5) obtained by Newton-

Raphson-type iterative method or the expectation maximization type algorithm gives the estimator  
Iλ  of minIλ .  

 
Taylor linearization of )( II λS  around )0(λ gives the approximation 
 )(/)()()( III

)0(
III )0( λλ|λλλλ λλ  

 TSSS0 , 
or )()}({ )0(

I
1)0(

I
)0(

I λλλλ SJ   , 
where λλλ  /)()( II

TSJ  . Starting with a guessed value, 1-p
)0( λλ  , then for ,...2,1b  updates are 

made using Newton-Raphson method as follows 
 )()}({ )1(

I
1)1(

I
)1()(   bbbb λλλλ SJ  . 

 
5.2 The Expectation Maximization Algorithm 
 
The Expectation Maximization (EM) algorithm introduced by Hartley (1958)—formalized and 
termed by Dempster et al. (1977) — has become a major tool for finding maximum likelihood 
estimate of λ  in situations considered practically intractable such as missing data. Let Nddd ,...,, 21  
be independent identically distributed random variables from a distribution indexed by an 
unknown parameter λ . For each unit k , we divide the vector kd  into an observed and an 
unobserved (or missing) parts: TT

km
T

kok ),( ;; ddd  . This notation does not imply that always the same 
dimension of the vector is not observed. Any dimension could not be observed. The observed data 

od  are supposed to be generated from the density );( ; λof d . The objective is to estimate λ  by 
);(maxargˆ ; λλ od , where );(log);( ;; λλ oo f dd  . Let );(/);();|( ;;; λλλ oom fff dddd   the 

conditional density of the unobserved part md  given the observed part od . Using some initial 
value for λ , say )(eλ , the E-step of the EM algorithm requires the calculation of a function of λ , 

),( )(eQ λλ , such that  
 m

e
om

e
oc

e ffEQ dddddd  );|();(log};|);({),( )()(
;

)( λλλλλλ  , (5.7) 
where );(log);( λλ dd fc  , λ  is the parameter of interest, and )(eλ  is the value of λ  in the 
previous iteration. Then, the M step of the EM algorithm intent to choose the value of λ , say 

)1( eλ , that maximizes ),( )(eQ λλ , i.e., ),(maxargˆ )()1( ee Q λλλ
λ

 . If we iterate the E-step and M-step 
until convergence, under regularity conditions, the algorithm converges to the maximum 
likelihood estimate. Substituting );(/);();|( )()()( e

o
ee

om fff λλλ dddd   into (5.7), we get 
 m

ee
o

e fffQ dddd   );();(log)};({),( )(1)()( λλλλλ . 

 
1366



The M-step gives 
 m

e
k

e fQ dd  }/);(log{/),( )()( λλλλλ  , 
where );(/);( )()()( e

o
ee

k ff λλ dd . 
 
As noticed by Anderson and Hinde (1988), the EM algorithm based on the complete data 
likelihood gives an iterative procedure that maximizes the marginal likelihood of χ . In particular, 
we may write (5.6) as 
 ,}/),(log{

}/),(log){,()}({/)(log);(
minmin

minminminminmin

I;I

II
1

III
ψψ

ψψψs
df

dffff
kkk

kkkkkkk
λχ

λχχχλχχλ


 

  

and 
 ,}/),(log{/),(log

/)(log/),(log/)|(log);(
I;II

IIII
ψψψ

ψψ|ψs
dff

fff
kkkkk

kkkkkkk
λχλχ

λχλχλχχλ



  

where )(/),( II;I kkkk ff χχ ψ . We have assumed that the differential can be taken inside the 
integral sign.  
 

6. Revision of the Classification Model Parameter 
 
The effects of misclassification in categorical data on estimators have been discussed for some 
time by Bross (1954) and others. Tenenbein (1970, 1972) proposed two-phase sampling to protect 
against error, assuming that error-free classification is possible to obtain, though it is expensive. 
Misclassification assumes that two measuring devices are available to classify units into one of 
numerous mutually exclusive groups. The first device is a cheaper procedure, which tends to 
misclassify units; the second device is an expensive procedure, which classifies units correctly.  
 
6.1 Basic Aspects of the Bernoulli Distribution 
 
The Bernoulli random variable y  is one with binary outcomes chosen from }1,0{ . Denote 

)Pr( iypi  , 1,0i , with 11
0   ii p , then its probability density function is 

 yy ppyf  1
01)( . 

Next, consider the bivariate Bernoulli random vector ),( 21 yy , which takes values from )0,0( , 
)0,1( , )1,0( , and )1,1( . Denote ),Pr( 1 jyiyp jij  , 1,0, ji , with 11

0
1

0   ijji p , then the 
probability density function of ),( 21 yy  can be written as 
 )1)(1(

00
)1(

01
)1(

101121 21212121),( yyyyyyyy ppppyyf  . (6.1) 
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The marginal distribution of 1y  in a bivariate Bernoulli vector ),( 21 yy  is univariate Bernoulli with 
probability )( 1110 pp  , and the conditional distribution of 1y  given 2y  is also univariate Bernoulli 
with density 
 )(/),()|( 22121 yfyyfyyf  . 
 
When there are N  observations from a population with outcomes denoted as 

),( 1;21;11 yyy ,..., ),( ;2;1 kkk yyy ,..., ),( ;2;1 NNN yyy , the log likelihood of the  complete data is 
 ),(log);(log);( ;2;1 kkkcc yyfL  yλyλ . 
We now consider the E-step on the )1( e th iteration of the EM algorithm, where )(eλ  denote the 
value of λ  after the the  EM iteration. Suppose now that values of the second variate 2y  is 
sometime missing, the current conditional expectation of the complete data log-likelihood is 
 ),(log},|);({);( ;1

))(|(1
0

)(
1

)( ;1 jyfyEQ k
eyj

kjk
e

c
e k λyλλλ  , 

where 
  .),|Pr(

)(1
)(

;1;2
;2;2))(|( ;1 notifyy

observedisyifyj
e

kk
kkeyj

k
k λ  

 
6.2 Census Estimating Equation 
 
The error-prone classification indicator k

er l ;
)(   for unit k  is characterized by the matrix k;P  who 

depends on two conditional probabilities: )1|1Pr( ;;
)()1|1(

;  kk
er

k llp   which consists of the 
probability of classifying the domain of interest given that unit belongs truly to the domain of 
interest, and )0|1Pr( ;;

)()0|1(
;  kk

er
k llp   which consists of the probability of classifying the domain 

of interest given that unit do not belongs truly to the domain of interest. Hence 
 



  )1|1(

;
)0|1(

;

)1|1(
;

)0|1(
;

;
11

kk
kk

k pp
pp




P . 

The error-prone marginal probability k
er p ;

)(   is given by 
 )1( ;

)0|1(
;;

)1|1(
;;

)(
kkkkk

er ppppp   , 
where )1Pr( ;;  kk lp  . 
 
The census parameter is defined as the solution of  
 0S   λλ /),(log)( ;;

)(
II minmin kk

er
k llf , (6.2) 

where the joint distribution of ),( ;;
)(

kk
er ll   is given by (6.1) with ),(),( ;;

)(
21 kk

er llyy  , 
)1|1(

;;11 kk ppp  , )1( )1|1(
;;10 kk ppp   , )0|1(

;;01 )1( kk ppp  , and )1)(1( )0|1(
;;00 kk ppp   . Subsisting the 

expression of ),( ;;
)(

kk
er llf   into (6.2)  and taking the derivative, we get 
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 0sS  ),;()( ;;
)(

II minmin kk
er

k ll  λλ , (6.3) 
with );();();(),;( )0|1(

;
)1|1(

;I;I;;
)(

I minminmin kkkkk
er lllll  λλλλ ssss  , 

where 1
;;;;;;I )}1(){();(min

 kkkkkk pppll  pλ s , 
 1)1|1(

;
)1|1(

;
)1|1(

;;
)()1|1(

;;
)1|1(

;I )}1)(){();(min
 kkkk

er
kkk ppplll  pλ s , 

  1)0|1(
;

)0|1(
;

)0|1(
;;

)()0|1(
;;

)0|1(
;I )}1)(){()1();(min

 kkkk
er

kkk ppplll  pλ s , 
 λp  /;; kk p ,  λp  /)1|1(

;
)1|1(

; kk p , and  λp  /)0|1(
;

)0|1(
; kk p . 

 
6.3 Sample Estimating Equation 
 
After observing I  periods of data collection, an estimator of the census parameter based on only 
observed values from respondents is the solution to the following sample EE 
 0sS )  ),;()( ;;

)(
I;I

(
I kk

er
kk

r llw  λλ . (6.4) 
The solution to (6.4) is denoted by )(rλ , where the superscript r  stands for respondents. 
 
In order to use all error prone values in addition to the error free observed values during  I  periods 
of data collection, we follow section (5.1) and decompose the joint distribution for unit k  in two 
parts 
 )|()(),( ;

)(
;I;

)(
I;;

)(
I min k

er
kk

er
kk

er llflfllf   . 
Taking the derivatives of the logarithm of the likelihood function 

)|()()( ;
)(

;I;
)(

Imin k
er

kk
er

k llflfL  λ  and adjusting for the unequal selection probabilities and 
response probabilities, we get the sample EE  

 ,)},;(),;({
),;()(

;
)(

I
)|(

;I
1

0;;
)(

I;I

;
)(

I
)|(

;I
1

0;I
(
I

;)(
min

;)(
min

0ss
sS )









jlllw
jld

k
erlj

kjkk
er

kk

k
erlj

kjkk
ker

ker











λλ
λλ

 (6.5.a) 

or .)},;(),;({
),;()(

;
)(

I
)|(

;I
1

0;;
)(

I;I

;
)(

I
)|(

;I
1

0
(
I

;)(
min

;)(
min

0ss
sS )








jlllw
jl

k
erlj

kjkk
er

kk

k
erlj

kjk
P

ker

ker











λλ
λλ

 (6.5.b) 

 
The solution to (6.5) gives an estimator of the census parameter. Note that (6.5.a) uses error prone 
information from sampled units only, while (6.5.b) uses all error prone information from the 
frame. We may write (6.5) as 
 ,),;()(),;()( ;

)(
I

)|(
;I

1
0;I;I;;

)(
I;I

(
I min

;)(
min 0ssS )  

 jlwdllw k
erlj

kjkkkkk
er

kk
ker

  λλλ  (6.6.a) 
or .),;()1(),;()( ;

)(
I

)|(
;I

1
0;I;;

)(
I;I

(
I min

;)(
min 0ssS )   jlwllw k

erlj
kjkkkk

er
kk

P ker
  λλλ  (6.6.b) 

 
6.4 The EM Algorithm Estimator 
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Similarly, the EM algorithm can be applied to both the frame and the sample information. In both 
cases, the E step of the EM algorithm involves creating a set of “pseudo-data” in which the 
respondents are left intact and the non-respondents are fractionated into 2 partially complete 
pseudo-observations. The weight assigned to this pseudo-observation is the conditional probability 
that unit belongs to an associated domain given the observed data and prior estimation of the 
parameters. Once )(eλ  has been obtained, estimates of the conditional probabilities can be formed 
for each k . The conditional probability that a non-respondent k  belongs to domain }1,0{j  is 
given by ))(|( ;)( elj

k
ker  , where ))(|( ;)( elj

k
ker   is )|( ;)( ker lj

k
  evaluated at )(eλ . Estimation of λ  and )|( ;)( ker lj

k
  

are alternated repeatedly, where in their subsequent execution, the initial fit (e)λ  is replaced by the 
current fit )1( eλ  for λ . The two versions of the current conditional expectation of the complete 
data log-likelihood are 
 ),,;(log);(ˆ ;

)())(|(1
0;I

)()( ;)( jlfdQ k
erelj

kjkk
e ker

  λλλ 
   (6.7.a) 

and ),;(log);( ;
)())(|(1

0
)()( ;)( jlfQ k

erelj
kjk

eP ker
  λλλ  . (6.7.b) 

 
 
6.5 Simulation Study 
 
We conducted a small simulation study to illustrate the performances of each estimator of the 
classification model parameter under (6.4), (6.5.a) and (6.7.a). We first used values ku  and kfe ;  for 
each unit k  of the finite population of size 2000N . Then, we generated the domain   
membership indicator kl ;  from Bernoulli distribution with probability of membership 

)}exp(1/{)exp( ;;;  λvλv T
k

T
kkp   with T

kk u ),1(; v  and TT ),()03,.1( )2()1(  λ . Then we generated 
the error-prone indicator k

er l ;
)(   from the conditional Bernoulli distribution with probability of 

membership satisfying )0|1(
;;

)|1( )1( k
l

k pllplogit    with )1|1(
;

)1|1(
 λvT

kkplogit  , )0|1(
;

)0|1(
 λvT

kkplogit   
TT ),()01,.1( )4()3()1|1(

 λ  and TT ),()05,.1( )6()5()0|1(
 λ . Table 11 displays values of kk

er
k ll ;;

)(  , 
k

er
k l ;

)(   and kk l ; . 
 
 
 
 

Table 11: Values of kk
er

k ll ;;
)(  , k

er
k l ;

)(   and kk l ;  
  Error Free Classification kl ;   
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Error-prone 
Classification 

0 1 Total 
k

er l ;
)(   0 177 396 573 

1 177 1250 1427 
Total 354 1646 2000 

 
We maintained the population values ),,,( ;;

)(
; kk

er
kfk lleu   fix for Nk ,...,1 , and we selected 

1000A  Poisson samples each with probability of selection )}exp(1/{)exp( ;;;   ΦΦ T
k

T
kkp vv  

from the population with T
kk l ),1( ;; v  and T)3.,525.1( Φ . The process of generating 

respondents and nonrespondents from the simulated population is as follows. Self-enumeration 
response indicators for sampled unit k  are generated using ),,,1(~ ;;;3 kiOkiIkiMki hhhMr , with 

1
;;; ))exp()exp(1(  r

T
kirIr

T
kirMkiOh λvλv , )exp( ;;; r

T
kirmkiOkim hh λv , and k

m
r

m
r

m
rr

T
kirm ut )(

2;
)(

1;
)(

0;;  λv  for 
},{ IMm  and maxI,,...1i .  For unit k  under follow-up data collection in addition to self-

enumeration we used )(
3;;

)(
2;

)(
1;

)(
0;; )1( m

rkfk
m

r
m

r
m

rr
T

kirm eiut  λv  for Fkk Deei  ,,... . Table 12 
displays values of the response model parameter TTI

r
TM

rr ),( )()( λλλ  , where 
TM

r
M

r
M

r
M

r
M

r ),,,( )(
3;

)(
2;

)(
1;

)(
0;

)( λ  and TI
r

I
r

I
r

I
r

I
r ),,,( )(

3;
)(
2;

)(
1;

)(
0;

)( λ .  
Table 12: Response Model Parameter 
 Mail Internet 

0;r  -4 -5 
1;r  .008 .005 
2;r  .005 .01 
3;r  6 6 

 
The probability of a follow-up is model as )}exp(1/{)exp( ;;; f

T
kff

T
kfkfp ΦΦ vv   with T

kkf u ),1(; v  
and T

f )2,2(Φ . Table 13 displays statistics on the realized samples. 
Table 13: Statistics on the Realized Samples 
 Average over samples 
Sample Size 426 
Pop. Size Estimate 1999 
# Follow-ups 50 
# Respondents 146 
                  By Mail 107 
                  By Internet 39 

 
The vector parameter of interest is λ , the parameter associated with the model generating the 
domain membership indicators. Table 14 displays values of the classification model parameter λ . 
 
Let θ̂  denote an estimator of the parameter of interest θ . We calculated θ̂  from each repetition 
a ( Aa ,...,1 ), and its average a

A
aA θ̂θ̂ 1

1


  , where aθ̂  is the value of θ̂  for the tha  sample. The 

 
1371



simulated bias is calculated as )θθ̂()θ̂( B . We calculated θ̂  and )θ̂(B  for each component of 
the parameter of interest and those values are reported in Table 14. Table 14 clearly demonstrates 
that the bias is small for each response model parameter. The MSE of θ̂  is calculated as  

2
1

1 )θθ̂()θ̂(  


a
A
aAM . We calculated MSE ratios for each estimator θ̂  with the estimator solution 

to (5.4) and those values are reported in Table 14. Table 14 clearly indicates that all relative biases 
are small. Estimator using more prior information is more efficient than an estimator using only 
respondents. Our proposed estimator rivals the EM estimator under correct specification of the 
model generating the finite population; while it is more robust than the EM estimator under failure 
of the model’ specification. 
 
Table 14: Estimator Average and Bias ( θ̂ , )θ̂(B ); and MSE ratios )ˆ(/)θ̂( )(oλMM  
  Parameter 
 
EE 

 
Statistics 

)1(  )2(  )3(  )4(  )5(  )6(  
1.0 .03 1.00 -.01 -1.0 .05 

 
(6.4) θ̂  .95 .03 1.04 .006 -1.02 .09 

)θ̂(B  -.05 .007 .04 .016 -.02 .04 
)ˆ(/)θ̂( )(rλMM  1 1 1 1 1 1 

 
(6.5a) θ̂  .95 .03 1.00 .007 -1.01 .09 

)θ̂(B  -.04 .006 .004 .02 -.01 .04 
)ˆ(/)θ̂( )(rλMM  .04 .02 .004 .02 .01 .03 

 
(6.7a) θ̂  1.00 .04 .91 .009 -1.0 .08 

)θ̂(B  .003 .012 -.08 .02 -.01 .03 
)ˆ(/)θ̂( )(rλMM  .003 .01 .08 .01 .07 .06 

 
Finally, Table 15 displays statistics on the number of repetitions to converge. It is clear from Table 
16 that the EM algorithm requires much more iteration to converge than the proposed approach. 
  

Table 15: Statistics on the Number of Iterations 
 Proposed Method EM Method 
Average 10.13 27.29 
Variance 16.37 92.37 

 
7. Revision of the Response Model Parameter 

 
Let k

er t)(  represent the error-prone prior discrete random variable that indicates the time period i  
when the response occurs for a randomly selected unit k  from the sample. After I  time periods of 
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data collection, each unit k  is observed until the period k
er I)( , with II)( k

er . If the unit responses 
then  k

er
k

er t I)()(  , otherwise we only know that I)( k
er t . 

 
To specify a model for a joint distribution, it is often practice to parameterize the relationship 
between the two hazards in one of two ways. One way is that the joint distribution arises from the 
dependence of two survival times, which may result because a result of one affects the probability 
of responding of the other. A second way is that the joint distribution arises from shared observed 
or unobservable heterogeneity of the two observations. Hout, Duncan, and Sobel (1987) discuss 
these alternatives on the joint distribution of variables in multivariate contingency tables. The joint 
distribution of a discrete-time hazards, T

kk
er

k tt ),( )(t ,  could be specified in terms of the joint 
probability mass function 
 ),Pr()Pr( )( jtit kk

er
k t , for ,...2,1, ji . 

Shaked et al. (1995) defined the discrete bivariate conditional hazard rate function of kt  using the 
following five functions: 

1) A first response occurs from the error-free process  
 ),|,Pr( )()( itititith k

er
kk

er
kki  , ,...2,1i , 

2) A first response occurs from the error-prone process  
 ),|,Pr( )()()( itititith k

er
kkk

er
ki

er  , ,...2,1i , 
3)  Responses occur simultaneously from both processes 

 ),|,Pr( )()()( itititith k
er

kk
er

kki
er  , ,...2,1i , 

4) A response occurs from the error-free process given that a response has been obtained from 
the error-prone process 

 ),|Pr( )(
;|

)|( jtitith er
kji

ert  , ,...2,1 ji , and 
5) A response occurs from the error-prone process given that a response has been obtained 
from the error-free process 

 ),|Pr( )()(
;|

)|( jtitith kk
er

k
er

kji
ter  , ,...2,1 ji , 

provided the conditions in the above conditional probabilities have positive probabilities. 
Otherwise, we set these functions to be 1. The narrow sense bivariate geometric distribution 
(Esary and Marshall 1973), and results for the case of more than two discrete variables can be 
found in Shaked et al. (1995), who also give necessary and sufficient conditions on the five 
functions which ensure that they are hazard rate functions of some random vector kt . 
 
7.1 EE for the Target Response Mechanism 
 
We have  

 
1373



 kk kkkkk tttf   1)I>Pr()IPr()( , (7.1) 
where 1k  if unit k  is uncensored (responds) under the true response mechanism and 0k  if 
unit k  is censored. Substituting (3.2) and (3.3) into (7.1), yields 
 )1()}1/({)( I

1II kiikkk hhhtf kk
kk  

 . (7.2) 
Expression (7.2) can be rewritten (Allison 1982) as 
 )1()}1/({)( I

1
I

1 kii
r

kikiik hhhtf kkik   , 
where kir  is a sequence of the true response indicators defined for each unit k  whose values are 
defined as 1kir  if the unit does respond in period i  and 0kir  if the unit does not respond in 
period i . Taking the first derivatives of the logarithm of the objective function )()( kk tfLL rλ  
yields the census EE of the true response mechanism 
 0sS  )()( )()(

rr λλ k
t

k
t , (7.3) 

where 1I
1

)( )}1(){(/)(log)(   kikikikikiikk
t hhhrtf k hλλ rr s , and rλh  /kiki h . For the logistic 

regression model rλvT
kirkiki hh ;)}1/(log{  , )1(; kikikirki hh  vh , )()( ;

I
1

)(
kikikirik

t hrk   vλrs , and the 
matrix of second partial derivatives is 
 )()1()(

;;
I

1
)(

r
r

r λvvλ
λ JS 




T
kirkikikirik

Tt hhk . 
 
7 .2 Joint Distribution of the Error-prone and Error-free hazards 
 
The conditional joint distribution of ),( )(

kiki
er rr  is characterized by the matrix kiH  which depends 

on two probabilities: )1,|Pr( )()()1|1(  kik
er

ki
er

ki ritirh  and )0,|Pr( )()()0|1(  kik
er

ki
er

ki ritirh , 

 


  )1|1()0|1(
)1|1()0|1( 11

kiki
kiki

ki hh
hhH , 

where ki
er r)(  is a sequence of the error-prone response indicators defined for each unit k  whose 

values are defined as 1)( ki
er r  if the unit does respond in period i  and 0)( ki

er r  if the unit does not 
respond in period i . Hence, the conditional joint distribution of ),( )(

kiki
er rr  is given by (6.1) with 

),(),( )(
21 kiki

er rryy  , )1|1(
11 kikihhp  , )1( )1|1(

10 kiki hhp  , )0|1(
01 )1( kiki hhp  , and )1)(1( )0|1(

00 kiki hhp  .  
 
After I  time periods of data collection, we may decompose the joint distribution of kt  as 
 )()|(),( )()(

kkk
er

kk
er tfttfttf  , 

where )( ktf  is given by (7.1). Taking the first derivatives of the logarithm of the likelihood 
function ),()( )(

kk
pri

k ttfL rλ  yields the census EE of the true response mechanism 
 0sS  ),;()( )(

kk
er

kk ttrr λλ , (7.4) 
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where )()(/),(log),;( )|()()()(
rrrr λλλλ SSs tert

kk
er

kk
er

k ttftt  , )()(
rλSt  is given by (7.3), 

)|;()( )()|(
kk

er
rkkr

ter ttλλ sS   and rkk
er

kk
er

rk ttftt λλ  /)|(log)|;( )()(s . The solution to (7.4) defines 
the census parameter.  
 
7.3 Sample Estimating Equation 
 
Taking the derivatives of the logarithm of the objective function )|()()( )(

I
)(

Imin k
er

kk
er

kr ttftfL λ  
and adjusting for the unequal selection probabilities, we get the sample EE  
 0sssS  )};(),;({);()(ˆ )(

I
)(

I;I
)(

II min k
er

rkk
er

rkkk
er

rkr tttdt λλλλ , (7.5) 
where rr λλ  /)(log);( )()(

k
er

k
er tfts .   

 
Now, taking the derivatives of the logarithm of )( )(

k
er

k tf  yields the census EE associated with 
the error-prone response mechanism 
 0sS  );()( )()(

k
er

rkkr
er tλλ , (7.6) 

with )}1)(/{)(/)(log);( )()()()()()()(
ki

er
ki

er
ki

er
ki

er
ki

er
rki

er
k

er
rk hhhrrft  hλλ s , 

where  )1()0|1()1|1()(
kikikikiki

er hhhhh   and rλh  /kiki h . We use the EM algorithm to derive the 
solution of (7.6). The E-step on the the )1(   iteration of the EM algorithm, 

 
),I,(log),|IPr()1(
),(log),|Pr(

},)|,()I)(1(,)|,({);(

)()()(

)()()(I
1

)()()()()()(
;

I
1

)(









kk
ere

rk
er

kkk

kk
ere

rk
er

kikk

e
rk

er
kk

er
kkk

e
rk

er
kk

er
ikikk

e
rr

ttftt
ittftit

tttfttttflEQ

λ
λ

λλλλ





 

where )(e
rλ  denote the value of rλ  after the the  EM iteration. It remains to derive the conditional 

Probabilities of kk
er tt |)(  and its derivatives. 

 
7 .3 Conditional Probabilities of kk

er tt |)(  
 
The conditional probability of obtaining a response under the error-prone response mechanism at 
time period i  could be expressed in terms of the hazard as  
 
Case 1.1. k

er
k II )( & 1I)( 

kerkr  
For unit with k

er
k

er t I)()(  , the probability of obtaining a response at time period i  could be 
expressed in terms of the hazard as 
 )1|1(

I
)0|1(1I

1I
)()()(

)(
)(

)( )1()1,II|IPr(
kerker

ker kkiikk
er

kk
er

k
er hhrt  

 . (7.7.a) 
For units with k

er
k

er t I)()(  , the probability of obtaining a response can be expressed as  
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 )1)(1()0,II|IPr( )1|1(
I

)0|1(1I
1I

)()()(
)(

)(
)( kerker

ker kkiikk
er

kk
er

k
er hhrt  

 . (7.7.b) 
 
Case 1.2. k

er
k II )( & 0I)( 

kerkr  
For unit with k

er
k

er t I)()(  , the probability of obtaining a response at time period i  could be 
expressed in terms of the hazard as 
 )0|1(

I
)0|1(1I

1I
)()()(

)(
)(

)( )1()0,II|IPr(
kerker

ker kkiikk
er

kk
er

k
er hhrt  

 . (7.8.a) 
For units with k

er
k

er t I)()(  , the probability of obtaining a response can be expressed as  
 )1()0,II|IPr( )0|1(I

1I
)()()( )(

)( kiikk
er

kk
er

k
er hrt ker

ker   . (7.8.b) 
 
Case 2.1. k

er
k II )( & 1I kkr  

For unit with k
er

k
er t I)()(  , the probability of obtaining a response at time period i  could be 

expressed in terms of the hazard as 

 
}.)1({

)}1)(1()1({
)1(

)1()1,II|IPr(

)0|1(
II

)1|1(
II

)0|1()1|1(1I
1I

)1|1(
I

)0|1(1I
1I

)()()(

)()()()(

)(

kerkerkerker

ker
k

k

k
k

kkkk

kikikikii

k

kiikk
er

kk
er

k
er

hhhh
hhhh

h
hrt













 (7.9.a) 

For units with k
er

k
er t I)()(  , the probability of obtaining a response can be expressed as  

 
)}.1)(1()1({

)1(
)1()1,II|IPr(

)0|1()1|1(I
1I

)1|1(
I

)0|1(1I
1I

)()()(

)(
kikikikii

k

kiikk
er

kk
er

k
er

hhhh
h

hrt

ker
k

k

k
k











 (7.9.b) 

 
Case 2.2. k

er
k II )( & 0I kkr  

For unit with k
er

k
er t I)()(  , the probability of obtaining a response at time period i  could be 

expressed in terms of the hazard as 

 
}.)1({

)}1)(1()1({
)1()0,II|IPr(

)0|1(
II

)1|1(
II

)0|1()1|1(1I
1I

)0|1(I
1I

)()()(

)()()()(

)(

kerkerkerker

ker
k

k
k

kkkk

kikikikii

kiikk
er

kk
er

k
er

hhhh
hhhh

hrt











 (7.10.a) 

For units with k
er

k
er t I)()(  , the probability of obtaining a response can be expressed as  

 )}.1)(1()1({
)1()0,II|IPr(

)0|1()1|1(I
1I

)0|1(I
1I

)()()(

)(
kikikikii

kiikk
er

kk
er

k
er

hhhh
hrt

ker
k

k
k





  (7.10.b) 

 
7.4 Derivatives of the Conditional Probability of kk

er tt |)(  
We have  
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 kerker
kk

er
k

er
kk

er
k

er
kk

er ttttttf  )()( 1)()()()()( )|I>Pr()|IPr()|(  , (7.11) 
where 1)( k

er   if unit k  is uncensored (responds) under the error-prone response mechanism and 
0)( k

er   if unit k  is censored. 
Consider first the form given by 
 )1()}1/({)( qqqyg y  . 
Taking the first derivatives of the logarithm of the objective function )(yg yields 
 )}1(/{)(/)(log qqqyyg  qλ  , 
where λq  /q . 
 
Case 1.1. k

er
k II )( & 1I)( 

kerkr  
Substituting (7.10) into (7.11) yields 
 )1)(1()}1/({)|( )1|1(

I
)0|1(1I

1
)1|1(

I
)1|1(

I
)(

)(
)()(

)()( kerkerker

kerker kkiikkkk
er hhhhttf  


 . (7.12.1.a) 

Expression (7.12.1.a) can be rewritten as 

   
).1)(1(

)}1/({)}1/({)|(
)1|1(

I
)0|1(1

1

)1|1(
I

)1|1(
I

)0|1()0|1(1I
1

)(

)(
)(

)()(
)()(

)()(

kpriker

kIerk
er

kerkerkierker

kki
I

i

r
kk

r
kikiikk

er

hh
hhhhttf








  (7.12.1.b) 

Taking the first derivatives of the logarithm of (7.12.1.b) yields 

 )}.1(/{)(
)}1(/{)()|(log)|;(

)1|1()1|1()1|1(
I

)()1|1(
I

)0|1()0|1()0|1()()0|1(1I
1

)()(

I)(I)(I)()()(

)(

kerkkerkkerkerer

ker

krkrkrk
er

k

kikikiki
er

kiikk
er

kk
er

rk
hhhr

hhhrttftt


 

h

hλ


s  (7.12.1.c) 

For the logistic regression models 
 )()()|;( )1|1(

II
)()1|1(

I
)0|1()()0|1(1I

1
)(

)()()(
)(

kerkerkerker
kk

er
kkiki

er
kiikk

er
rk hrhrtt  

 vvλs . 
 
Case 1.2. k

er
k II )( & 0I)( 

kerkr  
Substituting (7.10) into (7.11) yields 
 )1()}1/({)|( )0|1(I

1
)0|1(
I

)0|1(
I

)( )()(
)()( kiikkkk

er hhhttf kerker

kerker  
 . (7.12.2.a) 

Expression (7.12.2.a) can be rewritten as 
 )1()}1/({)|( )0|1(I

1
)0|1()0|1(I

1
)( )()()(

kii
r

kikiikk
er hhhttf kerkierker   . (7.12.2.b) 

Taking the first derivatives of the logarithm of (7.12.2.b) yields  
 )}1(/{)()|(log)|;( )0|1()0|1()0|1()()0|1(I

1
)()( )(

kikikiki
er

kiikk
er

kk
er

rk hhhrttftt ker   hλ s . (7.12.2.c) 
For the logistic regression models 
 )()|;( )0|1()()0|1(I

1
)( )(

kiki
er

kiikk
er

rk hrtt ker   vλs . 
 
Case 2.1. k

er
k II )( & 1I kkr  
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Substituting (7.10) into (7.11) yields 

 ).1()1()1(
)}1/({)|(

)(I
1I

)1|1(
I

)0|1(1I
1

I
)(

I
)()(

)(

)(
)()(

ki
er

ikkii

k
er

k
er

kk
er

hhh
hhttf

ker
kk

k

ker

kprikpri










 (7.12.3.a) 

 
Expression (7.12.3.a) can be rewritten as 

 ).1()1()1(
)}1/({)}1/({)}1/({)|(

)(I
1I

)1|1(
I

)0|1(1I
1

)()(I
1I

)1|1(
I

)1|1(
I

)0|1()0|1(1I
1
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)(

)()(I)()(
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r
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i

r
kk

r
kikiikk

er

hhh
hhhhhhttf

ker
kk
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kierker
k

kkpri
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kierk
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







 (7.12.3.b) 

 
Taking the first derivatives of the logarithm of (7.12.3.b) yields  

 
)}.1(/{)({

)}1(/{)(
)}1(/{)()|(log)|;(

)()()()()(I
1I
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I
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
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 (7.12.3.c) 

 
Case 2.2. k

er
k II )( & 0I kkr  

Substituting (7.10) into (7.11) yields 

 ).1()1(
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1

I
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I
)()(
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er
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
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
 (7.12.4.a) 

Expression (7.12.4.a) can be rewritten as 

 ).1()1(
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  (7.12.4.b) 

 
Taking the first derivatives of the logarithm of (7.12.4.b) yields 
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k

k



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
h
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λ





s
 (7.12.4.c) 

 
Concluding Remarks 

 
We formulated an optimization problem for designing a survey and we identified steps for its 
revision during the survey data collection period. We considered the error-prone prior, the error-
prone processed, and the error-free information as a random variable with a joint distribution with 
some probability function. Then, we updated the joint probability distribution after observing 
some realizations of the error-free random process at each phase of the survey process to revise 
the survey design specification. The proposed approach makes full use of both error-prone sets of 
information while requiring only few observations from the error-free and expensive target 
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information. Since revision of a design indicates when a design is nearly "optimal" and how the 
error-free information varies from the error-prone prior and processed information, the revision of 
the design has an important role to play in survey quality and cost. 
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