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Abstract
The (qualitative) relation between pedestrian flow and density has been shown to follow a common
pattern on multiple real life situations. This pattern distinguishes between a free-flow regime (for
low densities) and a congested regime (for high densities). However, theoretical models, such as the
Social Force Model (SFM), can handle this behavior if the right friction (or the pedestrian relaxation
time) is set. We carried out statistical and numerical tests in order to match our SFM simulations
with experimental data on the Jamaraat bridge (pedestrians walking along a straight corridor). We
concluded that fittings should not care on the friction (or the pedestrian relaxation time) itself, but
on other ”reduced” parameters with fewer degrees of freedom.
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1. Introduction

Researchers postulated that either the environment and the individuals’ own desire affect
the pedestrians motion in a similar way as forces do with respect to the momentum of par-
ticles (Helbing 2000;Helbing 1995). This “social force model” (SFM) nicely bridged the
socio-psychological phenomenon of crowds behavior to the “microscopic” formalism of
moving particles. The model succeeded at this instance to explain why the crowd evacua-
tion slows down as pedestrians try harder to escape from a dangerous situation (i.e. “faster
is slower” effect) (Helbing 200; Parisi, 2005; Parisi, 2007).

Some questioning arose on the true psychological tendency of the pedestrians to stay
away from each other. While the social forces accomplish this tendency, it attains a some-
what unrealistic “colliding behavior” for slowly moving pedestrians (Lakoba, 2005). His
(her) repulsive tendency is expected to decrease as approaching a more crowded environ-
ment. The small fall-off length B = 0.08 m suggested by Helbing (2000) does not com-
pletely solve this issue. It neither agrees with the fact that pedestrians prefer to keep a
comfortable 0.5 m distance between each other in a moderately crowded environment, nor
it fits accurately the empirical velocities reported for non-panicking crowds (Lakoba, 2005).

Researchers turned back to examine the available data on the velocity and flux behavior
for different density environments (Helbing, 2007;Seyfried, 2005;Seyfried, 2008). Helbing
(2007) is a wonderful summary of empirical data from literature, and their own data set,
acquired from videos of the Muslim pilgrimage in Mina-Makkah (2006). They showed
from the empirical fundamental diagram (flux J versus density ρ) that highly dense crowds
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(seemingly up to 10 p/m2) do not drive the pedestrians velocity to zero, although the rea-
sons for this remain rather obscure.

The high density regime appears to be the most cumbersome one. Caution was claimed
when (automatically) transferring the usual “calibrated” parameters of the SFM to this
regime. It was argued that the pedestrians’ body size distribution and the “situational con-
text” are somewhat responsible for the unexpected departure from these parameters (Jo-
hansson, 2007; Kwak, 2017). But other researchers pointed out that this departure actually
expresses the lack of a mechanism to properly handle the pedestrians’ “required space to
move”. Some modifications to the basic SFM were then proposed to overcome this diffi-
culty (Parisi, 2009;Seyfried, 2006).

Although a mechanism allowing an “increase of the space to move” (due to the fear
of crushing or injury) is a compelling necessity in the context of the SFM, a sharp “re-
calibration” of the model for high density situations appears not to be completely satis-
factory (Johansson, 2009). A more “natural” way of handling this matter requires a deep
examination of the current SFM parameters. The net-time headway (roughly, the relaxation
time) was first examined in Johansson (2009). The author sustains the hypothesis that the
pedestrians net-time headway should increase until there is “enough space to make a step”.
He shows that a density dependent net-time headway is a suitable parameter to smartly re-
produce the empirical fundamental diagram for highly dense crowds (Johansson, 2009).

Our own examination of the SFM parameters suggests that not only the net-time head-
way, but the friction between pedestrians (and with the walls) can reproduce the pattern of
the fundamental diagram. Our working hypothesis is that friction is the crucial parameter
in the dynamics of highly dense crowds. We actually sustain the SFM model with no fur-
ther “re-calibrations”, but with the right friction setting, in order to meet the fundamental
diagram pattern.

We want to emphasize that although the friction setting appearing in Helbing (2000)
is a commonly accepted estimate throughout the literature, other values have also been
proposed (Colombi, 2017). We intend our setting, however, as an experimental based pa-
rameter, suitable for high dense crowds.

The investigation is organized as follows. We first recall the SFM in Section 2.1,
while including the precise definitions for flux, density and clustered structures. Section 3
presents our numerical simulations for pedestrians moving through corridors. The corre-
sponding results are shown in Section 4. Our main conclusions are detailed in the closing
Section 5. A complementary simple model for pedestrians moving through a corridor has
been included in the Appendix.

2.

2.1 The Social Force Model

The Social Force model states that human motion is caused by the desire of people to reach
a certain destination, as well as other environmental factors. The pedestrians behavioral
pattern in a crowded environment can be modeled by three kind of forces: the “desire
force”, the “social force” and the “granular force”.
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The “desire force” represents the pedestrian’s own desire to reach a specific target po-
sition at a desired velocity vd. But, in order to reach the desired target, he (she) needs to
accelerate (decelerate) from his (her) current velocity v(i)(t). This acceleration (or decel-
eration) represents a “desire force” since it is motivated by his (her) own willingness. The
corresponding expression for this forces is

f
(i)
d (t) = mi

v
(i)
d e

(i)
d (t)− v(i)(t)

τ
(1)

where mi is the mass of the pedestrian i. ed corresponds to the unit vector pointing
to the target position and τ is a constant related to the relaxation time needed to reach his
(her) desired velocity. For simplicity, we assume that vd remains constant during the entire
process and is the same for all individuals, but ed changes according to the current position
of the pedestrian. Detailed values for mi and τ can be found in Frank (2011).

The “social force” represents the psychological tendency of any two pedestrians, say i
and j, to stay away from each other. It is represented by a repulsive interaction force

f (ij)s = Ai e
(Rij−rij)/Binij (2)

where (ij) means any pedestrian-pedestrian pair, or pedestrian-wall pair. Ai andBi are
fixed values, rij is the distance between the center of mass of the pedestrians i and j and
the distance Rij = Ri +Rj is the sum of the pedestrians radius. nij means the unit vector
in the ~ji direction.

Any two pedestrians touch each other if their distance rij is smaller than Rij . Analo-
gously, any pedestrian touches a wall if his (her) distance rij to the wall is smaller than Ri.
In these cases, an additional force is included in the model, called the “granular force”(i.e.
friction force). This force is considered to be a linear function of the relative (tangential)
velocities of the contacting individuals. In the case of the friction exerted by the wall, the
force is a linear function of the pedestrian tangential velocity. Its mathematical expression
reads

f (ij)g = κ (Rij − rij) Θ(Rij − rij) ∆v(ij) · tij (3)

where κ is the friction coefficient. The function Θ(Rij− rij) is zero when its argument
is negative (that is, Rij < rij) and equals unity for any other case (Heaviside function).
∆v(ij) · tij represents the difference between the tangential velocities of the sliding bodies
(or between the individual and the walls).

The above forces actuate on the pedestrians dynamics by changing his (her) current
velocity. The equation of motion for pedestrian i reads

mi
dv(i)

dt
= f

(i)
d +

N∑
j=1

f (ij)s +
N∑
j=1

f (ij)g (4)

where the subscript j represents all the other pedestrians (excluding i).

In the original model, there is no distinction between the friction coefficient of pedestrian-
pedestrian interaction and pedestrian-wall interaction. Both interactions are modeled with
the same constant parameter κ. In this paper we analyze situations in which the friction

 
1196



coefficient may take different values. We define κi and κw as the friction coefficient related
to the pedestrian-pedestrian interaction and the pedestrian-wall interaction, respectively.

2.2 Fundamental Diagram

We follow the same definition as in Helbing (2007) regarded to the fundamental diagram
analysis. That is, we mean by the local density at place ~r = (x, y) and time t the following
expression

ρ(~r, t) =
∑
j

f(~rj(t)− ~r) (5)

where function f(~rj(t)− ~r) is a Gaussian distance-dependent weight function defined
as

f(~rj − ~r) =
1

πR2
exp[−‖~rj − ~r‖2 /R2] (6)

~rj(t) are the positions of the pedestrians j in the surroundings of ~r and R is a measure-
ment parameter. The local speeds are defined as the weighted average

~V (~r, t) =

∑
j ~vjf(~rj(t)− ~r)∑
j f(~rj(t)− ~r)

(7)

while flow is determined according to the fluid-dynamic formula

~J(~r, t) = ρ(~r, t)~V (~r, t) (8)

2.3 Clustering structures

A characteristic feature of pedestrian dynamics is the formation of clusters. Clusters of
pedestrians can be defined as the set of individuals that for any member of the group (say,
i) there exists at least another member belonging to the same group (j) in contact with
the former. Thus, we define a “granular cluster” (Cg) following the mathematical formula
given in Parisi (2005)

Cg : Pi ε Cg ⇔ ∃ j ε Cg/rij < (Ri +Rj) (9)

where (Pi) indicate the ith pedestrian and Ri is his (her) radius (shoulders width). That
means, Cg is a set of pedestrians that interact not only with the social and the desired forces,
but also with granular forces (i.e. friction forces). The size of the cluster is defined as the
number of pedestrians belonging to it. The fraction of clustered individuals is defined as
the ratio between clustered individuals with respect to the total number of individuals in
the crowd.

3. Simulations

The simulations process were performed on a straight corridor of length L = 28 m (with
periodic boundary conditions) and variable width w. We explored widths ranging from
w = 2 m to w = 40 m. The corridor had two side walls, placed at y = 0 and y = w,
respectively. The length of each wall was L. The pedestrians were modeled as soft spheres
of radius Ri = 0.23 m. Initially, the individuals were randomly distributed along the cor-
ridor with a fixed global density (p/m2) and with random initial velocities, resembling a
Gaussian distribution with null mean value. We explored global density values in the range
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1p m−2 < ρ < 9 p m−2. The number of pedestrians in the simulation was given by the
global density and the corridor dimensions chosen in each case.

The simulations were supported by LAMMPS molecular dynamics simulator with par-
allel computing capabilities (Plimpton, 1995). The time integration algorithm followed the
velocity Verlet scheme with a time step of 10−4 s. All the necessary parameters were set to
the same values as in previous works (see Sticco, 2017, except for the friction coefficient κ.
In this work we use the common value κ = 2.4 × 105 Kg m−1 s−1, but we eventually set
the newly defined parameters κi = 2.4×106 Kg m−1 s−1 and κw = 2.4×106 Kg m−1 s−1,
being κi and κw the pedestrian-pedestrian friction coefficient and the pedestrian-wall fric-
tion coefficient, respectively.

We implemented special modules in C++ for upgrading the LAMMPS capabilities to
attain the social force model simulations. We also checked over the LAMMPS output with
previous computations (see Parisi 2005, 2007; Frank 2011, 2015,2016).

The desired velocity for each pedestrian i was ~v (i)
d = 1 m/s ê (i)

d , where the target ê (i)
d

was set as ê (i)
d = (L, yi) ‖(L, yi)‖−1, being L the x-location of the end at the corridor and

yi the y-location corresponding to the ith pedestrian (see Fig. 8). This allowed the pedestri-
ans to move from left to right in an unidirectional flow. Pedestrians that surpassed x = L
were re-injected at x = 0, preserving their current velocity and y-location (i.e. periodic
boundary conditions). This mechanism was carried out in order to keep the crowd size
unchanged.

The measurements were taken once the system reached the stationary state (t = 30 s),
while the configurations of the systems were recorded every 0.05 s, that is, at intervals as
short as 10% of the pedestrians relaxation time (see Sec. 2.1). The recorded magnitudes
were the pedestrians positions and velocities for each process. We also computed the clus-
terering structures using a LAMMPS built in function.

We warn the reader that, for simplicity, we will not include the units corresponding to
the numerical results. Remember that the friction coefficient has units [κ] =Kg m−1 s−1,
the density [ρ] =p m−2 and the flow [J ] =p m−1 s−1.

4. Results

4.1 Fundamental diagram in the original model

In this Section we present the results relating the local flow, velocity and density (i.e. the
fundamental diagram). The measurements were taken in the middle of the corridor using
the definitions given in Eq. (7) and Eq. (8), and as shown in Fig. 1. All the results shown
here correspond to R = 1 m (see Eq. (8) and Fig. 1). We further barred R until R = 3, but
no significant changes were observed.

Fig 2, shows the fundamental diagram (flow vs. density) for different corridor widths.
We can distinguish the two typical regimes of the fundamental diagram. In the free flow
regime (ρ < 5), the flow increases linearly with the density, since collisions between pedes-
trians are scares. Pedestrians are able to achieve their desired velocity, leading to a flow
that grows linearly with the density (J ∼ ρ) until ρ = 5. This behavior applies to all the
analyzed corridor widths.
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Figure 1: Schematic diagram for individuals in the corridor. The circles represent pedes-
trians moving from left to right. w represents the corridor width, L represents the length.
The rectangular boxes are upper and lower blocks that represent the walls of the corri-
dor. The dashed circle in the middle corresponds to the measurement region and R is the
measurement parameter from Eq. (8)

On the other hand, we have the congested branch for ρ > 5. Here we face two different
scenarios:

(i) For narrow corridors (say w < 10) we can see that the flow reduces as the density in-
creases. This resembles the traditional behavior of the fundamental diagram reported
in the literature.

(ii) For wide corridors (say w > 15) we see that the flow increases with density. This
contradicts the typical behavior of the fundamental diagram.

In the case of narrow corridors, both the simulated case and the empirical results con-
verge to a constant flow value. It is remarkable that the system does not reach a freezing
state such as the one reported in Kwak (2017). Recall that our simulations do not include
any respect factor (see Parisi, 2009), or changes in the net-time headway (Helbing, 2007),
or the urge to see an attraction (Kwak, 2017). We assume a well defined target and the
same vd for all the pedestrians.

The inset in Fig. 2 corresponds to the empirical data from Helbing (2007). at the en-
trance of the Jamaraat bridge (the corridor width was w = 22 m). Notice that our simulated
results corresponding to a w = 22 m corridor, exhibit a different behavior along the con-
gested regime. In the simulated case, the flow increases even for the greatest explored
density. On the contrary, the empirical data exhibit a flow reduction for ρ > 5 until reach-
ing a plateau for the highest explored density values.

In order to fulfill the experimental fundamental diagram, it becomes necessary that the
flow at the maximum explored density (ρmax = 9) does not exceed the flow at ρ = 5 (upper
bound). That is: J(ρ = 9) < J(ρ = 5). From the flow definition in Eq. (8) we can derive
the bounding values
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v(ρmax) <
5vd
ρmax

≤ 5

9
vd (10)

As our desired velocity is fixed at vd = 1 m/s, we conclude that the speed at the max-
imum density has to be bounded by v(ρmax) ≤ 0.5 m/s in order to satisfy the qualitative
behavior of the (experimental) fundamental diagram reported in the literature.

The above reasoning is consistent with the speed-density results shown in Fig. 3. As
a visual guide we plotted v = 0.5 m/s with a horizontal dashed line. The close examina-
tion of ρmax = 9 shows that values corresponding to the wide corridors (w = 15 m and
w = 22 m) exceed v = 0.5 m/s. But, those values corresponding to narrow corridors fall
below v = 0.5 m/s.
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Figure 2: Flow (J) as a function of the density (ρ) for different widths. Initially, pedestrians
were randomly distributed along the corridor. The measurements were taken in the middle
of the corridor once the system reached the stationary state (see Fig. 1). The length of the
corridor was L =28 m for all cases (with periodic boundary conditions in the x direction).

The results shown in Fig. 3 confirm the fact that when the density is low enough, pedes-
trians manage to walk at the desired velocity (v = vd = 1 m/s). Above ρ > 5, however
the velocity begins to slow down. The inset shows the experimental data at the entrance
of the Jamaraat bridge. We may conclude that our simulations agree with the experimental
data for narrow corridors, but disagree as these become wider. The wider the corridor, the
greater the velocity for all the density values. In Section 4.2 we will further discuss this
topic.

It should be pointed out that the Jamaraat data does not a exhibit a “really” constant
velocity for low densities. But this seems reasonable since our simulations do not include
the complexities of the real situation when the density is low. We will not analyze this
phenomenon in this investigation.

We may summarize our first results as follows. We were able to validate the seminal
SFM for narrow corridors through the fundamental diagram. However, the SFM (in its
current version) disagrees with experimental data as the corridors widen. We will focus in
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Figure 3: Mean speed (V ) as a function of the density (ρ) for different widths. Initially,
pedestrians were randomly distributed along the corridor. The measurements were taken
in the middle of the corridor once the system reached the stationary state (see Fig.1). The
length of the corridor was 28 m in all cases (with periodic boundary conditions in the x
direction).

the next Section on the velocity profile in order to investigate this discrepancy.

4.2 Velocity profile

As we mentioned in Section 4.1, when the density is low, pedestrians achieve the desired
velocity (v = vd = 1 m/s). Since the results of the previous Section only hold for the area
located in the middle of the corridor (see Fig.1), we want to shed some light and understand
what is happening across the entire corridor.

Fig. 4 shows the velocity profile (velocity vs. y-location) of the pedestrians across the
corridor (see caption for details). We can see that low-density situations lead to a cruising
velocity profile v = vd. This is valid for every location in the corridor (not only the center
as was previously noticed in Section 4.1). For higher densities, the velocity profile turns
into a parabola-like function. This shape resembles the usual velocity profile for laminar
flow in a viscous fluid, where the velocity increases toward the center of a tube. In our
case, pedestrians near the walls are the ones with the lower velocity. The velocity increases
when departing from the wall until it reaches the maximum at the center of the corridor.
This behavior suggests that the wall friction on the pedestrians, is playing a relevant role
on the velocity distribution. We did some tests removing the walls, while setting periodic
boundary conditions in the y-coordinate. This yield to constant-cruising velocity profiles
for all the densities, confirming that the walls are a necessary condition for attaining a
parabola-shaped speed profile.

Fig. 5 shows the velocity profile for different widths. The horizontal axis of the plot
corresponds to the y-location normalized by the width of the corridor. The density chosen
was ρ = 6 since we wanted to study a situation in which pedestrians slow down. Recall that
when ρ < 5, collisions between pedestrians are not relevant (within the SFM). We can see
that the lowest velocities occur in the regions near the walls. Additionally, there is a clear
relation between vmax and the corridor width. That is, the wider the corridor, the higher
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Figure 4: Mean velocity profile (velocity vs y-position) for different densities (see the
inserted legend). The simulated corridor was 28 m length. Pedestrians walk from left
to right with periodic boundary condition in the x-direction. Initially, pedestrians were
randomly distributed, the corridor width was w = 22 m for all the cases. The bin size was
1 m.

the maximum reached velocity.
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Figure 5: Velocity profile (velocity vs y-position) for different corridors width (see legend
for the corresponding widths). The simulated corridor was 28 m length. Pedestrians walk
from left to right with periodic boundary condition in the x-direction. Initially, pedestrians
were randomly distributed, the density was ρ = 6 in all the cases (high density regime).
The bin size was 1 m except for w = 4 m since the bin was 0.5 m.

Fig. 6 exhibits the scaled velocity profile. The horizontal axis is normalized by the
corresponding corridor width (just like in Fig. 5). Now, the vertical axis is normalized by
the maximum velocity (vmax) corresponding to each data set. Filled markers correspond
density ρ = 9, while empty markers correspond to ρ = 6. Notice that all the data follow
the same pattern, suggesting that the velocity profile exhibits a somewhat fundamental
behavior, regardless the scale of the corridor (and the density). Hence, the velocity growth
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rate from the wall towards the center of the corridor, is the same in spite of the size of the
corridor width.
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Figure 6: Scaled velocity profile (normalized velocity) vs. y-location for different corridors
width (see legend for the corresponding widths) and two different densities. Empty markers
correspond to ρ = 6 while filled markers correspond to ρ = 9. The simulated corridor
was 28 m length. Pedestrians walk from left to right with periodic boundary condition in
the x-direction. Initially, pedestrians were randomly distributed. The horizontal axis is
normalized by the corridor width, the vertical axis is normalized by the maximum velocity
reached in each case. The bin size was 1 m for all cases except for w = 4 m since the bin
was 0.5 m.

In summary, the scaled velocity profile does not report any relevant different as the cor-
ridor widens (withing the high density regime). This suggests that the pedestrian dynamics
remain essentially the same. The maximum attainable velocity (vmax), however, seems to
be a sensible parameter with respect to the flux. The narrow corridors attain lower values
of vmax and thus lower flux. We may expect the flow not to increase if vmax remains low
enough along the explore density range.

In this subsection we have shown that the velocity profile has a parabola shape. Pedes-
trians attain the maximum velocity in the middle of the corridor while the minimum is by
the walls. We found out that once normalized by vmax and the corridor width, the velocity
profile yields a universal behavior (regardless the width of the corridor).

We may hypothesize that the friction force is somehow the key factor in the flow re-
duction, as reported in the experimental fundamental diagram. This hypothesis further
inspired us to analyze the role of the friction coefficient in a simple model for the corridor
(see Appendix).

4.3 Friction modification

The results shown so far indicate that friction may be the key magnitude for fitting the
fundamental diagram into the experimental data. We want to make clear that fitting the
experimental data means mimicking (qualitatively) the congested regime reported by dif-
ferent authors for corridors as width as 22 m. The seminal version of the Social Force
Model proposes the same friction coefficient for the pedestrian-pedestrian interaction and
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the pedestrian-wall interaction. The proposed value was κ = 2.4 × 105. This value is
widely used in many studies despite it lacks a rigorous foundation.

We tested the friction coefficient modification in Appendix 7 and we found that the
fundamental diagram experiences a qualitatively change when the friction coefficient κ is
varied. We further performed numerical simulations in the context of the SFM. We call
κi as the friction coefficient of the pedestrian-pedestrian interaction and κw as the friction
coefficient of the pedestrian-wall interaction. Fig. 7 shows the flow vs density for different
values of κi and κw.

The triangular symbols in Fig. 7 corresponds to the increase in one order of magnitude
of the wall friction (now κw = 2.4 × 106), leaving the pedestrian-pedestrian friction un-
changed (i.e., κi = 2.4 × 105). We can see that the flow reduces a little bit, but this is not
enough to change significantly the congested regime.

The circles in Fig. 7 correspond to a modification of the friction between pedestrians
without changing the value of the wall friction. We increased the pedestrian-pedestrian
friction by a factor of ten (κi = 2.4 × 106). Here we see a significant reduction of the
flow. The qualitative behavior resembles the fundamental diagram reported by Helbing et
al. with a well defined congested regime for the greatest densities.

We also tested the case were both friction coefficients surpass ten times the value of the
original model (now κw = κi = 2.4× 106). The squared symbols represent this scenario.
As expected, the flow reduces significantly respect the original case (cross symbol). Inter-
estingly, the reduction of the flow is more than the reduction due to the increment of κi
plus the reduction of the flow due to κw. This behavior is indicative that the superposition
principle does not hold in this system because of the non-linearity of the equation of motion.

This finding allows us to affirm that the friction plays a crucial role in the functional
behavior of the fundamental diagram. The increment of both individual-individual friction
and wall friction are determinant in order to achieve a congested regime. More specifically,
the empirical behavior for the fundamental diagram can be achieved by properly increasing
the friction coefficients.

Recall that other authors address the “congested regime problem” by modifying dif-
ferent aspects of the model. Parisi (2009) imposes zero desired velocity once pedestrians
are close enough, Johansson (2009) increases the relaxation time in order to slow down
the net-time headway, and more recently, Kwak (2017) induce the jamming transition by
an attraction. Many of these approaches seem to be equivalent. In Appendix 6 we discuss
about how the modification of the relaxation time and the increment of the friction coeffi-
cient yield a similar effect, since both affect the same term in the reduced-in-units equation
of motion.

We claim that in real scenarios, a combination of all these factors may be the cause of
the marked flow reduction that portray the fundamental diagram. The pedestrians path can
be very complex even if it is a simple enclosure (straight corridor) and the target is well
defined (unidirectional flow). Beyond the complexities given by the internal motivations
of pedestrians, we strongly suggest studying and modeling coefficients of friction between
individuals and the friction with the walls. These two parameters have shown to be very
important in the pedestrian dynamics and deserve a closer inspection in future research.
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We want to emphasize that the proposals stated by Parisi (2009), Johansson (2009) and
Kwak (2017) only apply under normal conditions. If a crowd is under high levels of anxi-
ety (i.e. panic), pedestrians will neither keep distance between each other, nor will feel the
urge to see an “attraction”. The only goal in an evacuation under panic is to leave the room.
Thus, studying the friction coefficients may be a critical factor to properly reproduce the
dynamics of a massive evacuation under stress.

With all these insights, we can say that the narrow corridors have no drawback in the
fitting of the flow vs. density relation because very high velocities are not attainable. This
happens because in narrow corridors, the friction of the walls has a lot of “relative weight”
in the overall friction of the system. The friction exerted by the walls is fundamental in
order to produce the parabolic shape of the velocity profile. The walls provide friction
force in the opposite direction to the speed of the individual (drag backwards), since they
act like a fixed pedestrian. In other ways, friction between pedestrians can produce either
drag forward or drag backwards depending on the the contacting pedestrians velocities (see
Eq. 3).
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Figure 7: Fundamental diagram (flow vs density) for different friction coefficient (see leg-
end for the corresponding values). The simulated corridor was 28 m length. Pedestrians
walk from left to right with periodic boundary condition in the x-direction. Initially, pedes-
trians were randomly distributed. For each density, we measure the flow once the system
reaches the stationary state.

In this subsection we have shown that an adequate modification of the friction coeffi-
cients yields a fundamental diagram that follows qualitatively the behavior reported through
empirical data (say flow reduction for the highest densities). We have also discussed differ-
ent approaches proposed by other authors in order to overcome this problem. See Appendix
6 for a more detailed discussion.
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5. Conclusions

Our investigation focused on the fundamental diagram in the context of the social force
model. We comapared empirical data recorded at the entrance to the Jamaraat bridge (see
Helbing, 2007) with our own SFM simulations. We found out that the social force model
in its original version does not fit into the empirical fundamental diagram since the pedes-
trian flow increases even for high dense crowds. The reasons for this mismatching were
studied through numerical computations and by a simple theoretical example. We arrived
to the conclusion that either increasing the friction coefficient or increasing the relaxation
time may be the key for achieving a non-increasing flow in the congested regime of the
fundamental diagram. The second approach was already explored in Johansson (2009) and
a similar idea was introduced in Parisi, 2009. We noticed, however, that both approaches
are equivalent since both affect the reduced-in-units equation of motion in a similar fashion.

The analytical schematic model suggests that the problem could be addressed by mod-
ifying the friction coefficient. In light of this, we performed numerical simulations increas-
ing κ and attained the fundamental diagram behavior reported in the empirical measure-
ments.

When exploring the velocity profile, we found that it has a parabolic shape. Pedestrians
reach the maximum velocity in the middle of the corridor while the minimum is by the
walls. We found out that once scaled by vmax and the corridor width, the velocity profile
yields a universal behavior (regardless the width of the corridor).

The phenomena reported in this paper suggests that further research needs to be done
regarding the friction coefficient. We propose modeling the pedestrian-wall friction interac-
tion with a different coefficient than the pedestrian-pedestrian friction interaction. We want
to stress the fact that studying the friction coefficients may be a critical factor to properly
reproduce the dynamics of a massive evacuation under high levels of anxiety.

6. Appendix: The reduced equation of motion

The equation of motion within the context of the Social Force Model includes at least six
parameters (m, τ , A, B, κ and vd), but the equation itself barely depends on two. The
process of parameter’s reduction is achieved by defining the (reduced) magnitudes

t′ = t/τ
r′ = r/B
v′ = v/vd

(11)

The (reduced) equation of motion reads

dv′

dt′
=

τ

mvd

(
fd + fs + fg

)
(12)

It is straight forward from Eq. (12) that the corresponding reduced forces can be defined
as follows
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

f ′d = êd − v′

f ′s = A exp(r′ − d′) n̂

f ′g = K (2r′ − d′) Θ(2r′ − d′) (∆v′ · t̂) , t̂

(13)

where A = Aτ/(mvd) and K = κBτ/m.

Notice that A and K are actually the only two control parameters in Eq. (12) for iden-
tical pedestrians. The ratio τ/m is common to both, but the magnitudes Av−1d and κB
handle each parameter separately.

The fact that A and K share the parameter τ is in agreement with the conclusions
outlined in Johansson (2009). The relaxation time (or “net-time headway”) τ actually
“weights” the effects of the environment on the individual (that is, the social repulsion
and the friction), and thus, appears as a “key control parameter” for the fundamental dia-
gram as claimed in Johansson (2009).

The role of τ may be somewhat ambiguous whenever the social repulsion becomes neg-
ligible with respect to the friction. This may occur if some kind of balance exists between
neighboring pedestrians in symmetrical configurations (i.e. in crowded corridors). We may
hypothesize that the “key control parameter” may correspond to either τ , or, the friction
itself κ. This is an open question, and a first order approach to this matter is outlined in
Section 7.

7. A simple model for the corridor

A toy model for a moving crowd along a corridor is the one represented schematically in
Fig. 8. Pedestrians (circles in Fig. 8) are assumed to be lined up from side to side across
the corridor, at any given position. Social forces in the x-direction are further considered
to vanish because of translational symmetry. Thus, only the sliding friction is allowed
to balance the the pedestrians own desire. The (reduced) movement equation for the x-
direction according to Section 6 and Fig. 8 is

Figure 8: Schematic diagram for individuals in a corridor. The circles represent pedestrians
moving from left to right. The desired force (red arrows) and sliding friction (black arrows)
are assumed to be the only relevant forces.
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dv′

dt′
(y′) = 1− v′(y′) + f ′g(y′ + δy′)− f ′g(y′ − δy′) (14)

where v′(y′) corresponds to the (reduced) velocity (for the x-direction) of the individ-
ual located at the y′ position. Notice that the individuals remain at the same y′ position
while traveling through the corridor, since balance is expected to take place across the
corridor. These positions are roughly δy′, 3.δy′, 5.δy′,.... Actually, it is not relevant (for
now) the value of y′, and a further simplification can be done by labeling v′(y′) = vi and
v′(y′ ± 2.δy′) = vi±1. The velocity of the individual in contact with the bottom wall in
Fig. 8 will be labeled as v1.

The last two terms in Eq. (14) correspond to the net drag applied on the pedestrian with
velocity vi. According to Eq. (13) this drag may be expressed as

f ′
g,i+ 1

2
− f ′

g,i− 1
2

=


2α v2 − 3α v1 i = 1

2α (vi+1 − 2vi + vi−1) i > 1
(15)

for α = K(r′ − δy′). Recall that our first order approach considers δy′ as roughly uniform
across the corridor.

The stationary situation can be computed straight forward from Eq. (14). Thus, for
v̇i = 0 the following set of equations determine the velocity profile in the corridor (within
this toy model) 

(3α+ 1) v1 − 2α v2 = 1

−2α vi−1 + (4α+ 1) vi − 2α vi+1 = 1
(16)

Notice from Eq. (15) that α = 0 means no friction at all, and thus, the individuals are
allowed to move free from drag. It can be verified that vi = 1 solves the set (16) for this
scenario. The α = 0 scenario is expected to occur, however, for densities below a contact-
ing threshold.

A boundary condition needs to be imposed in order to solve Eqs. (16) for α 6= 0. We
fix vi = vi+1 at the middle of the corridor since the velocity profile should be specularly
distributed with respect to the mid-axis of the corridor. Fig. 9 shows the computed mean
velocity for the bottom side profile as function of α.

Fig. 9 exhibits a decreasing behavior for increasing values of α. As explained above,
the maximum value occurs at α = 0 (i.e. 〈vi〉 = 1). However, the decreasing slope slows
down for increasing number of individuals. This corresponds to a flattening in the velocity
profile, (see Section 4 for details).

The mean flux of individuals can be built from the mean velocity and the corresponding
pedestrian density as follows

J =


ρ for α = 0

(ρ0 + c α) 〈vi〉 for α > 0
(17)

where 〈vi〉 equals unity for the case α = 0, and thus, it was omitted in (17). The density
ρ = ρ0 + c α corresponds to the packing density (that is, the density above the contacting
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Figure 9: Mean velocity of the bottom half of the individuals vs. the parameter α. Both
axis are dimensionless. N corresponds to the number of individuals.

threshold) and c corresponds to a somewhat “packing coefficient”. Fig. 10 shows the flow
as a function of the density, assuming ρ0 = 1 for simplicity.
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Figure 10: Mean flux of the bottom half of the individuals vs. the pedestrian (global)
density ρ (see text for details). Both axis are dimensionless. The number of individuals
across the corridor was set to N = 10, and the contacting threshold was set to ρ0 = 1. The
“packing coefficient” was set to c = 1/K (and thus, making the term cα independent of
friction). The dashed line corresponds to the flux at the low density regime (say, 〈vi〉 = 1).

The pedestrian flux J attains two possible behaviors, according to Fig. 10. For packing
coefficients c < 0.05, the flux diminishes as the corridor becomes more crowded. But,
if c surpasses this threshold, the flux slope becomes positive, although the mean velocity
diminishes. We conclude that the role of the pedestrians’ friction coefficient is crucial for
building the fundamental diagram.
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