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Abstract
We propose an adaptive design for early-phase drug-combination cancer trials with the goal

of estimating the maximum tolerated dose (MTD). A nonparametric Bayesian model, using
Beta priors truncated to the set of partially ordered dose combinations, is used to describe the
probability of dose limiting toxicity (DLT). Dose allocation between successive cohorts of patients
is estimated using a modified Continual Reassessment scheme. The updated probabilities of
DLT are calculated with a Gibbs sampler that employs a weighting mechanism to calibrate
the influence of data versus the prior. At the end of the trial, we recommend one or more dose
combinations as the MTD based on our proposed algorithm. The design operating characteristics
indicate that our method is comparable with existing methods.

Key Words: Cancer Phase I trials, Drug combination, Maximum tolerated dose, Nonpara-
metric Bayesian method, Partial ordering

1. Introduction

The primary objective in conventional phase I clinical trials is to determine the maxi-
mum tolerated dose (MTD), defined as the dose with the probability of toxicity closest to
a prespecified target. For safety and ethical concerns, most phase I trials are conducted
adaptively, using the dose limiting toxicity (DLT) status of previously enrolled patients
to determine the dose level for the next cohort of patients. The majority of such trials
are designed for single agent, e.g., the conventional 3 + 3 design (Storer, 1989), the con-
tinual reassessment method(CRM) and its variants (O’Quigley, Pepe, and Fisher, 1990),
(Goodman, Zahurak, and Piantadosi, 1995), (Korn and Simon, 1991), (Møller, 1995),
(O’Quigley and Shen, 1996), (Leung and Wang, 2002), (O’Quigley and Paoletti, 2003),
(Iasonos and O’Quigley, 2011), (Daimon, Zohar, and O’Quigley, 2011), (Liu, Yin, and
Yuan, 2013), the efficient dose escalation with overdose control (EWOC) method and its
variants (Babb, Rogatko, and Zacks, 1998; Tighiouart, Piantadosi, and Rogatko, 2014;
Tighiouart and Rogatko, 2010; Wheeler, Sweeting, and Mander, 2017), the modified
toxicity probability interval method (Ji and Wang, 2013), the Bayesian optimal design
(Yuan et al., 2016), the nonparametric overdose control method (Lin and Yin, 2017), the
semiparametric dose finding methods (Clertant and O’Quigley, 2017) and the Bayesian
adaptive design using a flexible range of doses (Tighiouart, Cook-Wiens, and Rogatko,
2018).

Recent advances in drug discovery have intensified interest in using dual agents in
phase I clinical trials. This interest is fueled by the fact that drug combinations may
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induce a synergistic treatment effect by targeting multiple pathways simultaneously and
inhibiting resistance mechanisms. A fundamental assumption for cytotoxic agents is
monotonicity between toxicity and doses. For single agent, this assumption induces a
complete ordering of the doses. However, in the case of drug combination treatment
where the two agents are allowed to vary, it induces a partial ordering constraint on
the probabilities of toxicities. The monotonicity assumption coupled with small sample
size in phase I clinical trials and higher dimension of the dose space, make the design of
combination trials challenging.

Various model-based designs for drug combinations, have been studied in the last
decade. Thall et al., 2003 proposed a method using a six-parameter model to define
the probability of toxicity as a function of the two doses with the requirement that each
of the two agents had been studied previously as a single agent. Wang and Ivanova,
2005 used a two-stage design with regression model. Yin and Yuan, 2009a and Yin and
Yuan, 2009b developed a design that models the probability of toxicity with a copula
type model. Wages, Conaway, and O’Quigley, 2011 considered estimation of toxicity
probabilities within a small number of simple orders. Tighiouart, Li, and Rogatko, 2017
and Tighiouart, Cook-Wiens, and Rogatko, 2018 used a reparametrized logistic model
to describe the relationship between the doses of the two agents and the probability of
dose limiting toxicity and extended the work of Tighiouart, Piantadosi, and Rogatko,
2014 by allowing the MTD curve to lie anywhere in the Cartesian plane of the dose levels
of the two drugs and treating cohorts of two patients simultaneously with different dose
combinations. The method was further extended to account for a baseline covariate by
Diniz, Kim, and Tighiouart, 2018 and settings where an unknown fraction of DLTs is
attributable to one or more agents by Jimenez, Tighiouart, and Gasparini, 2019.

In contrast to the parametric models, the nonparametric models do not impose any
functional form on the dose–toxicity relationship. Parametric models suffer from poten-
tial model misspecification, which may lead to unsafe dose escalation. On the other hand,
nonparametric models can capture more subtle aspect of the data, hence they are more
flexible. Several nonparametric models for dual agent clinical trials have been studied in
the past. Lin and Yin, 2016 estimated the toxicity order of two drugs by two-dimensional
isotonic regression and reduced the two-dimensional drug combination searching space
into a one dimension and used a parametric CRM model based on the updated toxicity
order. Mander and Sweeting, 2015 considered a product of independent Beta probabili-
ties escalation strategy allowing the prior distributions for each dose combination to be
unconstrained and imposing the monotonicity assumption when escalating by choosing
only monotonic contours.

In this paper, we propose a nonparametric Bayesian method for combinations of
drugs (NBCD) by modeling the joint prior probabilities of DLTs on the space of all dose
combinations with independent beta distributions truncated to the set of combinations
that satisfy the partial order. Unlike the PIPE algorithm proposed by Mander and
Sweeting, 2015, our approach guarantees that the joint posterior distribution of the
probabilities of DLT estimated with Gibbs sampler satisfies the partial order constraint.
A weighted mechanism is introduced when allocating doses to successive cohorts of

 
1168



patients in order to calibrate the influence of data and that of the prior.
The rest of this paper is organized as follows. In Section 3, we propose a non-

parametric Bayesian model with beta priors truncated to the set of partially ordered
dose combinations. In Section 4, we present our trial design and an algorithm for dose
recommendation for phase II. We study the performance of our model with extensive
simulations studies in Section 5.

Notation. We use nij and zij to denote the number of patient assigned to the dose
combination dij and the number of DLTs observed at (i, j), respectively. We use α =
(αij) ∈ RK and β = (βij) ∈ RK that collect all αij and βij parameters, respectively. For
any positive integer I, we write [I] = {1, . . . , I}. We denote by p̃ij and p̂ij , the prior and
posterior median of the probability of DLT at dose level dij , respectively.

2. Problem formulation

Consider two drugs A and B with ordered dose levels A = {dAi , i = 1, . . . , I} and
B = {dBj , j = 1, . . . , J}, respectively. Let D = A × B be the set of dose combinations

available in the trial. We denote a typical element of D as dij = (dAi , d
B
j ). To each dose

combination dij , there is a true probability of toxicity, or DLT, which we denote as p∗ij .
That is,

p∗ij = P
(
Dose combination dij causes a DLT

)
. (1)

Later in our model, we use pij when modeling these probabilities as random.
Given a target probability of DLT θ ∈ (0, 1), we are interested in dose combinations

whose p∗ij are close to θ. In order to make this notion precise, we define δ-approximate
MTD as

MTD(δ) := {dij | (i, j) ∈Mδ} (2)

where,

Mδ =
{

(i, j) ∈ [I]× [J ] : |p∗ij − θ| ≤ δ
}

(3)

Our goal is to recover any dose combination in MTD(δ) for prescribed values of δ
and θ. In the sequel, for simplicity, we often say dose combination (i, j) instead of dij .

2.1 The model

When modeling the drug trials, we consider the probabilities of DLT as random variables
pij for which we will specify a prior. Let p = (p11, p12, p13, . . . , pIJ) be the random vector
obtained by collecting all the pijs. During the trial, the patients are assigned to various
dose combinations and their toxicity response is recorded. Assume that at a given stage
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Figure 1: Hasse diagram for a 3× 4 lattice

in the trial, we have assigned a total of nij patients to dose combination (i, j). The
number of these patients who experienced DLT, denoted as zij is distributed as

zij | p ∼ Bin(nij , pij).

Letting N = {(i, j) | nij > 0}, the likelihood of the model is

L(z | p) =
∏

(i,j)∈N

(
nij
zij

)
p
zij
ij (1− pij)nij−zij . (4)

where z = (zij) collects all the zijs. In Section 3.1, we specify a prior for p which allows
to obtain the posterior estimate of p given z = (zij). Given these estimates, we update
our estimate of MTD(δ), assign more patients, and so on. Before specifying the prior on
p, we need to better understand the constraints on p.

2.2 Lattice constraints

We assume that the dose combination are ordered so that pij ≤ pi′j′ if i ≤ i′ and j ≤ j′.
These constraints define a partial order on the collection {pij , i = 1, . . . , I, j = 1, . . . , J}
which is illustrated using a Hesse diagram in Figure 1.

Recall that p = (p11, p12, p13, . . . , pIJ) collect all the probabilities of DLT. The partial
ordering constraints on p can be encoded as the intersection of the following sets:

Ω1 = Ω11 =
{
p | 0 < p11 < min(p12, p21)

}
,

...

Ωk = Ωij =
{
p | max(pi−1,j , pi,j−1) < pij < min(pi,j+1, pi+1,j)

}
, (5)

...

ΩK = ΩIJ =
{
p | max(pI−1J , pI,J−1) < pIJ < 1

}
.

where K = IJ . Note that we are using the bijection η : [I] × [J ] → [IJ ] given by
η(i, j) = (i − 1)J + j to transform a two-dimensional indexing to a one-dimensional
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index. For example, when J = 4 we have Ω5 = Ω2,1 and so on. We will use these
two indexings interchangeably throughout the paper. In particular, we often write the
elements of p in the one-dimensional index as well p = (p1, p2, . . . , pK).

The partial ordering constraints can be summarized as requiring

p ∈ Ω, where Ω :=
K⋂
k=1

Ωk ⊂ [0, 1]K .

In the sequel, we refer to Ω as the lattice. We note that there is redundancy in the
specification of Ωk’s in (5) in that the same constraint might be enforced by multiple
Ωk’s. This redundancy is helpful in deriving the Gibbs sampler of Section 3.2.

3. Nonparametric Bayesian model for dual agents

We start by specifying our prior on p and then discuss how we can sample from the prior
and the posterior.

3.1 Nonparametric prior

Perhaps the most basic nonparametric prior on p is the uniform distribution on Ω. The
uniform distribution on the lattice has density

fu(p) ∝ 1Ω(p), where 1Ω(p) =

K∏
k=1

1Ωk
(p) (6)

is the indicator of the lattice. By the uniform distribution being nonparametric, we mean
that one is not assuming a specific functional form for pij based on a lower-dimensional
parameter. We can extend (6) to a model with more general marginals. Assume that we
want a prior on p that is obtained as follows: Draw the coordinates of p independently
with pij having density bij(pij), then truncate the joint distribution of p to the set Ω.
The density of this prior is given by

f(p) ∝ 1Ω(p)
∏
i,j

bij(pij). (7)

In this paper, we take bij(·) to be Beta densities:

bij(pij) ∝ p
αij−1
ij (1− pij)βij−1. (8)

Note that we can write (7) as

f(p) ∝
K∏
k=1

1Ωk
(p)

∏
i,j

bij(pij) (9)
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which is a form suitable for Gibbs sampling since the lattice structure encodes local
relations between elements of p. Given the neighbors of a node in the lattice, its distri-
bution is independent of the rest of the variables. In other words, f(p) is a graphical
model (Koller and Friedman, 2009) with the undirected lattice diagram serving as its
independence graph. For future reference, we will make the following definition:

Definition 1. The lattice-restricted Beta distribution with shape parameters α = (αij)
and β = (βij) is the multivariate distribution defined by (8) and (9). We refer to αij+βij
as the (effective) sample sizes of the distribution (ESS).

It is worth noting that the marginals of p under a lattice-restricted Beta distribution
are not Beta distributions themselves, due to the restrictions imposed by the lattice
constraint. The notion of the sample size in Definition 1 is based on the common practice
of referring to α+β as the effective sample size of Beta(α, β) distribution. The rationale
behind this naming is well-known from the posterior inference in Beta-Binomial models;
see also (15). In a simple Beta(α, β) the effective sample size α+ β can directly control
the variance of the distribution. For the multivariate lattice-restricted Beta, the relation
between the sample sizes αij + βij and the variances of the components of p are much
more complicated. In fact, the lattice constraint indirectly restricts how much αij + βij
influences the variance, making it challenging to design diffuse priors. In Section 3.4, we
propose a simple discounting scheme to work around this issue.

3.2 Gibbs sampler for the prior

It is easy to sample from the lattice-restricted distribution (9) using a Gibbs sampler.
The updates are as follows: Let us derive the updates for the Gibbs sampler:

f(p11 | p−11) ∝ b11(p11) · 1Ω11(p)

...

f(pij | p−ij) ∝ bij(pij) · 1Ωij (p) (10)

...

f(pIJ | p−IJ) ∝ bIJ(pIJ) · 1ΩIJ
(p)

where p−ij is the vector p with pij removed (i.e., all variables are included except pij).
Note that although each pij also appears in some other constraint sets besides Ωij , we
do not need to include them in the above conditional calculation since those constraints
are also enforced by Ωij . In other words, there is some redundancy in the condition of
Ω1,Ω2 . . . ,ΩK that we have introduced to simplify deriving the Gibbs sampler.

Each conditional distribution in (10) is a truncated Beta distribution which is easy
to sample from, where the truncated Beta density is defined as

T (x;α, β, a, b) ∝ xα−1(1− x)β−11{x ∈ (a, b)}. (11)
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Using this notation, for example,

f(p11 | p−11) = T
(
p11; α11, β11, 0,min(p12, p21)

)
.

Thus, all these conditional distributions are easily derived and they are all truncated
Beta distributions that can be simulated efficiently.

3.3 Posterior

Given prior (9) and the likelihood in (4), we can readily obtain the posterior,

π(p | z) ∝ L(z | p) f(p)

∝
∏
i,j

p
zij
ij (1− pij)nij−zij

K∏
k=1

1Ωk
(p)

∏
i,j

bij(pij)

∝
∏
i,j

p
αij+zij−1
ij (1− pij)βij+nij−zij−1

K∏
k=1

1Ωk
(p)

(12)

using (8). We note that the posterior is of the form

π(p | z) ∝
∏
i,j

b′ij(pij)

K∏
k=1

1Ωk
(p) (13)

where b′ij(·) is the density of Beta distribution with parameters αij+zij and βij + nij − zij .
That is, posterior (13) is of the exact same form as (9), that is, a lattice-restricted Beta
distribution, with updated parameters. Thus, the Gibbs sampler derived earlier for the
prior works for the posterior as well, using the new Beta parameters.

3.4 Discounting the prior

The relatively high-dimensional prior in (9) will have reduced variances for components
of p, relative to those, one would expect when the components are independent. This
is due to the restrictions imposed by the lattice constraints and is a challenging aspect
of specifying priors in high dimensions under many constraints on the coordinates. We
believe the difficulty is present as long as one insists on the coordinates satisfying strict
order constraints and is not an artifact of the particular choice of the Beta densities.

At the early stages of the trial, due to the data having a small sample size and the
prior having diminished variances (hence high concentration), the posterior inference
will be dominated by the prior. This can be mitigated by controlling the sample size
of the data relative to the (effective) sample size of the prior. To do so, we evaluate a
pseudo-posterior by raising the likelihood to power ω > 1 as follows:

π(p | z) ∝
(∏

ij

p
zij
ij (1− pij)nij−zij

)ω∏
ij

p
αij−1
ij (1− pij)βij−11Ω(p)

=
∏
ij

p
ωzij+αij−1
i (1− pij)ω(nij−zij)+βij−11Ω(p).

(14)
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The resulting pseudo-posterior is again an instance of a latticed-restricted Beta distri-
bution, as in Definition 1, with shape parameters ωz +α and ω(n− z) + β.

The idea of raising the likelihood to a power has been explored in the literature
to address model misspecification (Royall and Tsou, 2003; Grünwald and Van Ommen,
2017; Bissiri, Holmes, and Walker, 2016) and to incorporate historical data in a Bayesian
analysis (Ibrahim and Chen, 2000). Using this idea to simulate diffuse priors from high-
dimensional concentrated priors, as we intend here, is new to the best of our knowledge.
It is a natural approach for tuning the relative effects of the data and the prior on the
posterior as the following simple example illustrates.

Consider the simple univariate model where z | p ∼ Bin(n, p) and p ∼ Beta(α, β).
The ω-reweighed pseudo-posterior is a Beta distribution with parameters ωz + α and
ω(n− z) + β, whose mean is given by

E[p | z] =
ωz + α

ωn+ α+ β
=: λ

z

n
+ (1− λ)

α

α+ β
(15)

where λ = ωn/(ωn + α + β) ∈ (0, 1). (Note that in (15), α + β plays the same role in
the prior term as does the sample size n in the data-driven term.) That is, the posterior
mean is a weighted (in fact, convex) combination of the maximum likelihood estimate
z/n, which is solely based on data, and the prior mean, with weights that are controlled
by λ. Parameter ω allows us a degree of freedom beyond the sample size n to control
the effect of the prior, effectively tuning its overall variance. In particular, the weight
of the data relative to the prior is given by ρ := λ

1−λ = nω
α+β . For a desired level of ρ,

which can be thought of as a user-specified level of confidence in the prior, we can solve
for the appropriate ω as

ω =
ρ(α+ β)

n
. (16)

By choosing ρ one can calibrates the relative influence of the prior and data on the
posterior. When ρ = 1, the relative influence of the prior and the data are as given by
the traditional Bayesian approaches. For a more outcome-adaptive inference, one sets ρ
to be greater than 1.

A value of ρ > 1 is what we suggest for the high-dimensional prior we are using
(Definition 1). As discussed earlier, the lattice constraint causes any prior distribution
to have diminished variances. A choice of ρ > 1 deflates the effect of the prior, in effect
simulating a more diffuse overall prior (i.e., having larger variance). Empirically, we
have found that setting ρ = 2 significantly improves the performance. Thus, we choose
ω = 1 + 2

∑
ij(αij + βij)/

∑
ij nij as suggested by (16) and since we need ω > 1.

3.5 Choosing the hyperparameters

Let mij be the effective sample size of the Beta prior pij (Definition 1). To choose the
hyperparameters, we do a grid search over different choices of values for m11 and mIJ

with the the rest of mijs being equal to a value that is less than min(m11,mIJ). If the
dose space is too large, one can limit the search space even further and assume that
m11 = mIJ . The grid search is done by running our gibbs sampler algorithm (10) many
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times with all these different combination of hyperparameters. At the end, we choose
the hyperparameters that match our prior guess of the toxicity probabilities. The details
for hyperparameter selection can be found in the Appendix A.

4. Trial Design

To limit the exposure of patients to toxic combinations and provide better posterior
estimation, we enroll more patients to the first two cohorts. For better exploration
of the dose space, following Tighiouart, Li, and Rogatko, 2017, we enroll patients to
different dose combinations in each cohort c > 1. However, rather than alternating each
time between the vertical and horizontal direction, we choose the direction randomly.

Thus, the design of a Phase I trial for two agents using the proposed NBCD proceeds
as follows:

1. The first 4 patients in the first cohort receive the minimum dose combination
(dA1 , d

B
1 )

2. In the second cohort, patients 5 and 6 receive (dA1 , d
B
j∗), where

j∗ = argmin
j
|p̂1j − θ| (17)

Similarly, patient 7 and 8 receive (dAi∗ , d
B
1 ), where

i∗ = argmin
i
|p̂i1 − θ| (18)

3. In the c-th cohort (c ≥ 3) of two patients, from each of the two dose combinations
in cohort c − 1, choose between horizontal and vertical direction randomly to fix
one drug level and vary the other drug level and find the dose combination with
posterior median probability of DLT closest to θ similar to (17) and (18). If
the posterior median DLT probability of minimum dose of one direction or both
directions is greater than 1.5 × θ, choose the direction with the lowest minimum
one.

4. Repeat step 3 and terminate the trial when all the patients are enrolled, or the
following stopping rule holds.

Stopping rule: Stop the trial after n patients are accrued if

P(p̂
(n)
11 > θ + γ) > ε (19)

where, γ and ε are the stopping rules parameters.
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4.1 Recommended phase II doses

At the end of the trial, we recommend one or more dose combinations to be used in
future phase II studies. To achieve this, we first set the margins δl and δu and consider
an asymmetric neighborhood N around θ, that is N = [θ − l, θ − u] ⊆ [θ − δl, θ − δu].
We start with small l and u and gradually increase them until for some (i, j), p̂ij ∈ N .
Among these dose levels, we recommend the ones that were experimented more than once
(If no dose levels are available as such, we recommend the ones that are experimented
once). If no dose levels belong to [θ − δl, θ − δu], then we do not recommend any doses.
Algorithm 1 summarizes the steps for recommending doses for phase II.

Algorithm 1 Dose recommendation for phase II

1: Set δl, δu, the step sizes γu, γl, ηu and pick initial values l0, u0.

2: Set I ← ∅; l← l0; u← u0

3: if
{∑

ij 1{p̂ij>θ}
K ≥ 1

2

}
then

4: The scenario is toxic; Set toxic ← 1.

5: end if

6: while I = ∅ AND (l ≤ δl OR u ≤ δu) do

7: Update I ←
{

(i, j) : −l ≤ p̂ij − θ ≤ u
}

8: Update l← l + 1{l ≤ δl} × γl
9: Update u← u+ 1{u ≤ δu}

(
ηu × toxic + γu × (1− toxic)

)
10: end while

11: Return M̂TD(δ) =
{
dij : (i, j) ∈ I, nij > 1

}

5. Simulations

In this section, we show the effectiveness of our proposed method in comparison with
the existing methods through various simulation studies. For all the following simula-
tions, we define the MTD as any dose combination that is within δ = 0.1 of the the
target probability and the MTD is estimated using Algorithm 1. We also use δl = 0.1
and δu = 0.05, l0 = 0.05, u0 = 0, γl = δl

2 , γu = δu
2 and ηu = δu

5 , throughout. All
the trials start from the lowest dose level d11 = (dA1 , d

B
1 ). We use a cohort size of 4

for the first two cohorts and a cohort size of 2 for the rest. The toxicity outcome is
generated as a Bernoulli random variable that takes a value of 1 with probability pij
and 0 from the corresponding scenario. For finding the median posterior, we took 11000
posterior samples and discarded 1000 burn-in iterations in Gibbs sampling procedure.
To select the hyperparameters, we used a grid search as explained in section 3.5. For
each scenario, 2000 simulated trials are replicated to evaluate the operating character-
istics of NBCD and other methods. Specifically, we calculated the mean percentage
that each dose combination was selected as the MTD(δ) at the end of the trial (rec-
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ommendation percentage) and the mean percentage of patients assigned to each dose
combination (experimentation percentage). For PIPE design, the (weak) prior sample
size of 1

I∗J was used as suggested by Mander and Sweeting, 2015. The dose escalation is
done by a neighborhood constraint, with admissible doses chosen from those closest to
the estimated MTD contour.

5.1 Simulation Study I

For the first simulation study, we compare the performance of NBCD with the results
from Mander and Sweeting, 2015 (previously examined by Braun and Jia, 2013) under
scenarios A-G that are reproduced in Table 1. These methods include the generalized
CRM (gCRM) Braun and Jia, 2013, the latent contingency method by Yin and Yuan,
2009a and the coupla model of Yin and Yuan, 2009b and the product of independent
beta probabilities (PIPE) Mander and Sweeting, 2015. Among all these methods, PIPE
and NBCD are nonparametric and the rest are parametric models. The target toxicity
probability θ is set at 0.2 and the total sample size is 50. The median prior for the
probability of DLT at the smallest and largest dose combinations is set to 0.04 and 0.34,
respectively to match that of scenario A. The stopping rules parameters γ = 0.1 and
ε = 0.8 are used.

The operating characteristics of the NBCD method and all the other methods are
shown in Table 2, where the results from the parametric models and the PIPE method
were produced from Table IV of Mander and Sweeting, 2015. In scenario D where all
doses are toxic, all methods perform well in the sense that they do not recommend an
MTD. Our method outperforms all the other methods in scenarios A,E,F in dosing at
the target and in scenarios A,F,G in dose recommendation within 10% of the target.
In particular, the percent recommendation within 10% of the target for NBCD exceeds
that of PIPE by an absolute 13% and 23% under scenarios A and G, respectively. The
percent of patients allocated to doses within 10% of the target is higher for PIPE relative
to NBCD under scenarios A, B, and E and they are fairly close for scenarios C, F, and
G. Given that the primary goal of phase I trials is estimation of the MTD, we conclude
that our method is competitive with the other approaches under the scenarios studied
by Braun and Jia, 2013; Mander and Sweeting, 2015.

5.2 Simulation Study II

For our second simulation study, we investigate the performance of our method under
an asymmetric dose-combination space with seven 4 by 5 scenarios, see Table 3. These
scenarios cover a wide range of dose–response relationships and include cases where the
MTD is achieved at the highest dose combination (scenario 2), lowest dose combination
(scenario 3), and more complex structures (scenarios 5 and 7). We compare our method
with PIPE as it is a nonparametric model. The target toxicity probability θ is set at 0.3
and the total sample size is 50 with a cohort size of 2 for PIPE. For a fair comparison,
we do not impose any early termination for NBCD and PIPE. The median prior for the
probability of DLTs at the smallest and largest dose combinations was set to 0.05 and
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Table 1: Dose limiting toxicity for simulation study I
Drug A

1 2 3 4 1 2 3 4

Scenario A Scenario E

1 0.04 0.08 0.12 0.16 0.08 0.18 0.28 0.29
2 0.10 0.14 0.18 0.22 0.09 0.19 0.29 0.30
3 0.16 0.20 0.24 0.28 0.10 0.20 0.30 0.31
4 0.22 0.26 0.30 0.34 0.11 0.21 0.31 0.41

Scenario B Scenario F

1 0.02 0.04 0.06 0.08 0.12 0.13 0.14 0.15
2 0.05 0.07 0.09 0.11 0.16 0.18 0.20 0.22
3 0.08 0.10 0.12 0.14 0.44 0.45 0.46 0.47
4 0.11 0.13 0.15 0.17 0.50 0.52 0.54 0.55

D
ru

g
B

Scenario C Scenario G

1 0.10 0.20 0.30 0.40 0.01 0.02 0.03 0.04
2 0.25 0.35 0.45 0.55 0.04 0.10 0.15 0.20
3 0.40 0.50 0.60 0.70 0.06 0.15 0.30 0.45
4 0.55 0.65 0.75 0.85 0.10 0.30 0.50 0.80

Scenario D

1 0.44 0.48 0.52 0.56
2 0.50 0.54 0.58 0.62
3 0.56 0.60 0.64 0.68
4 0.62 0.66 0.70 0.74
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Table 2: Experimentation and recommendation percentages for simulation study I
Recommendation percentages Experimentation percentages

At θ 1-10% > 10% None At θ 1-10% > 10% None
Scenario Model of θ of θ of θ of θ

A gCRM 10 82 3 5 6 72 17 5
YY09a 13 82 5 0 13 72 15 0
YY09b 11 81 6 2 10 70 20 0
PIPE 10 88 3 0 8 87 5 0
NBCD 16 83 1 0 10 76 14 0

B gCRM 0 94 3 3 0 87 13 0
YY09a 0 99 1 0 0 86 14 0
YY09b 0 96 4 0 0 71 29 0
PIPE 0 83 17 0 0 82 18 0
NBCD 0 96 4 0 0 72 28 0

C gCRM 45 39 5 11 30 41 18 11
YY09a 41 50 5 4 27 54 16 3
YY09b 42 47 5 6 29 55 11 5
PIPE 29 59 7 5 19 46 34 2
NBCD 32 54 14 0 20 48 31 1

D gCRM 0 0 4 96 0 0 22 78
YY09a 0 0 1 99 0 0 20 80
YY09b 0 0 1 99 0 0 16 84
PIPE 0 0 1 99 0 0 37 63
NBCD 0 0 4 96 0 0 41 59

E gCRM 9 70 14 7 5 56 32 7
YY09a 6 65 27 2 9 55 34 2
YY09b 7 67 25 1 6 54 38 2
PIPE 11 84 4 1 9 77 13 1
NBCD 15 78 7 0 10 70 20 0

F gCRM 13 70 6 11 10 64 16 10
YY09a 14 76 6 4 7 75 14 4
YY09b 12 74 7 7 7 77 9 7
PIPE 12 75 11 2 12 69 18 2
NBCD 16 72 11 1 14 65 20 1

G gCRM 25 68 5 2 18 57 24 1
YY09a 12 76 12 0 3 71 26 0
YY09b 15 72 13 0 7 61 32 0
PIPE 9 62 29 0 14 54 31 0
NBCD 20 74 6 0 15 56 29 0
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0.50, respectively. We then chose the hyperparameters that match our prior guess of the
toxicity probabilities as discussed in section 3.5.

We used scenario 1 as the prior for both NBCD and PIPE. Table 4 shows that NBCD
outperforms PIPE in all scenarios with respect to percent recommendation within 10%
of the target probability of DLT θ with the highest percent equal to 20% achieved in
scenarios 2 and 3. The percent of patients allocated to doses within 10% of the target
are fairly similar between the two methods except for scenario 3 where NBCD allocates
23% more patients than PIPE. The safety profiles of the two methods are presented in
Table 5. In general, the average percent of DLTs across all simulated trials are fairly
close in all seven scenarios but PIPE tends to allocate more patients to overtoxic doses
and is more likely to recommend overtoxic doses under scenarios 3 and 6. Finally, PIPE
is more likely to result in a trial with an excessive rate of DLTs relative to NBCD as
assessed by the percent of trials with a DLT rate more than θ + 0.1. In particular, the
probability that a prospective trial using PIPE will result in an excessive rate of DLTs
under scenario 3 exceeds that of NBCD by 32.4%. Based on these scenarios, we conclude
that NBCD approach is safer than PIPE and more efficient in recommending the MTD.

A. Details for hyperparameter selection

We choose α and β vectors to have the following forms:

α =
[
m(1− t) l . . . l Ms

]
,

β =
[
mt u . . . u M(1− s)

]
.

That is, all the elements of α, except the first and last, are taken to be equal, and
similarly for β. The values m,M, s, t, l and u are determined by a grid search as follows.

We vary t and s in a subinterval of (0, 1) away from the boundaries, e.g., (0.2, 0.5).
We choose u and l such that u+ l ≤ min(m,M). To reduce the size of the grid search,
we can fix one of u or l. For example, we can set u = min(m,M)/2 − l and let l vary
in the interval [0.2, 0.4] × min(m,M). The two parameters m and M are also varied,
independently, over an interval [min(α0, β0), α0 +β0] where α0 and β0 are some heuristic
prespecified values. For example, α0 + β0 roughly specify the overall sample size of the
prior. Below we will discuss a heuristic for choosing α0 and β0 that we have found
effective in practice.

The goal of the gird search is to find a combination of hyperparameters such that the
resulting prior satisfies some specified criteria for the median dose combinations. Let
p̃ij be the prior median for the (i, j)-th does combination. Often the median for the
smallest and largest dose combinations, i.e., p̃11 and p̃IJ , are required to match certain
values and we have a range for the intermediate dose combinations. For example, the
following is a possible set of criteria for a 4× 4 lattice:

{p̃ | p̃11 ≈ 0.04, p̃44 ≈ 0.34, p̃12 < 0.1}.

This set is often rewritten by setting a tolerance, say δ = 0.01,

{p̃ | |p̃11 − 0.04| < δ, |p̃44 − 0.34| < δ, p̃12 < 0.1}. (20)
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Table 3: Dose limiting toxicity scenarios in simulation study II

Drug A
1 2 3 4 5 1 2 3 4 5

Scenario 1 Scenario 2

1 0.05 0.07 0.11 0.16 0.23 0.01 0.03 0.07 0.09 0.11
2 0.07 0.12 0.17 0.24 0.33 0.04 0.06 0.08 0.10 0.22
3 0.12 0.18 0.25 0.33 0.43 0.09 0.13 0.22 0.25 0.27
4 0.18 0.27 0.35 0.43 0.50 0.12 0.16 0.23 0.28 0.30

Scenario 3 Scenario 4

1 0.30 0.35 0.40 0.50 0.55 0.01 0.03 0.08 0.12 0.15

D
ru

g
B

2 0.40 0.55 0.65 0.75 0.85 0.02 0.05 0.10 0.16 0.30
3 0.50 0.60 0.70 0.80 0.90 0.07 0.09 0.15 0.25 0.35
4 0.55 0.70 0.75 0.85 0.95 0.10 0.26 0.30 0.33 0.50

Scenario 5 Scenario 6

1 0.07 0.12 0.20 0.25 0.30 0.10 0.15 0.20 0.30 0.45
2 0.10 0.18 0.23 0.30 0.35 0.11 0.20 0.30 0.40 0.50
3 0.30 0.48 0.56 0.65 0.68 0.15 0.30 0.35 0.50 0.60
4 0.40 0.55 0.60 0.66 0.70 0.30 0.40 0.50 0.60 0.65

Scenario 7

1 0.11 0.12 0.13 0.14 0.15
2 0.14 0.20 0.25 0.30 0.35
3 0.16 0.25 0.40 0.55 0.60
4 0.20 0.40 0.60 0.90 0.95
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Table 4: Experimentation and recommendation percentages for simulation study II
Recommendation % Experimentation %

At θ 1-10% > 10% None At θ 1-10% > 10%
Scenario Model of θ of θ of θ of θ

1 NBCD 0.0 84.0 15.5 0.0 0.0 58.1 41.9
PIPE 0.0 75.0 25.0 0.0 0.0 60.9 39.1

2 NBCD 6.8 81.3 11.5 0.4 6.3 53.8 39.9
PIPE 4.2 64.3 31.5 0.0 5.5 56.8 37.6

3 NBCD 24.6 60.7 10.5 4.2 26.4 49.6 24.0
PIPE 24.0 40.5 35.4 0.1 19.4 33.3 47.3

4 NBCD 29.7 52.5 17.5 0.3 20.4 36.6 43.1
PIPE 25.4 38.4 36.2 0.0 19.4 32.4 48.2

5 NBCD 36.7 41.4 20.5 1.4 25.3 29.5 45.2
PIPE 36.5 39.6 23.6 0.3 22.3 29.3 48.4

6 NBCD 52.3 38.8 8.6 0.3 35.3 34.1 30.6
PIPE 40.7 35.9 23.0 0.4 30.7 36.9 32.4

7 NBCD 16.8 72.9 9.8 0.5 9.8 56.4 33.7
PIPE 10.0 60.6 29.2 0.0 10.2 52.9 36.9

For each combination of the hyperparameters (m,M, t, s, l), we run the Gibbs sampler
and estimate the corresponding median and variance for each variable pij . We then
choose the combination for which the estimated prior medians satisfy the criteria (20).
If there are multiple solutions, we choose the one that maximizes the total prior variance:∑

i,j var(pij).
The heuristic we follow for setting the range of m and M above is as follows: We

consider a sequence of i.i.d. random variables p′ij ∼ Beta(α0, β0) for i = 1, . . . , I and
j = 1, . . . , J . We then consider the extreme order statistics of this sequence, i.e., the
minimum and maximum of {p′ij}. It is easy to analytically solve for α0 and β0 such
that the median of the distributions of these two order statistics have specific values.
In particular, we solve these equations to match the desired median values p̃11 and
p̃IJ . The values α0 and β0 thus obtained provide a good heuristic to set the range
[min(α0, β0), α0 + β0] for the grid search on m and M . (In fact, we conjecture that the
distribution of the extreme order statistics of {p′ij} match those of the prior (9) when
αij = α0 and βij = β0 for all i and j.)

As an example, the set of criteria for in the simulation study I is:

{p̃ | |p̃11 − 0.04| < 0.01, |p̃44 − 0.34| < 0.01}.

We used nm = 15 grid points for each of m and M , nt = 10 points for each of t and
s, and nl = 3 points for l. Te grid search resulted in 625 solutions that satisfied the
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Table 5: Trial safety evaluation for simulation study II
Design 1 2 3 4 5 6 7 Average
Recommendation % of overtoxic doses
NBCD 4.4 0.0* 9.7 0.3 12.4 5.3 1.3 5.6
PIPE 5.6 0.0* 22.4 0.0 10.5 13.7 2.8 9.2
Allocation % of patients to overtoxic doses
NBCD 6.0 0.0* 24.0 1.4 22.2 9.9 4.9 11.4
PIPE 8.7 0.0* 40.4 2.8 29.2 19.4 11.5 18.7
Average rate of DLTs
NBCD 23.3 18.4 39.6 20.8 30.2 29.3 26.7 26.9
PIPE 25.8 20.2 43.7 22.8 34.2 32.6 29.5 29.8
% of trials with DLT rate > θ + δ
NBCD 0.0 0.0 34.7 0.0 1.6 0.1 0.0 5.2
PIPE 0.1 0.0 67.1 0.0 9.7 4.4 1.1 11.8
* The average excludes the items with asterisk

criteria. Out of these, we chose the one that maximizes the total variance (i.e., the trace
of the covariance matrix of p) leading to the following choice of hyperparameters:

α =
[

4.52 0.4 . . . 0.4 0.2
]
,

β =
[

0.74 2.23 . . . 2.23 13.77
]
.
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