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Abstract 

 
Data science tools can help us both better understand underlying phenomenon and better identify future 
courses of action.  However, selecting the right tool for the job requires a further challenge and an art. The 
present analysis compares the well known TensorFlow package, in Python, to the lesser utilized but more 
statistically friendly package H2O, in R, to predict the SP500 stock market index as a multi-parameter 
economic time series.  Results, innovations, ease or difficulty of use, and future applications of each data 
science package are reported. Local machine and virtual machine instances in Amazon AWS AMIs are 
evaluated.  Overall fit of economic parameters are examined.  TensorFlow and H2O offer unique and 
powerful neural network and recurrent neural network/LSTM solution pathways that are well worth 
consideration. 
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1. Introduction 

 
At the present moment, machine learning is increasingly being recognized for new, often stunning 
innovations, nearly on a daily basis. These advances occur in wide variety of fields, and include 
recommendation engines1-3, image recognition4, games of strategy5, gambling6,7,  crime prediction8-10, 
military strategy11,  radiology12-14,  neural fMRI mapping in the human brain15, and drone recognition of 
healthy crops16, among many others. 
 
Although published advancements are very impressive, many new discoveries remain unreported, as they 
carry large degrees of secrecy and efficacy.  In profit driven organizations, protection of proprietary 
methods and trade secrets relate directly to profitability in a competitive environment.  Alternatively, 
military applications relate immediately to national defense and security which would be quickly 
exploited or rendered obsolete upon technique sharing.   For equity investing, the efficacy of successful 
methods would erode upon exposure, and nullify the probability of gains in a game of investment survival 
often characterized by extreme competition.  For these reasons, it is understandable that the 
reproducibility and duplication of many referenced findings is often difficult to achieve. 
 
 
Despite these challenges, the current study attempts to illustrate the advantages and differences between 
two popular but disparate machine learning tools, available today at no cost, that can help answer difficult 
research questions. The topics addressed here include what machine learning platform to use, as well as 
what data science artificial intelligence techniques best help obtain competitive research solutions.  The 
present study compares TensorFlow/Keras in Python, to H2O in R, for predicting the stock market’s 
SP500 index. 
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2. Materials and Methods 

The present analysis utilizes readily accessible economic data to predict the level of the stock market, 
using cost-free, GNU General Public License software packages as follows: 

2.1 Software and OS 

Analysis Software 
 
Python 3.6.8 with Spyder 3.3.2 
TensorFlow 1.6.0  (older version to insure cross compatibility with Amazon Cloud installations) 
 
R Studio 1.456 
R 3.5.0     
H2O  3.18.0.11 
 
Anaconda Navigator 1.9.6 
 
Operating Systems 
 
Windows 10 Pro with Core i7 8-Core CPU 3.4 GHz  
 
Amazon Cloud AWS EC2 Windows 2016 Server  

(Deep Learning Amazon Machine Image AMI, + various 4, 8, and 16 CPU’s depending on task)   
 
Mac OS Sierra 10.12.6 (with Python TensorFlow and H2O R installations used during travel) 
 

2.2 Data Sources 

a.) Economic data: FRED database (St. Louis Fed) 17 
b.) SP500 historical data from Yahoo Finance  
c.) Quandl package for PMI data (https://www.quandl.com  required a free registration at the time of 
study)  
 

2.3 Variables Used 

Outcome Variable:     SP500 Index [1992 thru 2018] 

Predictors:    Economic Indicators 

1. Unemployment Rate 
2. Consumer Price Index (CPI)  
3. Purchasing Managers Index (PMI)  
4. lagged SP500 

 
 
Monthly values. 
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2.4 Model Architecture 

The primary architectures were: 
 
 TensorFlow/Keras in Python. 
2- hidden layers with  
200 nodes each,  
5000 epochs. 
 
H2O in R 
5-hidden layers with  
200 nodes each,  
2000 epochs. 
 
In TensorFlow/Keras in Python, a  
Sequential Model was selected with  
Relu Activation, and a 
1-node output layer with Linear Activation. 
Compilation utilized the  
Adam Optimizer, with a  
Loss Function of MSE.  
 
In H2O in R,  
The architecture identified above, with the loss function RMSE, and  
all settings set to default (relu activation and adam optimization),  
including random seeding. 
 
 

3. Results 
 
 
3.1  Best Model achieved (n=25 iterations)  
 
Table 1:  Best RMSE and R2 by platform 
 

 
RMSE R^2 (SSR/SST) 

Keras TensorFlow in Python 9.3 0.9997 

H20 in R 10.1 0.9997 
 
 
 
3.2 Consistency of RMSE (Reproducibility, n=25) 
 
Table 2:  Average RMSE, standard deviation, min and max of n=25 identical runs  
 

RSME  mean Std Min max 

Keras TensorFlow in Python 13.6 3.6 9.3 24.7 

H20 in R  14.8 2.5 10.1 19.8 
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3.3   n=1 Out Of Sample Prediction (n=24 months^)  
 
Table 3:  Maximum Loss, percent residual, versus the buy and hold strategy 2016-2017, with a 1-month 
rolling test target.   Training data was 1992 thru 2015, rolling forward monthly. 
 

 
RMSE R2  Max Loss 

TensorFlow/Keras in Python 78.6 .8406 -4.3% 

H20 in R (2-layer gave better max loss) 99.4 .7451 -3.9% 

Buy and Hold (worst month loss) -3.6% 
 ^sliding prediction window was 24 individual months, Jan 2016 thru Dec 2017 
 
  
 
3.4 Cross Validation 
 
Cross validation was performed ceremonially. In the case of out of sample prediction (as the forward 
SP500 level does not necessarily remain within in-sample value ranges) better results were acquired with 
higher epoch counts.  The two scoring histories exampled below are from H2O in R (for cleaner looking 
default outputs): 
 
 

 
 
Figure 1:  Scoring history by epoch number with H2O in R 
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Figure 2:  5-fold cross validation with 90% training data to 10% validation data 
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3.5  Single Best Model, by package 
 
Table 4:  Traditional Methods, TensorFlow/Keras and H2O methods, compared. Best models. Empty 
cells were compared, but not optimized in favor of the better performing Neural Network. 
 

  
RMSE R2 

individual methods18 

Linear Regression/GLM   84  .9246 

AR(1)                             51  .9911 

ARIMA                    50  .9829 

NNTAR    47  .9907 

        

TensorFlow/Keras in Python Bayesian^ (2-Layer) 49.8   

 
  

LSTM (2-period unit)  40.0   

NN (Feed Forward)  9.3  .9997 

      

H20 in R GLM >    

 

Auto ML -   

Boltzmann machines >    

Deeply Randomized Tree    >    

Deep Learning/NN 10.1 0.9997 

Stacked Ensemble -   

      

     ^for Bayesian NN:  n_samples =150 samples and n_iter=3500 
 
 
 
 
3.6    2-Layer versus 5-Layer (n=25 iterations) 
 
Table 5:  2-layer and 5-layer architecture (hidden layer count) compared including computational times 
 

 
Ave RMSE (std)[range] epochs time 

Keras/TensorFlow Python (2-layer) 13.6 (+/-3.6 ) [9.3, 24.7 ] 5000 28 min 

Keras/TensorFlow Python (5-layer) 17.8 (+/-8.8)  [10.0, 39.0] 2000 50 min 
 

 
Ave RMSE(std)[range] epochs time 

H20 in R (2- layer) 19.2 (+/-1.8 ) [15.3 , 22.8 ] 5000 11 min 

H20 in R (5-layer) 14.8 (+/-2.5) [10.1 ,19.8 ] 2000 22 min 
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4. Discussion 
 

 
4.1   Machine Learning versus Traditional Methods 
 
Both TensorFlow/Keras in Python and H20 in R performed admirably in researching the outcome under 
study, the SP500 Index.  Each technique successfully validated the other, and quite notably, neural net 
substantially outperformed traditional statistical methods, linear regression, ANOVA, AR(1),  and 
ARIMA, by reporting RMSE’s with minimum values of 9 and 10 (table 4, section 3.5), compared to 
values of between 50 and 90 (table 4, section 3.5) for the traditional methods18. 
 
4.2   Predicting the SP500 
 
As for predicting the SP500, although each model performed well in general, neither method was yet able 
to shield users from the maximum losses compared to the buy and hold strategy (table 3, section 3.3). 
TensorFlow/Keras in Python reported a maximum monthly loss (largest losing residual) of -4.3% and 
H2O in R -3.9%, where buy and hold reported a maximum loss of -3.6%  
 
4.3   Best Model:    TensorFlow/Keras in Python 
 
TensorFlow/Keras in Python produced the best model as measured by RMSE (table1, section 3.1).  To the 
authors’ best knowledge, this may be because the internal parameterization and methodology allows a 
wider range of possible outcomes compared to H2O in R.  The trade off  is with the range and standard 
deviation of multiple iterations, as discussed below. 
 
4.4   The Most Consistent Model:     H2O in R 
 
H2O in R produced the most consistent results when running multiple passes of the identical model, as 
evidenced by a 30% to 50% or more reduction in the standard deviation and range for RMSE as seen in 
table 2, section 3.2, and table 5, section 3.6. 
  
This did help when ruling out models along the research process, where extreme models occurring at the 
extended range may misrepresent a particular architecture (to be excluded mistakenly).  This property 
however likely ultimately causes the best model to flow from TensorFlow/Keras in Python. 
 
4.5   Ease of Learning:   H2O in R 
 
H2O in R was characterized by a very rapid rate of acquiring strong models quickly in the human learning 
phase.  The time from example to actionable model occurred within minutes or hours, as opposed to hours 
or days in TensorFlow/Keras in Python. 
 
This is primarily due to considerably less time spent on data manipulation and formatting in H2O in R.  
Python involves the use of a wider variety of libraries and packages, and the peculiarities involved with 
each. For H2O in R, once the data is the H2O environment, the analysis proceeds quickly. 
 
A good example of this is scaling and normalization.  In TensorFlow/Keras in Python, the user must 
customarily scale and rename the data between numpy arrays and panda dataframes in order to get a 
sensible deep learning result, where in H2O, scaling is automatically performed by default. 
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4.6   Speed:   H2O in R  
 
Processing times using 8 to 16 current cores were often 2 to 3 times faster with H2O in R (table 5, section 
3.6). 
 
However, if you have vast server and/or cloud level resources, this speed difference would be nullified. 
 
4.7   Community Support:  TensorFlow/Keras in Python 
 
Answers were easier to find for TensorFlow/Keras in Python, and also more numerous. This was good 
and bad, more answers had to be considered, but there were more opportunities for solutions.   
 
Stack Overflow and other online resources favored TensorFlow and Python, however all required 
solutions under study were readily available for both platforms.  In both platforms, current authors were 
never ‘stuck’ for more than a matter of minutes, or on rare very occasion, hours. 
 
4.8   Customization, Upscalability, Flexibility: TensorFlow/Keras in Python 
 
Creation of custom loss functions and a multitude of specific tools greatly favor TensorFlow in Python.  
The engineering focus and coding compatibility (C++ etc) is apparent in TensorFlow/Keras and Python.  
The cost of this is only difficulty and complexity, but the advantages are numerous. 
 
 
4.9   Coding Ease:    H2O in R 
 
Along with auto-scaling, issues related to sub-setting and referencing values favors H2O in R. 
For the Python coder, using .iloc /.loc, indexing from 0 – 99 (for example) instead of 1-100, and inclusive 
versus exclusive ranges of data in loops add a layer of coding complexity avoided in R.  This is 
particularly apparent with LSTM methods, where indexing reaches a crescendo. 
 
 
4.10   Available Data Science Methods:   Tied, favoring TensorFlow/Keras 
 
The newest and most awe inspiring methods generally come from TensorFlow/Keras in Python. 
Convolutional networks and multiple methodologies involving neural networks (e.g. the policy network 
and monte carlo tree search of AlphaGo5) are much more numerous coming from DeepMind/Google’s 
phenomenal work in this field.   
 
However, the investigational research focus of H2O in R has many salient advantages as well.  AutoML 
became available several months (roughly a year or so) prior in H2O rather than TensorFlow/Keras, and 
stacked ensembles and various other informative methods are much more readily available within the 
H2O framework with no additional package or data configuration.  
 
Both platforms however provide interesting methods in any regard.  Large, computationally intense and 
immediately implementable projects greatly favor TensorFlow/Keras in Python, while deep, methodical 
research and the understanding of variable relationships appears to favor H2O in R.  
 
 
4.11 Study Weaknesses 
 
The weaknesses of the present study include the following: 
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 GAM models were not included, mostly due to time constraint.  Further, new platform innovations of 
2019 were not updated along the duration of this study (for consistency’s sake).   
 
PyTorch/Facebook and Azure/Microsoft were not yet reviewed, only due to learning time constraints.  
 
A further in-depth, rigorous optimization of Bayesian and LSTM techniques were not pursued in favor of 
feed forward neural network, which performed very clearly and quickly at a higher level for the present 
study question. Lastly, ‘solving’ the SP500 was not strictly emphasized here in favor of the evaluation of 
analysis software. 
 
 
 
4.12 Final Summary 
 
The choice of machine learning tools largely depends on what is most important to the user, time, 
resource availability, flexibility and downstream application of the process.   
 
The current authors continue to utilize both platforms and software packages presently: H2O in R for a 
speedy research and exploration phase, and then TensorFlow/Keras in Python for the customizable, 
powerful feature set going forward. 
 
Both tools are key in performing, and enjoying, a truly great era in research, scientific understanding, and 
technological advancement. 
 
 
Kenneth E. Davis, M.S. 
kedavis@umail.iu.edu 
September 2019 
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