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Abstract
We present and evaluate a new approach to neuroimage analysis motivated by the concept

of matched filtering in signal detection theory. In the case of discrete-time signals, matched
filtering for signal detection consists of creating a weighted sum (convolution) of a noise-
contaminated signal and then declaring the signal present if the weighted sum exceeds the
threshold corresponding to the significance level. Our neuroimaging analog of this signal
testing procedure consists of testing the global null of no relationship between the brain
images and a covariate using a weighted sum of the statistical parametric map (SPM) as the
test statistic. If the magnitude of this test statistic is sufficiently large, the null is rejected.
Since there is usually insufficient information to compute the optimal weights of the matched
filter, we propose using an approximate matched filter consisting of 0/1 weights determined
by cross-validation. Since the distribution of the resulting weighted sum of the SPM is
not known, we test the global null using permutation. We compare the performance of
this adaptive signal detection procedure (ASD) with random field theory (RFT) peak and
cluster methods on both simulated and actual (ADNI) hippocampal morphometry data.
These comparisons indicate our new procedure has substantially greater power than the
RFT methods (as implemented in Surfstat) on the simulated data and greater power on
the ADNI hippocampal morphometry data.

Key Words: random field theory, signal detection, matched filter, cross-validation, statis-
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1. Introduction

Image analysis methods which are both more robust and more powerful are needed
as shown by recent developments. The validity of cluster-based random field theory
(RFT) inference has been questioned and investigated; see, for example, the May
2020 issue of Human Brain mapping which contains a special section on this topic.
More generally, producing more reproducible research is currently a major concern
of the statistics and research communities.

On a more positive note, researchers are the beneficiaries of both ever-increasing
computing power and ever-expanding memory capacity. Petabyte solid state disk
drives are on the horizon as are exascale super computers for which computational
speed will be measured in exaflops, one billion billion (1018) floating point operations
per second.
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Given the preceding, it seems worthwhile to pursue increased robustness and
power by developing new, more computationally intense algorithms which capitalize
on increasing computational resources. For example, permutation methods can be
used to achieve robustness by minimizing distributional assumptions. Similarly,
cross-validation can be used to increase power by providing data-adaptive methods.
Our proposed algorithm employs both of these methods.

2. Methods and Materials

2.1 New Signal Detection Method: Overview

Like random field theory procedures, our method analyzes statistical parametric
maps (SPMs). SPMs assign to each voxel a statistic measuring the strength of the
relationship between brain features at that location and one or more covariates.
Unlike standard RFT methods which attempt to identify discrete topological fea-
tures, e.g. peaks and clusters, our method is concerned only with testing the global
null of no relationship between any brain region (voxel subset of the SPM) and
the covariate(s) of interest. If detailed information about the possible relationship
between SPM voxels and the covariates were known a priori, for example, if the
null and alternative distributions of the voxel statistics were known, then matched
filtering could be used to optimally test for the presence of non-null voxels (the
“signal”). Since such a priori information is not available, in our approach approx-
imate matched filters consisting of 0’s and 1’s are computed and applied to the
data. These matched filters or masks are determined and used via cross-validation:
a mask is determined from one subset of the data (training data) and then applied
to the remaining data (test data) to obtain the average of the voxels selected by
the mask. This process is repeated until a mask has been determined and applied
to generate a voxel average for the SPM of each of k cross-validation partitions
or folds. These averages plus associated associated statistics are computed for the
actual data and then for permutations of the data. The resulting statistics are used
to compute a permutation p-value for testing the global null.

2.2 New Signal Detection Method: Detailed Description

Consider analyzing a dataset of n neuroimages, each consisting of J voxels, to
determine if a relationship exists between any brain region and some predictor p.
Let Si,j denote the jth voxel of image i. Let T denote the corresponding statistical
parametric map (SPM) for testing the significance of p in the general linear model

Si,j = β0,j + β1,jx1,i + β2,jx2,i + · · ·+ βk−1,jxk−1,i + βk,jpi + ϵi,j

where x1, x2, . . . , xk−1 are nuisance covariates. In order to detect the existence
of a linear relationship between p and any brain region we test the global null
H0: βk,j = 0, j = 1, . . . , J against the alternative H1: βk,j ̸= 0 for at least one voxel
j. Note that although not required by our approach, we will assume the SPM
T consists of t statistics. If we knew a priori the location of the possibly non-
null voxels, their noncentrality parameters, and their covariances, we could use an
optimally weighted sum of these voxels to test the global null. Since we don’t have
this information, we approximate the unknown optimal weights by weights which
are 0 or 1 in value. These 0/1 weights are computed using cross-validation and used
to test H0 as follows:
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1. Compute lower and upper percentiles Li and Ui, i = 1, 2, . . . , I, where each
(Li, Ui) pair satisfy P̂ (T ≤ Li) = P̂ (T > Ui), where P̂ is the empirical distri-
bution of the t statistics comprising the SPM T .

2. Randomly partition the n observations into K subsets or folds.

3. For each fold compute the SPM T−k from all observations except those in the
kth fold and the SPM Tk from all the observations in the kth fold.

4. For each i, compute lower and upper masks LMk,i and UMk,i for each fold
k where LMk,i,j = 1 if T−k,j ≤ Li and 0 otherwise. Similarly UMk,i,j = 1 if
T−k,j ≥ Ui and 0 otherwise.

5. For each i, compute lower and upper averages ALk,i and AUk,i for each fold
k where

• ALk,i = Average of elements of SPM T−k for which LMk,i = 1;

• AUk,i = Average of elements of SPM T−k for which UMk,i = 1.

6. For each i and each fold k, if |AUk,i| > |ALk,i|, Ak,i = AUk,i, else Ak,i = ALk,i.

7. For each i, compute Ti = Ā/SA where Ā and SA are the mean and standard
deviation of Ak,i, k = 1, 2, . . . ,K.

8. Compute Tm where m = arg max{|T1|, |T2|, . . . , |TI |}.

9. Repeat steps 2-8 M times and average the resulting Tm’s to get T̄ .

10. Test H0 using a permutation test based on T̄ .

2.3 Simulation Study

We conducted a power study comparing the performance on simulated surface data
of our adaptive signal detection approach (ASD) - implemented in R (R Core Team
[2019]) - with Gaussian random field theory peak (RFP) and cluster (RFC) methods
- as implemented by SurfStat (Worsley et al. [1996]). We generated pseudorandom
morphometric datasets obeying the following general linear model on a 652 vertex
hippocampal template surface.

Si,j = βxi + ϵi,j , i = 1, 2, . . . , 72, j = 1, 2, . . . , 126,

= ϵi,j , i = 1, 2, . . . , 72, j = 127, 128, . . . , 652,

where Si,j represents the surface value at vertex j for subject i. Each dataset corre-
sponds to a two-sample study with the predictor xi equal to −1 for i = 1, 2, . . . , 36
and 1 for i = 37, 37 . . . , 72. We investigated four signal amplitudes: β = 0, 1/12,
1/6, and 1/3. We considered both independent and correlated random errors ϵi,j .
The random errors ϵi,j were independent standard normal pseudorandom numbers.
The correlated standard errors were independent standard normal pseudorandom
errors which were smoothed using heat kernal smoothing (Chung et al. [2005]) prior
to being added to the signal. For each of the eight possible combinations of signal
amplitude and random error correlation, we generated 100 72-subject data sets and
then analyzed them using the three methods.
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2.4 ADNI Hippocampal Morpohometry Analysis

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI
was launched in 2003 as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD).

To test our method on real data we analyzed ADNI hippocampal morphome-
tric data. MRI scans for 172 healthy controls (HC) and 267 early mild cognitive
impairment (EMCI) subjects were processed and the voxels of each hippocampus
determined by segmentation. The resulting three dimensional hippocampal sur-
faces were smoothed via spherical harmonics using the SPHARM method (Shen et
al. [2009]). The differences between each smoothed hippocampal surface and the
overall average (surface atlas) were computed at each of 2562 vertices. The surface
image for each subject consisted of the sign and magnitude of the orthogonal com-
ponent of these differences with negative and positive values denoting shrinkage and
expansion respectively. A more detailed description of the pre-processing of these
data is provided in (Shen et al. [2017]) and (Inlow et al. [2016]). After generating
the surface images, we analyzed them using the three methods in conjunction with
the general linear model

Si,j = β0,j + β1,jGENDERi + β2,jAGEi + β3,jEMCIi + ϵi,j

i = 1, 2, . . . , 439, j = 1, 2, . . . , 5124, where EMCI is the EMCI indicator variable.
Note that we combined the left and right hippocampal surfaces, treating them as a
single image with 5124 vertices.

3. Results

3.1 Simulation Study Results

Tables 1 and 2 present the results of our simulation studies. Table 1 provides
the number of rejections (out of 100 72-subject datasets) of the adaptive signal
detection (ASD), Gaussian random field peak (RFP), and Gaussian random field
cluster (RFC) methods for significance level α = 0.05. Table 2 provides the results
for α = 0.01. For the null (signal amplitude β = 0) scenarios, the random field
methods are conservative whereas our method achieves the specified Type I error as
expected since it uses permutation testing. For all non-null scenarios, our new ASD
method dominates the random field cluster (RFC) method, exhibiting substantially
greater power at all signal amplitudes. It also dominates the random field peak
(RFP) method in all but the largest signal amplitude case. In particular, it is
substantially more powerful for the weakest signal amplitude where its power is at
least nine times greater than RFP for all β = 1/12 scenarios.

3.2 ADNI Hippocampal Morphometry Results

Neither random field method detected a significant difference in hippocampal mor-
phometry between EMCI and HC groups. RFC was not significant at α = 0.05
nor was RFP which yielded a p-value of 0.151, indicating any differences present
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Table 1: Simulation study results: The number of rejections (out of 100 runs) at
α = 0.05 for the ASD, RFP, and RFC methods.

Signal Strength Unsmoothed Data Smoothed Data
β ASD RFP RFC ASD RFP RFC
0 4 1 0 5 2 0

1/12 94 7 1 89 10 0
1/6 100 57 6 100 47 51
1/3 100 100 5 100 100 49

Table 2: Simulation study results: The number of rejections (out of 100 runs) at
α = 0.01 for the ASD, RFP, and RFC methods.

Signal Strength Unsmoothed Data Smoothed Data
β ASD RFP RFC ASD RFP RFC
0 0 0 0 1 1 0

1/12 77 3 0 71 3 0
1/6 100 17 5 100 17 43
1/3 100 100 5 100 100 44

are small compared to between-subject variability. Therefore, if small amplitude
differences are present then, based on our simulation study results, we might expect
ASD to be able to detect them though RFT methods can’t. This appears to be the
case since the ASD p-value for comparing HC vs EMCI is 0.0064 based on 10,000
permutations.

These results are graphically depicted by figures 1 and 2. Figure 1 provides a
mapping of the t-statistic SPM onto the hippocampi with red regions indicating
areas of shrinkage of the MCI hippocampi relative to those of the HC subjects.
Figure 2 shows the average of the masks over the k cross-validation folds. In this
figure a value of 1 (darkest red) indicates that vertex/voxel received a weighting
of 1 (was included in the average of voxel values) for every fold. Likewise a value
of 0 (darkest blue) indicates that vertex/voxel received a weighting of 0 (was not
included in the average of voxel values) for every fold. Note that the red areas
of figure 2 paradoxically align with the blue areas of the SPM in figure 1. This
result is due to the fact that the blue areas of image 1 are an artifact of how
the hippocampal images were derived from the unsmoothed hippocampal surfaces.
Corresponding to areas where the HC hippocampi are expanded relative to those
of the MCI subjects, there must be regions where the HC hippocampi appear to be
shrunken relative to the MCI hippocampi. Since the ASD method is a two-sided
method, that is, it is agnostic regarding whether to select positive or negative t
statistics, it unexpectedly selected the negative t statistics corresponding to the
processing artifact rather than the positive t statistics. Apparently the negative
artifact t statistics are more informative for detecting differences between the HC
and MCI surfaces.
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Figure 1: HC vs EMCI Hippocampal Statistical Parametric Map

Figure 2: HC vs EMCI Average Mask
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4. Comments and Conclusions

Our results demonstrate that our new adaptive signal detection (ASD) approach,
which consists of

1. testing the global null of no relationship between any image voxel and the
hypothesized predictor(s) by

2. using cross-validation in combination with permutation testing to approximate
optimal matched filtering signal detection,

compares favorably with standard RFT methods as implemented in Surfstat. In
particular they demonstrate the superiority of ASD to RFT methods for detecting
weak signals in both simulated and actual data. Of course, it has been shown
elsewhere that image analysis permutation methods have better power than RFT
procedures (Nichols et al. [2001]). Thus our next step is to compare our method with
other permutation methods, such as the methods implemented by SnPM (Nichols
et al. [2019]), across various imaging modalities, e.g., fMRI.
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