

TensorFlow versus H20: Predicting the SP500

Kenneth E. Davis M.S.
kedavis@umail.iu.edu
Indianapolis, IN 46235

Abstract

Data science tools can help us both better understand underlying phenomenon and better identify future
courses of action. However, selecting the right tool for the job requires a further challenge and an art. The
present analysis compares the well known TensorFlow package, in Python, to the lesser utilized but more
statistically friendly package H2O, in R, to predict the SP500 stock market index as a multi-parameter
economic time series. Results, innovations, ease or difficulty of use, and future applications of each data
science package are reported. Local machine and virtual machine instances in Amazon AWS AMIs are
evaluated. Overall fit of economic parameters are examined. TensorFlow and H2O offer unique and
powerful neural network and recurrent neural network/LSTM solution pathways that are well worth
consideration.

Keywords: TensorFlow, H2O in R, Neural Network, LSTM, SP500, Python

1. Introduction

At the present moment, machine learning is increasingly being recognized for new, often stunning
innovations, nearly on a daily basis. These advances occur in wide variety of fields, and include
recommendation engines1-3, image recognition4, games of strategy5, gambling6,7, crime prediction8-10,
military strategy11, radiology12-14, neural fMRI mapping in the human brain15, and drone recognition of
healthy crops16, among many others.

Although published advancements are very impressive, many new discoveries remain unreported, as they
carry large degrees of secrecy and efficacy. In profit driven organizations, protection of proprietary
methods and trade secrets relate directly to profitability in a competitive environment. Alternatively,
military applications relate immediately to national defense and security which would be quickly
exploited or rendered obsolete upon technique sharing. For equity investing, the efficacy of successful
methods would erode upon exposure, and nullify the probability of gains in a game of investment survival
often characterized by extreme competition. For these reasons, it is understandable that the
reproducibility and duplication of many referenced findings is often difficult to achieve.

Despite these challenges, the current study attempts to illustrate the advantages and differences between
two popular but disparate machine learning tools, available today at no cost, that can help answer difficult
research questions. The topics addressed here include what machine learning platform to use, as well as
what data science artificial intelligence techniques best help obtain competitive research solutions. The
present study compares TensorFlow/Keras in Python, to H2O in R, for predicting the stock market’s
SP500 index.

1289

2. Materials and Methods

The present analysis utilizes readily accessible economic data to predict the level of the stock market,
using cost-free, GNU General Public License software packages as follows:

2.1 Software and OS

Analysis Software

Python 3.6.8 with Spyder 3.3.2
TensorFlow 1.6.0 (older version to insure cross compatibility with Amazon Cloud installations)

R Studio 1.456
R 3.5.0
H2O 3.18.0.11

Anaconda Navigator 1.9.6

Operating Systems

Windows 10 Pro with Core i7 8-Core CPU 3.4 GHz

Amazon Cloud AWS EC2 Windows 2016 Server

(Deep Learning Amazon Machine Image AMI, + various 4, 8, and 16 CPU’s depending on task)

Mac OS Sierra 10.12.6 (with Python TensorFlow and H2O R installations used during travel)

2.2 Data Sources

a.) Economic data: FRED database (St. Louis Fed) 17
b.) SP500 historical data from Yahoo Finance
c.) Quandl package for PMI data (https://www.quandl.com required a free registration at the time of
study)

2.3 Variables Used

Outcome Variable: SP500 Index [1992 thru 2018]

Predictors: Economic Indicators

1. Unemployment Rate
2. Consumer Price Index (CPI)
3. Purchasing Managers Index (PMI)
4. lagged SP500

Monthly values.

1290

2.4 Model Architecture

The primary architectures were:

 TensorFlow/Keras in Python.
2- hidden layers with
200 nodes each,
5000 epochs.

H2O in R
5-hidden layers with
200 nodes each,
2000 epochs.

In TensorFlow/Keras in Python, a
Sequential Model was selected with
Relu Activation, and a
1-node output layer with Linear Activation.
Compilation utilized the
Adam Optimizer, with a
Loss Function of MSE.

In H2O in R,
The architecture identified above, with the loss function RMSE, and
all settings set to default (relu activation and adam optimization),
including random seeding.

3. Results

3.1 Best Model achieved (n=25 iterations)

Table 1: Best RMSE and R2 by platform

RMSE R^2 (SSR/SST)

Keras TensorFlow in Python 9.3 0.9997

H20 in R 10.1 0.9997

3.2 Consistency of RMSE (Reproducibility, n=25)

Table 2: Average RMSE, standard deviation, min and max of n=25 identical runs

RSME mean Std Min max

Keras TensorFlow in Python 13.6 3.6 9.3 24.7

H20 in R 14.8 2.5 10.1 19.8

1291

3.3 n=1 Out Of Sample Prediction (n=24 months^)

Table 3: Maximum Loss, percent residual, versus the buy and hold strategy 2016-2017, with a 1-month
rolling test target. Training data was 1992 thru 2015, rolling forward monthly.

RMSE R2 Max Loss

TensorFlow/Keras in Python 78.6 .8406 -4.3%

H20 in R (2-layer gave better max loss) 99.4 .7451 -3.9%

Buy and Hold (worst month loss) -3.6%
 ^sliding prediction window was 24 individual months, Jan 2016 thru Dec 2017

3.4 Cross Validation

Cross validation was performed ceremonially. In the case of out of sample prediction (as the forward
SP500 level does not necessarily remain within in-sample value ranges) better results were acquired with
higher epoch counts. The two scoring histories exampled below are from H2O in R (for cleaner looking
default outputs):

Figure 1: Scoring history by epoch number with H2O in R

1292

Figure 2: 5-fold cross validation with 90% training data to 10% validation data

1293

3.5 Single Best Model, by package

Table 4: Traditional Methods, TensorFlow/Keras and H2O methods, compared. Best models. Empty
cells were compared, but not optimized in favor of the better performing Neural Network.

RMSE R2

individual methods18

Linear Regression/GLM 84 .9246

AR(1) 51 .9911

ARIMA 50 .9829

NNTAR 47 .9907

TensorFlow/Keras in Python Bayesian^ (2-Layer) 49.8

LSTM (2-period unit) 40.0

NN (Feed Forward) 9.3 .9997

H20 in R GLM >

Auto ML -

Boltzmann machines >

Deeply Randomized Tree >

Deep Learning/NN 10.1 0.9997

Stacked Ensemble -

 ^for Bayesian NN: n_samples =150 samples and n_iter=3500

3.6 2-Layer versus 5-Layer (n=25 iterations)

Table 5: 2-layer and 5-layer architecture (hidden layer count) compared including computational times

Ave RMSE (std)[range] epochs time

Keras/TensorFlow Python (2-layer) 13.6 (+/-3.6) [9.3, 24.7] 5000 28 min

Keras/TensorFlow Python (5-layer) 17.8 (+/-8.8) [10.0, 39.0] 2000 50 min

Ave RMSE(std)[range] epochs time

H20 in R (2- layer) 19.2 (+/-1.8) [15.3 , 22.8] 5000 11 min

H20 in R (5-layer) 14.8 (+/-2.5) [10.1 ,19.8] 2000 22 min

1294

4. Discussion

4.1 Machine Learning versus Traditional Methods

Both TensorFlow/Keras in Python and H20 in R performed admirably in researching the outcome under
study, the SP500 Index. Each technique successfully validated the other, and quite notably, neural net
substantially outperformed traditional statistical methods, linear regression, ANOVA, AR(1), and
ARIMA, by reporting RMSE’s with minimum values of 9 and 10 (table 4, section 3.5), compared to
values of between 50 and 90 (table 4, section 3.5) for the traditional methods18.

4.2 Predicting the SP500

As for predicting the SP500, although each model performed well in general, neither method was yet able
to shield users from the maximum losses compared to the buy and hold strategy (table 3, section 3.3).
TensorFlow/Keras in Python reported a maximum monthly loss (largest losing residual) of -4.3% and
H2O in R -3.9%, where buy and hold reported a maximum loss of -3.6%

4.3 Best Model: TensorFlow/Keras in Python

TensorFlow/Keras in Python produced the best model as measured by RMSE (table1, section 3.1). To the
authors’ best knowledge, this may be because the internal parameterization and methodology allows a
wider range of possible outcomes compared to H2O in R. The trade off is with the range and standard
deviation of multiple iterations, as discussed below.

4.4 The Most Consistent Model: H2O in R

H2O in R produced the most consistent results when running multiple passes of the identical model, as
evidenced by a 30% to 50% or more reduction in the standard deviation and range for RMSE as seen in
table 2, section 3.2, and table 5, section 3.6.

This did help when ruling out models along the research process, where extreme models occurring at the
extended range may misrepresent a particular architecture (to be excluded mistakenly). This property
however likely ultimately causes the best model to flow from TensorFlow/Keras in Python.

4.5 Ease of Learning: H2O in R

H2O in R was characterized by a very rapid rate of acquiring strong models quickly in the human learning
phase. The time from example to actionable model occurred within minutes or hours, as opposed to hours
or days in TensorFlow/Keras in Python.

This is primarily due to considerably less time spent on data manipulation and formatting in H2O in R.
Python involves the use of a wider variety of libraries and packages, and the peculiarities involved with
each. For H2O in R, once the data is the H2O environment, the analysis proceeds quickly.

A good example of this is scaling and normalization. In TensorFlow/Keras in Python, the user must
customarily scale and rename the data between numpy arrays and panda dataframes in order to get a
sensible deep learning result, where in H2O, scaling is automatically performed by default.

1295

4.6 Speed: H2O in R

Processing times using 8 to 16 current cores were often 2 to 3 times faster with H2O in R (table 5, section
3.6).

However, if you have vast server and/or cloud level resources, this speed difference would be nullified.

4.7 Community Support: TensorFlow/Keras in Python

Answers were easier to find for TensorFlow/Keras in Python, and also more numerous. This was good
and bad, more answers had to be considered, but there were more opportunities for solutions.

Stack Overflow and other online resources favored TensorFlow and Python, however all required
solutions under study were readily available for both platforms. In both platforms, current authors were
never ‘stuck’ for more than a matter of minutes, or on rare very occasion, hours.

4.8 Customization, Upscalability, Flexibility: TensorFlow/Keras in Python

Creation of custom loss functions and a multitude of specific tools greatly favor TensorFlow in Python.
The engineering focus and coding compatibility (C++ etc) is apparent in TensorFlow/Keras and Python.
The cost of this is only difficulty and complexity, but the advantages are numerous.

4.9 Coding Ease: H2O in R

Along with auto-scaling, issues related to sub-setting and referencing values favors H2O in R.
For the Python coder, using .iloc /.loc, indexing from 0 – 99 (for example) instead of 1-100, and inclusive
versus exclusive ranges of data in loops add a layer of coding complexity avoided in R. This is
particularly apparent with LSTM methods, where indexing reaches a crescendo.

4.10 Available Data Science Methods: Tied, favoring TensorFlow/Keras

The newest and most awe inspiring methods generally come from TensorFlow/Keras in Python.
Convolutional networks and multiple methodologies involving neural networks (e.g. the policy network
and monte carlo tree search of AlphaGo5) are much more numerous coming from DeepMind/Google’s
phenomenal work in this field.

However, the investigational research focus of H2O in R has many salient advantages as well. AutoML
became available several months (roughly a year or so) prior in H2O rather than TensorFlow/Keras, and
stacked ensembles and various other informative methods are much more readily available within the
H2O framework with no additional package or data configuration.

Both platforms however provide interesting methods in any regard. Large, computationally intense and
immediately implementable projects greatly favor TensorFlow/Keras in Python, while deep, methodical
research and the understanding of variable relationships appears to favor H2O in R.

4.11 Study Weaknesses

The weaknesses of the present study include the following:

1296

 GAM models were not included, mostly due to time constraint. Further, new platform innovations of
2019 were not updated along the duration of this study (for consistency’s sake).

PyTorch/Facebook and Azure/Microsoft were not yet reviewed, only due to learning time constraints.

A further in-depth, rigorous optimization of Bayesian and LSTM techniques were not pursued in favor of
feed forward neural network, which performed very clearly and quickly at a higher level for the present
study question. Lastly, ‘solving’ the SP500 was not strictly emphasized here in favor of the evaluation of
analysis software.

4.12 Final Summary

The choice of machine learning tools largely depends on what is most important to the user, time,
resource availability, flexibility and downstream application of the process.

The current authors continue to utilize both platforms and software packages presently: H2O in R for a
speedy research and exploration phase, and then TensorFlow/Keras in Python for the customizable,
powerful feature set going forward.

Both tools are key in performing, and enjoying, a truly great era in research, scientific understanding, and
technological advancement.

Kenneth E. Davis, M.S.
kedavis@umail.iu.edu
September 2019

5. References

1. Y. Zhou et al., “Large-Scale Parallel Collaborative Filtering for the Netflix Prize,” Proc. 4th Int’l Conf.
Algorithmic Aspects in Information and Management, LNCS 5034, Springer, 2008, pp. 337-348.

2. Carlos A. Gomez-Uribe and Neil Hunt. 2015. The Netflix recommender system: Algorithms, business
value, and innovation. ACM Trans. Manage. Inf. Syst. 6, 4, Article 13 (December 2015), 19 pages. DOI:
http://dx.doi.org/10.1145/2843948

3. G.D. Linden, J.A. Jacobi, and E.A. Benson, Collaborative Recommendations Using Item-to-Item
Similarity Mappings, US Patent 6,266,649 (to Amazon.com), Patent and Trademark Office, Washington,
D.C., 2001.

4. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of
CVPR, pages 770–778, 2016.

5. Silver D, Huang A, Maddison C J, et al: Mastering the game of Go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

1297

6. Noam Brown and Tuomas Sandholm. Baby Tartanian8: Winning agent from the 2016 annual
computer poker competition. In Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence (IJCAI-16), pages 4238–4239, 2016.

7. Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit hold’em
poker is solved. Science, 347(6218):145–149, January 2015.

8. Ferguson, A.G. “Big Data and Predictive Reasonable Suspicion.” University of Pennsylvania Law
Review 163(2): 339 – 410. 2015.

9. V. Grover, R. Adderley, and M. Bramer, "Review of current crime prediction techniques," in
Applications and Innovations in Intelligent Systems XIV, ed: Springer, 2007, pp. 233-237.

10. Wang X., Gerber M.S., Brown D.E. Automatic Crime Prediction Using Events Extracted from
Twitter Posts. In: Yang S.J., Greenberg A.M., Endsley M. (eds) Social Computing, Behavioral -
Cultural Modeling and Prediction. SBP 2012. Lecture Notes in Computer Science, vol 7227.
Springer, Berlin, Heidelberg. 2012.

11. The Economist. Artificial intelligence is changing every aspect of war. Battle algorithm.
A new type of arms race could be on the cards. The Economist, September 7, 2019.

12. Ursula Schmidt-Erfurth, Amir Sadeghipour, Bianca S Gerendas, Sebastian M Waldstein, and Hrvoje
Bogunovic. Artificial intelligence in retina. Prog Retin Eye Res. 2018 Nov; 67:1-29.

13. Bluemke DA. Radiology in 2018: are you working with AI or being replaced by AI? Radiology 2018
; 287(2):365–366.

14. Yi PH, Hui FK, Ting DSW. Artificial intelligence and radiology: collaboration is key. J Am Coll
Radiol. 2018. https://doi.org/10.1016/j.jacr.2017.12.037

15. Khazaee, A., Ebrahimzadeh, A., Babajani-Feremi, A. Application of advanced machine learning
methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s
disease. Brain Imaging Behav. 10 (3), 799–817. 2016.

16. E. Puig et al., “Assessment of crop insect damage using unmanned aerial systems: a machine learning
approach,” in Proc. of 21th Int. Congress on Modelling and Simulation, pp. 1420– 1426 (2015).

17. FRED Economic Data. Federal Reserve Bank of St. Louis, One Federal Reserve Bank Plaza, St.
Louis, MO 63102. https://fred.stlouisfed.org/

18. Davis KE. Advantageous Statistical Tools for Stock Market Investing. 2018. In JSM Proceedings,
Statistical Computing Section. Alexandria, VA: American Statistical Association.

1298

