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Abstract
We consider making inference about several small areas with data obtained in the form of multino-
mial counts. The cell probabilities have the same unimodal order restriction across areas, and these
cell probabilities share a common effect. Therefore, a hierarchical multinomial-Dirichlet model,
used to model the cell probabilities and the cell counts, allows a borrowing of strength across areas.
We used the Gibbs sampler to make inference about the order-restricted multinomial parameters.
We show how to perform the computations because there are difficulties poised by the order re-
strictions. An application on body mass index showed that the order restriction is necessary and it
provides increased precision over the scenario without the restriction.

Key Words: Bayesian computation, Gibbs sampler, Multinomial counts, Monte Carlo Integration,
Unimodal order restrictions.

1. Introduction

Traditional sample surveys are not designed for the estimations of small areas such as
counties. They can not provide enough samples to produce reliable estimates. Running a
specific well-designed survey for small areas will be expensive and even impossible. The
use of some suitable statistical models on those samples from traditional sample surveys
can provide improved precision for the estimations of small areas. Hierarchical Bayesian
models, such as multinomial-Dirichlet model (e.g. Nandram 1998 ), are used to make infer-
ence about the finite population proportion of each small-area. Nandram (1997) provided a
great discussion of the methods, techniques, and approaches for the Multinomial-Dirichlet
model under Bayesian framework. In this paper, we discuss the hierarchical multinomial-
Dirichlet model associated with the analysis of body mass index data, which is multilevel
survey data.

Body mass index (BMI) is a ratio of body weight(kg) and the square of the body
height(m). This is important measure the public health since overweight individuals may
have a higher risk for some diseases, from Nandram, Kim, and Zhou(2019). Our research
concerns improved estimation of the BMI composition of the United States. BMI data con-
structed from several counties have five levels (underweight, normal, overweight, obese1
and obese2).

Nandram, Sedransk, and Smith (1997) provided an improved estimation of the age
composition of a population of fish under a Bayesian framework. Kim, Reiter, Wang,
Cox, and Karr (2014) presented a fully Bayesian model for missing values under linear
constraints. Heck and Davis-Stober (2019) provided Bayesian analyses for the linear in-
equality constraints problem. In our application, it is reasonable to believe most people in
different counties will fall in the second level of BMI, which is a normal level. Our key
contribution is to bring this restriction into our model to hopefully gain a higher accuracy.

We show how to perform more efficient and accurate computations using Monte Carlo
integration and Gibbs samples Gelfand, Smith, and Lee (1992). We use trace plot, auto
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correlation and effective sample size to assess the convergence. Then we compare our pro-
posed model with Dirichlet multinomial Bayesian hierarchical model without any order
restriction. In our future work, we will test that the order restriction is necessary using the
Bayes factor.

2. Multinomial Dirichlet Model

In this section, we present a brief review of Multinomial-Dirichlet model and its exten-
sion with the order restriction.

2.1 General Multinomial Dirichlet Model

Nandram, Kim, and Zhou(2019) had a good discussion of the general multinomial
Dirichlet model and their methodology. The Dirichlet distribution, x ∼ Dirichlet(α), is
parameterized by positive scalar αj > 0 for j = 1, 2, . . . ,K, where K > 2. The probabil-
ity density of x is

f(X|α) =
Γ(

∑K
j=1 αj)∏K

j=1 Γ(αj)

K∏
j=1

x
αj−1
j .

The Multinomial distribution, n ∼ Multinomial(n. ,θ), is a discrete distribution over
K dimensional non-negative integer vectors n where

∑K
j=1 nj = n.. θ = (θ1, . . . , θK).

The probability mass function is given as

f(n|θ) =
Γ(n. + 1)∏K
j=1 Γ(nj + 1)

K∏
j=1

θ
nj
j ,

K∑
j=1

nj = n., ni > 0.

The Bayesian hierarchical multinomial Dirichlet model: Letting nij be the cell counts , θij
the corresponding cell probabilities, i = 1, 2, . . . , I , j = 1, 2, . . . ,K, and ni. =

∑K
j=1 nij ,

The general hierarchical Bayesian model is

ni|θi
ind∼ Multinomial(ni. ,θi),

θi|µ, τ
ind∼ Dirichlet(µτ),

π(µ, τ) =
(K − 1)!

(1 + τ)2
,

µj > 0,
K∑
j=1

µj = 1 , τ > 0,

where, without any prior information, we take µ and τ to be independent.

2.2 Multinomial Dirichlet Model with Order Restriction

We incorporate the order restriction into the Bayesian hierarchical Dirichlet multino-
mial model. We use a grid method for Gibbs sampler. This is more efficient than the
method of Nandram (1998). Letting nij be the cell counts, θij the corresponding cell
probabilities,i = 1, 2, . . . , I , j = 1, 2, . . . ,K,ni. =

∑K
j=1 nij and we believe the mode of

θis is θim, 1 6 m 6 K.
Specifically, we take

ni|θi
ind∼ Multinomial(ni. ,θi), θi ∈ C i = 1, . . . , I,
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where C = {θi : θi1 6 . . . 6 θim > . . . > θiK , i = 1, . . . , I}, and assume C is known.
At the second stage we take

θi|µ, τ
ind∼ Dirichlet(µτ), i = 1, . . . , I

π(µ, τ) =
K(m− 1)!(K −m)!

(1 + τ)2
, µj > 0,

K∑
j=1

µj = 1, µ ∈ Cµ.

Since E(θij) = µj , µ should have the same order restriction as θi, which is µ ∈ Cµ,

Cµ = {µ : µ1 6 . . . 6 µm > . . . > µK}.

Using Bayes’ theorem, the joint posterior distribution of all variables is

π(θ,µ, τ |n) ∝
I∏
i=1

{
K∏
j=1

θ
nij
ij

∏K
j=1 θ

µjτ−1
ij ICICµ

D(µτ)C(µτ)
} 1

(1 + τ)2

∝
I∏
i=1

{
∏K
j=1 θ

nij+µjτ−1
ij ICICµ

D(µτ)C(µτ)
} 1

(1 + τ)2
,

where IC and ICµ are the indicator functions under those order restrictions,
and

C(µτ)
denote

=

∫
θi∈Ci

Γ(
∑K

j=1 µjτ)∏K
j=1 Γ(µjτ)

K∏
j=1

θ
µjτ−1
ij dθi,

D(µτ) =

∏K
j=1 Γ(µjτ)

Γ[
∑K

j=1 µjτ ]
.

A posteriori θi|µ, τ,ni
ind∼ Dirichlet(ni + µτ), θi ∈ Ci, i = 1, . . . , I

where

fθi|µ,τ,n =

Γ[
∑K
j=1(nij+µjτ)]∏K

j=1 Γ(nij+µjτ)

∏K
j=1 θ

nij+µjτ−1
ij∫

θi∈C
Γ[
∑K
j=1(nij+µjτ)]∏K

j=1 Γ(nij+µjτ)

∏K
j=1 θ

nij+µjτ−1
ij dθi

=

Γ[
∑K
j=1(nij+µjτ)]∏K

j=1 Γ(nij+µjτ)

∏K
j=1 θ

nij+µjτ−1
ij

C(ni + µτ)
.

3. Methodology with Order Restriction

3.1 Gibbs Sampling

Liu and Sabatti (2000) presented a comprehensive discussion of the general Gibbs sam-
pler which is more efficient the Markov chain Monte Carlo method for Bayesian inference.
We take advantage of Gibbs sampler to generate the posterior samples for the Bayesian
inference.

In this section, we present the modified Gibbs sampler for µ ∈ Cµ and τ .
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Algorithm:

1. Draw τ from π(τ |µ,n),

2. For j from m-1 to 1,

Draw µj from π(µj |µ(−j), τ,n), where 0 < µj < min{µj+1,
1−

∑K
t=1,t6=m,t6=j µt

2
},

3. For j from m+1 to K,

Draw µj from π(µj |µ(−j), τ,n), where 0 < µj < min{µj−1,
1−

∑K
t=1,t6=m,t6=j µt

2
},

4. Get µm = 1−
K∑

j=1,j 6=m
µj

3.2 Dirichlet Distribution of θ with Order Restriction

θ has a recognizable distribution, which is the Dirichlet distribution with the order re-
striction. We can generate samples from its distribution using the exact method. Sedransk,
Monahan, and Chiu (1985) provided an efficient algorithm to generate random vectors from
the constrained density. However instead of drawing samples directly from the Dirichlet
distribution with the order restriction, we present an alternative method related to drawing
samples from the Gamma distributions.

To simplify the problem about how to draw samples from the constrained Dirichlet
distribution, let αi = ni + µτ

θi|αi
ind∼ Dirichlet(αi), θi ∈ C.

Then we draw samples from the Gamma distribution to construct the samples from the
constrained Dirichlet distribution.

Algorithm:

Denote β = (β1, . . . , βK),

If 0 6 θ1 6 θ2 6 . . . 6 θm > . . . > θK , the mode is θm,

0 6 β1 6 β2 6 . . . 6 βm > . . . > βK , the mode is βm,

1. Draw βm ∼ Gamma(αm, 1), where 0 6 βm <∞;

2. Draw βm−1 ∼ Truncated Gamma(αm−1, 1), where 0 6 βm−1 6 βm,

. . . β1 ∼ Truncated Gamma(α1, 1), where 0 6 β1 6 β2;

3. Draw βm+1 ∼ Truncated Gamma(αm+1, 1), where 0 6 βm+1 6 βm,

. . . βK ∼ Truncated Gamma(αK , 1), where 0 6 βK 6 βK−1.

Then,

θ1 =
β1

β1 + β2 + . . .+ βK
,

θ2 =
β2

β1 + β2 + . . .+ βK
,
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...

θK−1 =
βK−1

β1 + β2 + . . .+ βK−1
,

θK = 1−
K−1∑
i=1

θi.

4. Application to Body Mass Index Data

4.1 Body Mass Index

As an illustrative example, we use a set of body mass index data from a national survey,
where we use only the female BMI data from the 35 largest counties with a population at
least 500,000. Our goal is to predict the percentage of the normal BMI level. Table 1 gives
an illustration of the female BMI data.

Table 1: US Female BMI data
State County BMI lvl1 BMI lvl2 BMI lvl3 BMI lvl4 BMI lvl5

4 13 3 40 37 13 4
6 1 1 36 38 15 1
6 19 3 20 49 13 5
6 37 2 145 174 77 14
6 59 1 29 31 16 3

. . . . . . . . . . . . . . . . . . . . .

4.2 MCMC Convergence

We ran 50,000 MCMC iterations, used 10,000 as a ‘burn in’ and used every 40th to
obtain 1,000 converged posterior samples. Table 2 gives the effective sample size of the
parameters µ, τ for the model with the order restriction and the general model. The effec-
tive sample sizes are almost 1,000. Table 3 gives the p-values of the Geweke test for the
parameters. The p-values are all large so we can not reject that null hypothesis that the MC
is stationary. Then posterior samples can be used for the further inference.

Table 2: Effective Sizes
Models µ1 µ2 µ3 µ4 µ5 τ

W Order 973.7572 1000.0000 1000.0000 1000.0000 1000.0000 1000
W/O Order 859.3293 1000.0000 1000.0000 970.8221 1000.0000 1032.3

Table 3: Geweke Diagnostics
Models µ1 µ2 µ3 µ4 µ5 τ

W Order 0.4275 0.3221 0.2376 0.0895 0.3784 0.1393
W/O Order 0.8352 0.785 0.6931 0.4425 0.3692 0.8983

4.3 Model Comparison

We compute the estimated cell probabilities for each county and their variances, which
are the sample mean of parameter θ and the sample variances. In Table 4, the second level
and the third level of BMI have lower variances compared with the general model. We have
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higher accuracy for the estimation of the second level proportion. But for parameters θ1

and θ5, the model with order restriction lost some precision for the estimates of them.
As expected, Multinomial Dirichelt model with the order restriction has higher accu-

racy for the estimation of mode in parameters.

Table 4: Two Models Means and Variances Comparison
X Θ1.mean SD1 Θ2.mean SD2 Θ3.mean SD3 Θ4.mean SD4 Θ5.mean SD5
1 0.02623 0.01282 0.37278 0.02312 0.41610 0.02723 0.14772 0.02940 0.03717 0.01445
1 0.02253 0.01038 0.39584 0.03403 0.40331 0.03267 0.14471 0.02362 0.03361 0.01242
2 0.01455 0.00956 0.37427 0.02585 0.43005 0.02955 0.16197 0.03053 0.01918 0.01105
2 0.01394 0.00774 0.38789 0.03210 0.41940 0.03224 0.15740 0.02490 0.02137 0.01000
3 0.02583 0.01223 0.30158 0.03724 0.48296 0.04170 0.14645 0.02840 0.04318 0.01622
3 0.02238 0.00968 0.32111 0.03459 0.46908 0.03570 0.14879 0.02337 0.03864 0.01324
4 0.00688 0.00378 0.35565 0.01947 0.42290 0.02074 0.18093 0.01786 0.03364 0.00808
4 0.00775 0.00392 0.36033 0.02005 0.42155 0.02090 0.17809 0.01720 0.03228 0.00746

1Note: Shaded Area: Our model with the order restriction
Unshaded Area: The model without any order restriction

5. Concluding Remarks and Future Work

Bayesian hierarchical multinomial Dirichlet models can be used to make inference for
small areas, which is hard for Non-Bayesian models. We have proposed the model with the
order restriction to increase the accuracy of the estimation for parameters. We increased
the precision of the estimation of cell probabilities for level 2 and level 3 in the BMI data.

However, since one of assumptions for cell probabilities is that the sum has to be equal
to one, our model can not increase the over-all accuracy of the estimation for all parame-
ters. Our proposed model may be used for the estimation of some specific levels only.

We want to compare the multinomial Dirichlet model without any order restriction with
the order restricted one using the Bayes factor.

The marginal likelihood for the model with the order restriction is given by

f(n1,n2, . . . ,nI |M1) =

∫
θ,µ,τ

I∏
i=1

{ ni.!∏K
j=1 nij !

∏K
j=1 θ

nij
ij

∏K
j=1 θ

µjτ−1
ij

D(µτ)C(µτ)
}

ICµ
((1 + τ)2

dθdµdτ

Integral with respect to θ

=

∫
µ,τ

I∏
i=1

{ ni.!∏K
j=1 nij !

D(µτ + ni.)C(µτ + ni.)

D(µτ)C(µτ)
}

ICµ
((1 + τ)2

dµdτ.

The marginal likelihood for the model without the order restriction is given by

f(n1,n2, . . . ,nI |M2) =

∫
µ,τ

I∏
i=1

{ ni.!∏K
j=1 nij !

D(µτ + ni.))

D(µτ)
} (K − 1)!

((1 + τ)2
dµdτ.

We can not have a close form for f(n1,n2, . . . ,nI |M1) because of the order restriction of
θ and µ. It will be harder to compute the Bayes factor for the model comparison. We will
use Monte Carlo integration to estimate the marginal likelihood in the future.
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